1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Color image rendering */
#include "gx.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gzstate.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcconv.h"
#include "gxdcolor.h"
#include "gxistate.h"
#include "gxdevmem.h"
#include "gxcpath.h"
#include "gximage.h"
#include "gsicc.h"
#include "gsicc_cache.h"
#include "gsicc_cms.h"
#include "gxcie.h"
#include "gscie.h"
#include "gzht.h"
#include "gxht_thresh.h"
#include "gxdevsop.h"
typedef union {
byte v[GS_IMAGE_MAX_COLOR_COMPONENTS];
#define BYTES_PER_BITS32 4
#define BITS32_PER_COLOR_SAMPLES\
((GS_IMAGE_MAX_COLOR_COMPONENTS + BYTES_PER_BITS32 - 1) / BYTES_PER_BITS32)
bits32 all[BITS32_PER_COLOR_SAMPLES]; /* for fast comparison */
} color_samples;
/* ------ Strategy procedure ------ */
/* Check the prototype. */
iclass_proc(gs_image_class_4_color);
static irender_proc(image_render_color_DeviceN);
static irender_proc(image_render_color_icc);
static irender_proc(image_render_color_thresh);
irender_proc_t
gs_image_class_4_color(gx_image_enum * penum)
{
bool std_cmap_procs;
int code;
bool use_fast_thresh = false;
bool is_planar_dev = false;
if (penum->use_mask_color) {
/*
* Scale the mask colors to match the scaling of each sample to
* a full byte, and set up the quick-filter parameters.
*/
int i;
color_samples mask, test;
bool exact = penum->spp <= BYTES_PER_BITS32;
memset(&mask, 0, sizeof(mask));
memset(&test, 0, sizeof(test));
for (i = 0; i < penum->spp; ++i) {
byte v0, v1;
byte match = 0xff;
gx_image_scale_mask_colors(penum, i);
v0 = (byte)penum->mask_color.values[2 * i];
v1 = (byte)penum->mask_color.values[2 * i + 1];
while ((v0 & match) != (v1 & match))
match <<= 1;
mask.v[i] = match;
test.v[i] = v0 & match;
exact &= (v0 == match && (v1 | match) == 0xff);
}
penum->mask_color.mask = mask.all[0];
penum->mask_color.test = test.all[0];
penum->mask_color.exact = exact;
} else {
penum->mask_color.mask = 0;
penum->mask_color.test = ~0;
}
/* If the device has some unique color mapping procs due to its color space,
then we will need to use those and go through pixel by pixel instead
of blasting through buffers. This is true for example with many of
the color spaces for CUPs */
std_cmap_procs = gx_device_uses_std_cmap_procs(penum->dev, penum->pis);
if ( (gs_color_space_get_index(penum->pcs) == gs_color_space_index_DeviceN &&
penum->pcs->cmm_icc_profile_data == NULL) || penum->use_mask_color ||
!std_cmap_procs) {
return &image_render_color_DeviceN;
} else {
/* Set up the link now */
const gs_color_space *pcs;
gsicc_rendering_param_t rendering_params;
int k;
int src_num_comp = cs_num_components(penum->pcs);
int des_num_comp;
cmm_dev_profile_t *dev_profile;
code = dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile);
des_num_comp = gsicc_get_device_profile_comps(dev_profile);
penum->icc_setup.need_decode = false;
/* Check if we need to do any decoding. If yes, then that will slow us down */
for (k = 0; k < src_num_comp; k++) {
if ( penum->map[k].decoding != sd_none ) {
penum->icc_setup.need_decode = true;
break;
}
}
/* Define the rendering intents */
rendering_params.black_point_comp = BP_ON;
rendering_params.graphics_type_tag = GS_IMAGE_TAG;
rendering_params.rendering_intent = penum->pis->renderingintent;
if (gs_color_space_is_PSCIE(penum->pcs) && penum->pcs->icc_equivalent != NULL) {
pcs = penum->pcs->icc_equivalent;
} else {
pcs = penum->pcs;
}
penum->icc_setup.is_lab = pcs->cmm_icc_profile_data->islab;
penum->icc_setup.must_halftone = gx_device_must_halftone(penum->dev);
penum->icc_setup.has_transfer =
gx_has_transfer(penum->pis, des_num_comp);
if (penum->icc_setup.is_lab) penum->icc_setup.need_decode = false;
if (penum->icc_link == NULL) {
penum->icc_link = gsicc_get_link(penum->pis, penum->dev, pcs, NULL,
&rendering_params, penum->memory);
}
/* PS CIE color spaces may have addition decoding that needs to
be performed to ensure that the range of 0 to 1 is provided
to the CMM since ICC profiles are restricted to that range
but the PS color spaces are not. */
if (gs_color_space_is_PSCIE(penum->pcs) &&
penum->pcs->icc_equivalent != NULL) {
/* We have a PS CIE space. Check the range */
if ( !check_cie_range(penum->pcs) ) {
/* It is not 0 to 1. We will be doing decode
plus an additional linear adjustment */
penum->cie_range = get_cie_range(penum->pcs);
}
}
if (gx_device_must_halftone(penum->dev) && use_fast_thresh &&
(penum->posture == image_portrait || penum->posture == image_landscape)
&& penum->image_parent_type == gs_image_type1) {
/* If num components is 1 or if we are going to CMYK planar device
then we will may use the thresholding if it is a halftone
device*/
is_planar_dev = dev_proc(penum->dev, dev_spec_op)(penum->dev,
gxdso_is_native_planar, NULL, 0);
if ((penum->dev->color_info.num_components == 1 || is_planar_dev) &&
penum->bps == 8 ) {
code = gxht_thresh_image_init(penum);
if (code == 0) {
return &image_render_color_thresh;
}
}
}
return &image_render_color_icc;
}
}
/* ------ Rendering procedures ------ */
/* Test whether a color is transparent. */
static bool
mask_color_matches(const byte *v, const gx_image_enum *penum,
int num_components)
{
int i;
for (i = num_components * 2, v += num_components - 1; (i -= 2) >= 0; --v)
if (*v < penum->mask_color.values[i] ||
*v > penum->mask_color.values[i + 1]
)
return false;
return true;
}
static inline float
rescale_input_color(gs_range range, float input)
{
return((input-range.rmin)/(range.rmax-range.rmin));
}
/* This one includes an extra adjustment for the CIE PS color space
non standard range */
static void
decode_row_cie(const gx_image_enum *penum, const byte *psrc, int spp, byte *pdes,
byte *bufend, gs_range range_array[])
{
byte *curr_pos = pdes;
int k;
float temp;
while ( curr_pos < bufend ) {
for ( k = 0; k < spp; k ++ ) {
switch ( penum->map[k].decoding ) {
case sd_none:
*curr_pos = *psrc;
break;
case sd_lookup:
temp = penum->map[k].decode_lookup[(*psrc) >> 4]*255.0;
temp = rescale_input_color(range_array[k], temp);
temp = temp*255;
if (temp > 255) temp = 255;
if (temp < 0 ) temp = 0;
*curr_pos = (unsigned char) temp;
break;
case sd_compute:
temp = penum->map[k].decode_base +
(*psrc) * penum->map[k].decode_factor;
temp = rescale_input_color(range_array[k], temp);
temp = temp*255;
if (temp > 255) temp = 255;
if (temp < 0 ) temp = 0;
*curr_pos = (unsigned char) temp;
default:
break;
}
curr_pos++;
psrc++;
}
}
}
static void
decode_row(const gx_image_enum *penum, const byte *psrc, int spp, byte *pdes,
byte *bufend)
{
byte *curr_pos = pdes;
int k;
float temp;
while ( curr_pos < bufend ) {
for ( k = 0; k < spp; k ++ ) {
switch ( penum->map[k].decoding ) {
case sd_none:
*curr_pos = *psrc;
break;
case sd_lookup:
temp = penum->map[k].decode_lookup[(*psrc) >> 4]*255.0;
if (temp > 255) temp = 255;
if (temp < 0 ) temp = 0;
*curr_pos = (unsigned char) temp;
break;
case sd_compute:
temp = penum->map[k].decode_base +
(*psrc) * penum->map[k].decode_factor;
temp *= 255;
if (temp > 255) temp = 255;
if (temp < 0 ) temp = 0;
*curr_pos = (unsigned char) temp;
default:
break;
}
curr_pos++;
psrc++;
}
}
}
/* Common code shared amongst the thresholding and non thresholding color image
renderers */
static int
image_color_icc_prep(gx_image_enum *penum_orig, const byte *psrc, uint w,
gx_device *dev, int *spp_cm_out, byte **psrc_cm,
byte **psrc_cm_start, byte **psrc_decode, byte **bufend,
bool planar_out)
{
const gx_image_enum *const penum = penum_orig; /* const within proc */
const gs_imager_state *pis = penum->pis;
bool need_decode = penum->icc_setup.need_decode;
gsicc_bufferdesc_t input_buff_desc;
gsicc_bufferdesc_t output_buff_desc;
int num_pixels, spp_cm;
int spp = penum->spp;
bool force_planar = false;
int num_des_comps;
int code;
cmm_dev_profile_t *dev_profile;
code = dev_proc(dev, get_profile)(dev, &dev_profile);
if (code < 0) return code;
num_des_comps = gsicc_get_device_profile_comps(dev_profile);
if (penum->icc_link == NULL) {
return gs_rethrow(-1, "ICC Link not created during image render color");
}
/* If the link is the identity, then we don't need to do any color
conversions except for potentially a decode. Planar out is a special
case. For now we let the CMM do the reorg into planar. We will want
to optimize this to do something special when we have the identity
transform for CM and going out to a planar CMYK device */
if (num_des_comps != 1 && planar_out == true) {
force_planar = true;
}
if (penum->icc_link->is_identity && !need_decode && !force_planar) {
/* Fastest case. No decode or CM needed */
*psrc_cm = (unsigned char *) psrc;
spp_cm = spp;
*bufend = *psrc_cm + w;
*psrc_cm_start = NULL;
} else {
spp_cm = num_des_comps;
*psrc_cm = gs_alloc_bytes(pis->memory, w * spp_cm/spp,
"image_render_color_icc");
*psrc_cm_start = *psrc_cm;
*bufend = *psrc_cm + w * spp_cm/spp;
if (penum->icc_link->is_identity && !force_planar) {
/* decode only. no CM. This is slow but does not happen that often */
decode_row(penum, psrc, spp, *psrc_cm, *bufend);
} else {
/* Set up the buffer descriptors. planar out always ends up here */
num_pixels = w/spp;
gsicc_init_buffer(&input_buff_desc, spp, 1,
false, false, false, 0, w,
1, num_pixels);
if (!force_planar) {
gsicc_init_buffer(&output_buff_desc, spp_cm, 1,
false, false, false, 0, num_pixels * spp_cm,
1, num_pixels);
} else {
gsicc_init_buffer(&output_buff_desc, spp_cm, 1,
false, false, true, w/spp, w/spp,
1, num_pixels);
}
/* For now, just blast it all through the link. If we had a significant reduction
we will want to repack the data first and then do this. That will be
an optimization shortly. For now just allocate a new output
buffer. We can reuse the old one if the number of channels in the output is
less than or equal to the new one. */
if (need_decode) {
/* Need decode and CM. This is slow but does not happen that often */
*psrc_decode = gs_alloc_bytes(pis->memory, w,
"image_render_color_icc");
if (penum->cie_range == NULL) {
decode_row(penum, psrc, spp, *psrc_decode, (*psrc_decode)+w);
} else {
/* Decode needs to include adjustment for CIE range */
decode_row_cie(penum, psrc, spp, *psrc_decode,
(*psrc_decode)+w, penum->cie_range);
}
(penum->icc_link->procs.map_buffer)(dev, penum->icc_link,
&input_buff_desc,
&output_buff_desc,
(void*) *psrc_decode,
(void*) *psrc_cm);
gs_free_object(pis->memory, (byte *) *psrc_decode,
"image_render_color_icc");
} else {
/* CM only. No decode */
(penum->icc_link->procs.map_buffer)(dev, penum->icc_link,
&input_buff_desc,
&output_buff_desc,
(void*) psrc,
(void*) *psrc_cm);
}
}
}
*spp_cm_out = spp_cm;
return 0;
}
static int
image_render_color_thresh(gx_image_enum *penum_orig, const byte *buffer, int data_x,
uint w, int h, gx_device * dev)
{
gx_image_enum *penum = penum_orig; /* const within proc */
image_posture posture = penum->posture;
int vdi; /* amounts to replicate */
fixed xrun = 0;
byte *thresh_align;
byte *devc_contone[GX_DEVICE_COLOR_MAX_COMPONENTS];
byte *psrc_plane[GX_DEVICE_COLOR_MAX_COMPONENTS];
byte *devc_contone_gray;
const byte *psrc = buffer + data_x;
int dest_width, dest_height, data_length;
int spp_out = dev->color_info.num_components;
int position, k, j;
int offset_bits = penum->ht_offset_bits;
int contone_stride = 0; /* Not used in landscape case */
fixed scale_factor, offset;
int src_size;
bool flush_buff = false;
byte *psrc_temp;
int offset_contone[GX_DEVICE_COLOR_MAX_COMPONENTS]; /* to ensure 128 bit boundary */
int offset_threshold; /* to ensure 128 bit boundary */
gx_dda_int_t dda_ht;
int code = 0;
int spp_cm = 0;
byte *psrc_cm = NULL, *psrc_cm_start = NULL, *psrc_decode = NULL;
byte *bufend = NULL, *curr_ptr;
int psrc_planestride = w/penum->spp;
gx_color_value conc;
int num_des_comp = penum->dev->color_info.num_components;
if (h != 0) {
/* Get the buffer into the device color space */
code = image_color_icc_prep(penum, psrc, w, dev, &spp_cm, &psrc_cm,
&psrc_cm_start, &psrc_decode, &bufend,
true);
/* Also, if need apply the transfer function at this time. This
should be reworked so that we are not doing all these conversions */
if (penum->icc_setup.has_transfer) {
for (k = 0; k < num_des_comp; k++) {
curr_ptr = psrc_cm + psrc_planestride * k;
for (j = 0; j < psrc_planestride; j++, curr_ptr++) {
conc = gx_color_value_from_byte(curr_ptr[0]);
cmap_transfer_plane(&(conc), penum->pis, penum->dev, k);
curr_ptr[0] = gx_color_value_to_byte(conc);
}
}
}
} else {
if (penum->ht_landscape.count == 0 || posture == image_portrait) {
return 0;
} else {
/* Need to flush the buffer */
offset_bits = penum->ht_landscape.count;
penum->ht_offset_bits = offset_bits;
penum->ht_landscape.offset_set = true;
flush_buff = true;
}
}
/* Data is now in the proper destination color space. Now we want
to go ahead and get the data into the proper spatial setting and then
threshold. First get the data spatially sampled correctly */
src_size = penum->rect.w - 1;
switch (posture) {
case image_portrait:
/* Figure out our offset in the contone and threshold data
buffers so that we ensure that we are on the 128bit
memory boundaries when we get offset_bits into the data. */
/* Can't do this earlier, as GC might move the buffers. */
vdi = penum->hci;
contone_stride = penum->line_size;
offset_threshold = (- (((long)(penum->thresh_buffer)) +
penum->ht_offset_bits)) & 15;
for (k = 0; k < spp_out; k ++) {
offset_contone[k] = (- (((long)(penum->line)) +
contone_stride * k +
penum->ht_offset_bits)) & 15;
}
xrun = dda_current(penum->dda.pixel0.x);
xrun = xrun - penum->adjust + (fixed_half - fixed_epsilon);
dest_width = fixed2int_var_rounded(any_abs(penum->x_extent.x));
if (penum->x_extent.x < 0)
xrun += penum->x_extent.x;
data_length = dest_width;
dest_height = fixed2int_var_rounded(any_abs(penum->y_extent.y));
scale_factor = float2fixed_rounded((float) src_size / (float) (dest_width - 1));
#ifdef DEBUG
/* Help in spotting problems */
memset(penum->ht_buffer, 0x00, penum->ht_stride * vdi * spp_out);
#endif
break;
case image_landscape:
default:
/* Figure out our offset in the contone and threshold data buffers
so that we ensure that we are on the 128bit memory boundaries.
Can't do this earlier as GC may move the buffers.
*/
vdi = penum->wci;
contone_stride = penum->line_size;
offset_threshold = (-(long)(penum->thresh_buffer)) & 15;
for (k = 0; k < spp_out; k ++) {
offset_contone[k] = (- ((long)(penum->line) +
contone_stride * k)) & 15;
}
dest_width = fixed2int_var_rounded(any_abs(penum->y_extent.x));
dest_height = fixed2int_var_rounded(any_abs(penum->x_extent.y));
data_length = dest_height;
scale_factor = float2fixed_rounded((float) src_size / (float) (dest_height - 1));
/* In the landscaped case, we want to accumulate multiple columns
of data before sending to the device. We want to have a full
byte of HT data in one write. This may not be possible at the
left or right and for those and for those we have so send partial
chunks */
/* Initialize our xstart and compute our partial bit chunk so
that we get in sync with the 1 bit mem device 16 bit positions
for the rest of the chunks */
if (penum->ht_landscape.count == 0) {
/* In the landscape case, the size depends upon
if we are moving left to right or right to left with
the image data. This offset is to ensure that we get
aligned in our chunks along 16 bit boundaries */
penum->ht_landscape.offset_set = true;
if (penum->ht_landscape.index < 0) {
penum->ht_landscape.xstart = penum->xci + vdi - 1;
offset_bits = (penum->ht_landscape.xstart % 16) + 1;
/* xci can be negative, so allow for that */
if (offset_bits <= 0) offset_bits += 16;
} else {
penum->ht_landscape.xstart = penum->xci;
/* xci can be negative, see Bug 692569. */
offset_bits = 16 - penum->xci % 16;
if (offset_bits >= 16) offset_bits -= 16;
}
if (offset_bits == 0 || offset_bits == 16) {
penum->ht_landscape.offset_set = false;
penum->ht_offset_bits = 0;
} else {
penum->ht_offset_bits = offset_bits;
}
}
break;
}
/* Get the pointers to our buffers */
if (flush_buff) goto flush; /* All done */
/* Set up the dda. We could move this out but the cost is pretty small */
dda_init(dda_ht, 0, src_size, data_length-1);
/* Do conversion to device resolution in quick small loops. */
/* For now we have 3 cases. A CMYK (4 channel), gray, or other case
the latter of which is not yet implemented */
for (k = 0; k < spp_out; k++) {
if (posture == image_portrait) {
devc_contone[k] = penum->line + contone_stride * k +
offset_contone[k];
} else {
devc_contone[k] = penum->line + offset_contone[k] +
LAND_BITS * k * contone_stride;
}
psrc_plane[k] = psrc_cm + psrc_planestride * k;
}
switch (spp_out)
{
/* Monochrome output case */
case 1:
devc_contone_gray = devc_contone[0];
switch (posture) {
/* Monochrome portrait */
case image_portrait:
if (penum->dst_width > 0) {
if (scale_factor == fixed_1) {
memcpy(devc_contone_gray, psrc_cm, data_length);
} else if (scale_factor == fixed_half) {
psrc_temp = psrc_cm;
for (k = 0; k < data_length; k+=2,
devc_contone_gray+=2, psrc_temp++) {
*devc_contone_gray =
*(devc_contone_gray+1) = *psrc_temp;
}
} else {
for (k = 0; k < data_length; k++,
devc_contone_gray++) {
*devc_contone_gray = psrc_cm[dda_ht.state.Q];
dda_next(dda_ht);
}
}
} else {
devc_contone_gray += (data_length - 1);
for (k = 0; k < data_length; k++, devc_contone_gray--) {
*devc_contone_gray = psrc_cm[dda_ht.state.Q];
dda_next(dda_ht);
}
}
break;
/* Monochrome landscape */
case image_landscape:
/* We store the data at this point into a column. Depending
upon our landscape direction we may be going left to right
or right to left. */
if (penum->ht_landscape.flipy) {
position = penum->ht_landscape.curr_pos +
LAND_BITS * (data_length - 1);
for (k = 0; k < data_length; k++) {
devc_contone_gray[position] = psrc_cm[dda_ht.state.Q];
position -= LAND_BITS;
dda_next(dda_ht);
}
} else {
position = penum->ht_landscape.curr_pos;
/* Code up special cases for when we have no scaling
and 2x scaling which we will run into in 300 and
600dpi devices and content */
if (scale_factor == fixed_1) {
for (k = 0; k < data_length; k++) {
devc_contone_gray[position] = psrc_cm[k];
position += LAND_BITS;
}
} else if (scale_factor == fixed_half) {
for (k = 0; k < data_length; k+=2) {
offset = fixed2int_rounded(scale_factor * k);
devc_contone_gray[position] =
devc_contone_gray[position + LAND_BITS] =
psrc_cm[offset];
position += 2*LAND_BITS;
}
} else {
/* use dda */
for (k = 0; k < data_length; k++) {
devc_contone_gray[position] =
psrc_cm[dda_ht.state.Q];
position += LAND_BITS;
dda_next(dda_ht);
}
}
}
/* Store the width information and update our counts */
penum->ht_landscape.count += vdi;
penum->ht_landscape.widths[penum->ht_landscape.curr_pos] = vdi;
penum->ht_landscape.curr_pos += penum->ht_landscape.index;
penum->ht_landscape.num_contones++;
break;
default:
/* error not allowed */
break;
}
break;
/* CMYK case */
case 4:
switch (posture) {
/* CMYK portrait */
case image_portrait:
if (penum->dst_width > 0) {
if (scale_factor == fixed_1) {
memcpy(devc_contone[0], psrc_plane[0], data_length);
memcpy(devc_contone[1], psrc_plane[1], data_length);
memcpy(devc_contone[2], psrc_plane[2], data_length);
memcpy(devc_contone[3], psrc_plane[3], data_length);
} else if (scale_factor == fixed_half) {
for (k = 0; k < data_length; k+=2) {
*(devc_contone[0]) = *(devc_contone[0]+1) =
*psrc_plane[0]++;
*(devc_contone[1]) = *(devc_contone[1]+1) =
*psrc_plane[1]++;
*(devc_contone[2]) = *(devc_contone[2]+1) =
*psrc_plane[2]++;
*(devc_contone[3]) = *(devc_contone[3]+1) =
*psrc_plane[3]++;
devc_contone[0] += 2;
devc_contone[1] += 2;
devc_contone[2] += 2;
devc_contone[3] += 2;
}
} else {
for (k = 0; k < data_length; k++) {
*(devc_contone[0])++ =
(psrc_plane[0])[dda_ht.state.Q];
*(devc_contone[1])++ =
(psrc_plane[1])[dda_ht.state.Q];
*(devc_contone[2])++ =
(psrc_plane[2])[dda_ht.state.Q];
*(devc_contone[3])++ =
(psrc_plane[3])[dda_ht.state.Q];
dda_next(dda_ht);
}
}
} else {
devc_contone[0] += (data_length - 1);
devc_contone[1] += (data_length - 1);
devc_contone[2] += (data_length - 1);
devc_contone[3] += (data_length - 1);
for (k = 0; k < data_length; k++) {
*(devc_contone[0])-- = (psrc_plane[0])[dda_ht.state.Q];
*(devc_contone[1])-- = (psrc_plane[1])[dda_ht.state.Q];
*(devc_contone[2])-- = (psrc_plane[2])[dda_ht.state.Q];
*(devc_contone[3])-- = (psrc_plane[3])[dda_ht.state.Q];
dda_next(dda_ht);
}
}
break;
/* CMYK landscape */
case image_landscape:
/* Data is already color managed. */
/* We store the data at this point into a columns in
seperate planes. Depending upon our landscape direction
we may be going left to right or right to left. */
if (penum->ht_landscape.flipy) {
position = penum->ht_landscape.curr_pos +
LAND_BITS * (data_length - 1);
for (k = 0; k < data_length; k++) {
for (j = 0; j < spp_out; j++) {
*(devc_contone[j] + position) =
(psrc_plane[j])[dda_ht.state.Q];
}
position -= LAND_BITS;
dda_next(dda_ht);
}
} else {
position = penum->ht_landscape.curr_pos;
/* Code up special cases for when we have no scaling
and 2x scaling which we will run into in 300 and
600dpi devices and content */
/* Apply initial offset */
for (k = 0; k < spp_out; k++) {
devc_contone[k] = devc_contone[k] + position;
}
if (scale_factor == fixed_1) {
for (k = 0; k < data_length; k++) {
/* Is it better to unwind this? We know it is 4 */
for (j = 0; j < spp_out; j++) {
*(devc_contone[j]) = (psrc_plane[j])[k];
devc_contone[j] += LAND_BITS;
}
}
} else if (scale_factor == fixed_half) {
for (k = 0; k < data_length; k+=2) {
offset = fixed2int_rounded(scale_factor * k);
/* Is it better to unwind this? We know it is 4 */
for (j = 0; j < spp_out; j++) {
*(devc_contone[j]) =
*(devc_contone[j] + LAND_BITS) =
(psrc_plane[j])[offset];
devc_contone[j] += 2 * LAND_BITS;
}
}
} else {
/* use dda */
for (k = 0; k < data_length; k++) {
/* Is it better to unwind this? We know it is 4 */
for (j = 0; j < spp_out; j++) {
*(devc_contone[j]) =
(psrc_plane[j])[dda_ht.state.Q];
devc_contone[j] += LAND_BITS;
}
dda_next(dda_ht);
}
}
}
/* Store the width information and update our counts */
penum->ht_landscape.count += vdi;
penum->ht_landscape.widths[penum->ht_landscape.curr_pos] = vdi;
penum->ht_landscape.curr_pos += penum->ht_landscape.index;
penum->ht_landscape.num_contones++;
break;
default:
/* error not allowed */
break;
}
break;
default:
/* Not yet handled (e.g. CMY case) */
break;
}
/* Apply threshold array to image data. It may be neccessary to invert
depnding upon the polarity of the device */
flush:
thresh_align = penum->thresh_buffer + offset_threshold;
code = gxht_thresh_planes(penum, xrun, dest_width, dest_height,
thresh_align, dev, offset_contone,
contone_stride);
/* Free cm buffer, if it was used */
if (psrc_cm_start != NULL) {
gs_free_object(penum->pis->memory, (byte *)psrc_cm_start,
"image_render_color_thresh");
}
return code;
}
/* Render a color image with 8 or fewer bits per sample using ICC profile. */
static int
image_render_color_icc(gx_image_enum *penum_orig, const byte *buffer, int data_x,
uint w, int h, gx_device * dev)
{
const gx_image_enum *const penum = penum_orig; /* const within proc */
const gs_imager_state *pis = penum->pis;
gs_logical_operation_t lop = penum->log_op;
gx_dda_fixed_point pnext;
image_posture posture = penum->posture;
fixed xprev, yprev;
fixed pdyx, pdyy; /* edge of parallelogram */
int vci, vdi;
gx_device_color devc1;
gx_device_color devc2;
gx_device_color *pdevc;
gx_device_color *pdevc_next;
gx_device_color *ptemp;
int spp = penum->spp;
const byte *psrc_initial = buffer + data_x * spp;
const byte *psrc = psrc_initial;
const byte *rsrc = psrc + spp; /* psrc + spp at start of run */
fixed xrun; /* x ditto */
fixed yrun; /* y ditto */
int irun; /* int x/rrun */
color_samples run; /* run value */
color_samples next; /* next sample value */
byte *bufend = NULL;
int code = 0;
byte *psrc_cm = NULL, *psrc_cm_start = NULL, *psrc_decode = NULL;
int k;
gx_color_value conc[GX_DEVICE_COLOR_MAX_COMPONENTS];
int spp_cm = 0;
gx_color_index color;
bool must_halftone = penum->icc_setup.must_halftone;
bool has_transfer = penum->icc_setup.has_transfer;
pdevc = &devc1;
pdevc_next = &devc2;
/* These used to be set by init clues */
pdevc->type = gx_dc_type_none;
pdevc_next->type = gx_dc_type_none;
if (h == 0)
return 0;
code = image_color_icc_prep(penum_orig, psrc, w, dev, &spp_cm, &psrc_cm,
&psrc_cm_start, &psrc_decode, &bufend, false);
if (code < 0) return code;
/* Needed for device N */
memset(&(conc[0]), 0, sizeof(gx_color_value[GX_DEVICE_COLOR_MAX_COMPONENTS]));
pnext = penum->dda.pixel0;
xrun = xprev = dda_current(pnext.x);
yrun = yprev = dda_current(pnext.y);
pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
switch (posture) {
case image_portrait:
vci = penum->yci, vdi = penum->hci;
irun = fixed2int_var_rounded(xrun);
break;
case image_landscape:
default: /* we don't handle skew -- treat as landscape */
vci = penum->xci, vdi = penum->wci;
irun = fixed2int_var_rounded(yrun);
break;
}
if_debug5('b', "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
penum->y, data_x, w, fixed2float(xprev), fixed2float(yprev));
memset(&run, 0, sizeof(run));
memset(&next, 0, sizeof(next));
run.v[0] = ~psrc_cm[0]; /* Force intial setting */
while (psrc_cm < bufend) {
dda_next(pnext.x);
dda_next(pnext.y);
if ( penum->alpha ) {
/* If the pixels are different, then take care of the alpha now */
/* will need to adjust spp below.... */
} else {
memcpy(&(next.v[0]),psrc_cm, spp_cm);
psrc_cm += spp_cm;
}
/* Compare to previous. If same then move on */
if (posture != image_skewed && next.all[0] == run.all[0])
goto inc;
/* This needs to be sped up */
for ( k = 0; k < spp_cm; k++ ) {
conc[k] = gx_color_value_from_byte(next.v[k]);
}
/* Now we can do an encoding directly or we have to apply transfer
and or halftoning */
if (must_halftone || has_transfer) {
/* We need to do the tranfer function and/or the halftoning */
cmap_transfer_halftone(&(conc[0]), pdevc_next, pis, dev,
has_transfer, must_halftone, gs_color_select_source);
} else {
/* encode as a color index. avoid all the cv to frac to cv
conversions */
color = dev_proc(dev, encode_color)(dev, &(conc[0]));
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(pdevc_next, color);
}
/* Fill the region between */
/* xrun/irun and xprev */
/*
* Note; This section is nearly a copy of a simlar section below
* for processing the last image pixel in the loop. This would have been
* made into a subroutine except for complications about the number of
* variables that would have been needed to be passed to the routine.
*/
switch (posture) {
case image_portrait:
{ /* Rectangle */
int xi = irun;
int wi = (irun = fixed2int_var_rounded(xprev)) - xi;
if (wi < 0)
xi += wi, wi = -wi;
if (wi > 0)
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
pdevc, dev, lop);
}
break;
case image_landscape:
{ /* 90 degree rotated rectangle */
int yi = irun;
int hi = (irun = fixed2int_var_rounded(yprev)) - yi;
if (hi < 0)
yi += hi, hi = -hi;
if (hi > 0)
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
pdevc, dev, lop);
}
break;
default:
{ /* Parallelogram */
code = (*dev_proc(dev, fill_parallelogram))
(dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
pdevc, lop);
xrun = xprev;
yrun = yprev;
}
}
if (code < 0)
goto err;
rsrc = psrc;
/* Swap around the colors due to a change */
ptemp = pdevc;
pdevc = pdevc_next;
pdevc_next = ptemp;
run = next;
inc: xprev = dda_current(pnext.x);
yprev = dda_current(pnext.y); /* harmless if no skew */
}
/* Fill the last run. */
/*
* Note; This section is nearly a copy of a simlar section above
* for processing an image pixel in the loop. This would have been
* made into a subroutine except for complications about the number
* variables that would have been needed to be passed to the routine.
*/
switch (posture) {
case image_portrait:
{ /* Rectangle */
int xi = irun;
int wi = (irun = fixed2int_var_rounded(xprev)) - xi;
if (wi < 0)
xi += wi, wi = -wi;
if (wi > 0)
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
pdevc, dev, lop);
}
break;
case image_landscape:
{ /* 90 degree rotated rectangle */
int yi = irun;
int hi = (irun = fixed2int_var_rounded(yprev)) - yi;
if (hi < 0)
yi += hi, hi = -hi;
if (hi > 0)
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
pdevc, dev, lop);
}
break;
default:
{ /* Parallelogram */
code = (*dev_proc(dev, fill_parallelogram))
(dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
pdevc, lop);
}
}
/* Free cm buffer, if it was used */
if (psrc_cm_start != NULL) {
gs_free_object(pis->memory, (byte *)psrc_cm_start, "image_render_color_icc");
}
return (code < 0 ? code : 1);
/* Save position if error, in case we resume. */
err:
gs_free_object(pis->memory, (byte *)psrc_cm_start, "image_render_color_icc");
penum_orig->used.x = (rsrc - spp - psrc_initial) / spp;
penum_orig->used.y = 0;
return code;
}
/* Render a color image for deviceN source color with no ICC profile. This
is also used if the image has any masking (type4 image) since we will not
be blasting through quickly */
static int
image_render_color_DeviceN(gx_image_enum *penum_orig, const byte *buffer, int data_x,
uint w, int h, gx_device * dev)
{
const gx_image_enum *const penum = penum_orig; /* const within proc */
const gs_imager_state *pis = penum->pis;
gs_logical_operation_t lop = penum->log_op;
gx_dda_fixed_point pnext;
image_posture posture = penum->posture;
fixed xprev, yprev;
fixed pdyx, pdyy; /* edge of parallelogram */
int vci, vdi;
const gs_color_space *pcs = penum->pcs;
cs_proc_remap_color((*remap_color)) = pcs->type->remap_color;
gs_client_color cc;
gx_device_color devc1;
gx_device_color devc2;
gx_device_color *pdevc;
gx_device_color *pdevc_next;
gx_device_color *ptemp;
int spp = penum->spp;
const byte *psrc_initial = buffer + data_x * spp;
const byte *psrc = psrc_initial;
const byte *rsrc = psrc + spp; /* psrc + spp at start of run */
fixed xrun; /* x ditto */
fixed yrun; /* y ditto */
int irun; /* int x/rrun */
color_samples run; /* run value */
color_samples next; /* next sample value */
const byte *bufend = psrc + w;
int code = 0, mcode = 0;
int i;
bits32 mask = penum->mask_color.mask;
bits32 test = penum->mask_color.test;
bool lab_case = false;
if (h == 0)
return 0;
/* Decide on which remap proc to use. If the source colors are LAB
then use the mapping that does not rescale the source colors */
if (gs_color_space_is_ICC(pcs) && pcs->cmm_icc_profile_data != NULL &&
pcs->cmm_icc_profile_data->islab) {
remap_color = gx_remap_ICC_imagelab;
lab_case = true;
} else {
remap_color = pcs->type->remap_color;
}
pdevc = &devc1;
pdevc_next = &devc2;
/* In case these are devn colors */
if (dev_proc(dev, dev_spec_op)(dev, gxdso_supports_devn, NULL, 0)) {
for (i = 0; i < GS_CLIENT_COLOR_MAX_COMPONENTS; i++) {
pdevc->colors.devn.values[i] = 0;
pdevc_next->colors.devn.values[i] = 0;
}
}
/* These used to be set by init clues */
pdevc->type = gx_dc_type_none;
pdevc_next->type = gx_dc_type_none;
pnext = penum->dda.pixel0;
xrun = xprev = dda_current(pnext.x);
yrun = yprev = dda_current(pnext.y);
pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
switch (posture) {
case image_portrait:
vci = penum->yci, vdi = penum->hci;
irun = fixed2int_var_rounded(xrun);
break;
case image_landscape:
default: /* we don't handle skew -- treat as landscape */
vci = penum->xci, vdi = penum->wci;
irun = fixed2int_var_rounded(yrun);
break;
}
if_debug5('b', "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
penum->y, data_x, w, fixed2float(xprev), fixed2float(yprev));
memset(&run, 0, sizeof(run));
memset(&next, 0, sizeof(next));
cs_full_init_color(&cc, pcs);
run.v[0] = ~psrc[0]; /* force remap */
while (psrc < bufend) {
dda_next(pnext.x);
dda_next(pnext.y);
if (posture != image_skewed && !memcmp(psrc, run.v, spp)) {
psrc += spp;
goto inc;
}
memcpy(next.v, psrc, spp);
psrc += spp;
/* Check for transparent color. */
if ((next.all[0] & mask) == test &&
(penum->mask_color.exact ||
mask_color_matches(next.v, penum, spp))) {
color_set_null(pdevc_next);
goto mapped;
}
/* Data is already properly set up for ICC use of LAB */
if (lab_case)
for (i = 0; i < spp; ++i)
cc.paint.values[i] = (next.v[i]) * (1.0f / 255.0f);
else
for (i = 0; i < spp; ++i)
decode_sample(next.v[i], cc, i);
#ifdef DEBUG
if (gs_debug_c('B')) {
dprintf2("[B]cc[0..%d]=%g", spp - 1,
cc.paint.values[0]);
for (i = 1; i < spp; ++i)
dprintf1(",%g", cc.paint.values[i]);
dputs("\n");
}
#endif
mcode = remap_color(&cc, pcs, pdevc_next, pis, dev,
gs_color_select_source);
mapped: if (mcode < 0)
goto fill;
if (sizeof(pdevc_next->colors.binary.color[0]) <= sizeof(ulong))
if_debug7('B', "[B]0x%x,0x%x,0x%x,0x%x -> 0x%lx,0x%lx,0x%lx\n",
next.v[0], next.v[1], next.v[2], next.v[3],
(ulong)pdevc_next->colors.binary.color[0],
(ulong)pdevc_next->colors.binary.color[1],
(ulong) pdevc_next->type);
else
if_debug9('B', "[B]0x%x,0x%x,0x%x,0x%x -> 0x%08lx%08lx,0x%08lx%08lx,0x%lx\n",
next.v[0], next.v[1], next.v[2], next.v[3],
(ulong)(pdevc_next->colors.binary.color[0] >>
8 * (sizeof(pdevc_next->colors.binary.color[0]) - sizeof(ulong))),
(ulong)pdevc_next->colors.binary.color[0],
(ulong)(pdevc_next->colors.binary.color[1] >>
8 * (sizeof(pdevc_next->colors.binary.color[1]) - sizeof(ulong))),
(ulong)pdevc_next->colors.binary.color[1],
(ulong) pdevc_next->type);
/* NB: printf above fails to account for sizeof gx_color_index 4 or 8 bytes */
if (posture != image_skewed && dev_color_eq(*pdevc, *pdevc_next))
goto set;
fill: /* Fill the region between */
/* xrun/irun and xprev */
/*
* Note; This section is nearly a copy of a simlar section below
* for processing the last image pixel in the loop. This would have been
* made into a subroutine except for complications about the number of
* variables that would have been needed to be passed to the routine.
*/
switch (posture) {
case image_portrait:
{ /* Rectangle */
int xi = irun;
int wi = (irun = fixed2int_var_rounded(xprev)) - xi;
if (wi < 0)
xi += wi, wi = -wi;
if (wi > 0)
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
pdevc, dev, lop);
}
break;
case image_landscape:
{ /* 90 degree rotated rectangle */
int yi = irun;
int hi = (irun = fixed2int_var_rounded(yprev)) - yi;
if (hi < 0)
yi += hi, hi = -hi;
if (hi > 0)
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
pdevc, dev, lop);
}
break;
default:
{ /* Parallelogram */
code = (*dev_proc(dev, fill_parallelogram))
(dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
pdevc, lop);
xrun = xprev;
yrun = yprev;
}
}
if (code < 0)
goto err;
rsrc = psrc;
if ((code = mcode) < 0) goto err;
/* Swap around the colors due to a change */
ptemp = pdevc;
pdevc = pdevc_next;
pdevc_next = ptemp;
set: run = next;
inc: xprev = dda_current(pnext.x);
yprev = dda_current(pnext.y); /* harmless if no skew */
}
/* Fill the last run. */
/*
* Note; This section is nearly a copy of a simlar section above
* for processing an image pixel in the loop. This would have been
* made into a subroutine except for complications about the number
* variables that would have been needed to be passed to the routine.
*/
switch (posture) {
case image_portrait:
{ /* Rectangle */
int xi = irun;
int wi = (irun = fixed2int_var_rounded(xprev)) - xi;
if (wi < 0)
xi += wi, wi = -wi;
if (wi > 0)
code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
pdevc, dev, lop);
}
break;
case image_landscape:
{ /* 90 degree rotated rectangle */
int yi = irun;
int hi = (irun = fixed2int_var_rounded(yprev)) - yi;
if (hi < 0)
yi += hi, hi = -hi;
if (hi > 0)
code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
pdevc, dev, lop);
}
break;
default:
{ /* Parallelogram */
code = (*dev_proc(dev, fill_parallelogram))
(dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
pdevc, lop);
}
}
return (code < 0 ? code : 1);
/* Save position if error, in case we resume. */
err:
penum_orig->used.x = (rsrc - spp - psrc_initial) / spp;
penum_orig->used.y = 0;
return code;
}
|