1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Interpolated image procedures */
#include "gx.h"
#include "math_.h"
#include "memory_.h"
#include "stdint_.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcolor.h"
#include "gxistate.h"
#include "gxdevmem.h"
#include "gxcpath.h"
#include "gximage.h"
#include "stream.h" /* for s_alloc_state */
#include "siinterp.h" /* for spatial interpolation */
#include "siscale.h" /* for Mitchell filtering */
#include "sidscale.h" /* for special case downscale filter */
#include "vdtrace.h"
#include "gscindex.h" /* included for proper handling of index color spaces
and keeping data in source color space */
#include "gxcolor2.h" /* define of float_color_to_byte_color */
#include "gscspace.h" /* Needed for checking is space is CIE */
#include "gsicc_cache.h"
#include "gsicc_manage.h"
#include "gsicc.h"
static void
decode_sample_frac_to_float(gx_image_enum *penum, frac sample_value, gs_client_color *cc, int i);
/*
* Define whether we are using Mitchell filtering or spatial
* interpolation to implement Interpolate. (The latter doesn't work yet.)
*/
#define USE_MITCHELL_FILTER
/* ------ Strategy procedure ------ */
/* Check the prototype. */
iclass_proc(gs_image_class_0_interpolate);
/* If we're interpolating, use special logic.
This function just gets interpolation stucture
initialized and allocates buffer space if needed */
static irender_proc(image_render_interpolate);
static irender_proc(image_render_interpolate_icc);
irender_proc_t
gs_image_class_0_interpolate(gx_image_enum * penum)
{
gs_memory_t *mem = penum->memory;
stream_image_scale_params_t iss;
stream_image_scale_state *pss;
const stream_template *templat;
byte *line;
const gs_color_space *pcs = penum->pcs;
uint in_size;
bool use_icc = false;
int num_des_comps;
cmm_dev_profile_t *dev_profile;
int code;
if (!penum->interpolate)
return 0;
if (penum->use_mask_color || penum->posture != image_portrait ||
penum->masked || penum->alpha) {
/* We can't handle these cases yet. Punt. */
penum->interpolate = false;
return 0;
}
if ( pcs->cmm_icc_profile_data != NULL ) {
use_icc = true;
}
if ( pcs->type->index == gs_color_space_index_Indexed) {
if ( pcs->base_space->cmm_icc_profile_data != NULL) {
use_icc = true;
}
}
if (!(penum->bps <= 8 || penum->bps == 16)) {
use_icc = false;
}
/* Do not allow mismatch in devices component output with the
profile output size. For example sep device with CMYK profile should
not go through the fast method */
code = dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile);
num_des_comps = gsicc_get_device_profile_comps(dev_profile);
if (num_des_comps != penum->dev->color_info.num_components) {
use_icc = false;
}
/* If the device has some unique color mapping procs due to its color space,
then we will need to use those and go through pixel by pixel instead
of blasting through buffers. This is true for example with many of
the color spaces for CUPs */
if(!gx_device_uses_std_cmap_procs(penum->dev, penum->pis)) {
use_icc = false;
}
/*
* USE_CONSERVATIVE_INTERPOLATION_RULES is normally NOT defined since
* the MITCHELL digital filter seems OK as long as we are going out to
* a device that can produce > 15 shades.
*/
#if defined(USE_MITCHELL_FILTER) && defined(USE_CONSERVATIVE_INTERPOLATION_RULES)
/*
* We interpolate using a digital filter, rather than Adobe's
* spatial interpolation algorithm: this produces very bad-looking
* results if the input resolution is close to the output resolution,
* especially if the input has low color resolution, so we resort to
* some hack tests on the input color resolution and scale to suppress
* interpolation if we think the result would look especially bad.
* If we used Adobe's spatial interpolation approach, we wouldn't need
* to do this, but the spatial interpolation filter doesn't work yet.
*/
if (penum->bps < 4 || penum->bps * penum->spp < 8 ||
(fabs(penum->matrix.xx) <= 5 && fabs(penum->matrix.yy <= 5))
) {
penum->interpolate = false;
return 0;
}
#endif
if (use_icc) {
iss.BitsPerComponentOut = 16;
iss.MaxValueOut = 0xffff;
} else {
iss.BitsPerComponentOut = sizeof(frac) * 8;
iss.MaxValueOut = frac_1;
}
iss.WidthOut = fixed2int_pixround_perfect((fixed)((int64_t)(penum->rect.x + penum->rect.w) *
penum->dst_width / penum->Width))
- fixed2int_pixround_perfect((fixed)((int64_t)penum->rect.x *
penum->dst_width / penum->Width));
iss.WidthOut = any_abs(iss.WidthOut);
iss.HeightOut = fixed2int_pixround_perfect((fixed)((int64_t)(penum->rect.y + penum->rect.h) *
penum->dst_height / penum->Height))
- fixed2int_pixround_perfect((fixed)((int64_t)penum->rect.y *
penum->dst_height / penum->Height));
iss.HeightOut = any_abs(iss.HeightOut);
iss.WidthIn = penum->rect.w;
iss.HeightIn = penum->rect.h;
iss.PatchWidthOut = fixed2int_pixround_perfect((fixed)((int64_t)(penum->rrect.x + penum->rrect.w) *
penum->dst_width / penum->Width))
- fixed2int_pixround_perfect((fixed)((int64_t)penum->rrect.x *
penum->dst_width / penum->Width));
iss.PatchWidthOut = any_abs(iss.PatchWidthOut);
iss.PatchHeightOut = fixed2int_pixround_perfect((fixed)((int64_t)(penum->rrect.y + penum->rrect.h) *
penum->dst_height / penum->Height))
- fixed2int_pixround_perfect((fixed)((int64_t)penum->rrect.y *
penum->dst_height / penum->Height));
iss.PatchHeightOut = any_abs(iss.PatchHeightOut);
iss.PatchWidthIn = penum->rrect.w;
iss.PatchHeightIn = penum->rrect.h;
iss.LeftMarginIn = penum->rrect.x - penum->rect.x;
iss.LeftMarginOut = fixed2int_pixround_perfect((fixed)((int64_t)iss.LeftMarginIn *
penum->dst_width / penum->Width));
iss.TopMargin = penum->rrect.y - penum->rect.y;
iss.src_y_offset = penum->rect.y;
iss.EntireWidthIn = penum->Width;
iss.EntireHeightIn = penum->Height;
iss.EntireWidthOut = fixed2int_pixround(any_abs(penum->dst_width));
iss.EntireHeightOut = fixed2int_pixround(any_abs(penum->dst_height));
/* For interpolator cores that don't set Active, have us always active */
iss.Active = 1;
if (iss.EntireWidthOut == 0 || iss.EntireHeightOut == 0)
{
penum->interpolate = false;
return 0;
}
/* If we are in an indexed space then we need to use the number of components
in the base space. Otherwise we use the number of components in the source space */
if (pcs->type->index == gs_color_space_index_Indexed) {
/* Use the number of colors in the base space */
iss.spp_decode = cs_num_components(pcs->base_space);
} else {
/* Use the number of colors that exist in the source space
as this is where we are doing our interpolation */
iss.spp_decode = cs_num_components(pcs);
}
if (iss.HeightOut > iss.EntireHeightIn && use_icc) {
iss.early_cm = true;
iss.spp_interp = num_des_comps;
} else {
iss.early_cm = false;
iss.spp_interp = iss.spp_decode;
}
if (penum->bps <= 8 ) {
/* If the input is ICC or other device independent format, go ahead
and do the interpolation in that space.
If we have more than 8 bits per channel then we will need to
handle that in a slightly different manner so
that the interpolation algorithm handles it properly.
The interpolation will still be in the source
color space. Note that if image data was less the 8 bps
It is handed here to us in 8 bit form already decoded. */
iss.BitsPerComponentIn = 8;
iss.MaxValueIn = 0xff;
/* If it is an index color space we will need to allocate for
the decoded data */
if (pcs->type->index == gs_color_space_index_Indexed) {
in_size = iss.WidthIn * iss.spp_decode;
} else {
/* Non indexed case, we either use the data as
is, or allocate space if it is reversed in X */
in_size =
(penum->matrix.xx < 0 ?
/* We need a buffer for reversing each scan line. */
iss.WidthIn * iss.spp_decode : 0);
/* If it is not reversed, and we have 8 bit/color channel data then
no need to allocate extra as we will use the source directly */
/* However, if we have a nonstandard encoding and are in
a device color space we will need to allocate
in that case also. We will maintain 8 bits but
do the decode and then interpolate. This is OK
for the linear decode */
if (!penum->device_color && !gs_color_space_is_CIE(pcs)){
in_size = iss.WidthIn * iss.spp_decode;
}
}
} else {
/* If it has more than 8 bits per color channel then we will go to frac
for the interpolation to mantain precision or 16 bit for icc */
if (use_icc) {
iss.BitsPerComponentIn = 16;
iss.MaxValueIn = 0xffff;
} else {
iss.BitsPerComponentIn = sizeof(frac) * 8;
iss.MaxValueIn = frac_1;
}
in_size = round_up(iss.WidthIn * iss.spp_decode * sizeof(frac),
align_bitmap_mod);
/* Size to allocate space to store the input as frac type */
}
#ifdef USE_MITCHELL_FILTER
templat = &s_IScale_template;
#else
templat = &s_IIEncode_template;
#endif
/* RJW: This is defeated by the presence of pdf14. Use a devspecop. */
if (((penum->dev->color_info.num_components == 1 &&
penum->dev->color_info.max_gray < 15) ||
(penum->dev->color_info.num_components > 1 &&
penum->dev->color_info.max_color < 15))
) {
/* halftone device -- restrict interpolation */
if ((iss.WidthOut < iss.WidthIn * 4) &&
(iss.HeightOut < iss.HeightIn * 4)) {
if ((iss.WidthOut < iss.WidthIn) &&
(iss.HeightOut < iss.HeightIn) && /* downsampling */
(penum->dev->color_info.polarity != GX_CINFO_POLARITY_UNKNOWN)) {
/* Special case handling for when we are downsampling
to a dithered device. The point of this non-linear
downsampling is to preserve dark pixels from the source
image to avoid dropout. The color polarity is used for this */
templat = &s_ISpecialDownScale_template;
} else {
penum->interpolate = false;
return 0; /* no interpolation / downsampling */
}
}
/* else, continue with the Mitchell filter (for upscaling of at least 4:1) */
}
/* The SpecialDownScale filter needs polarity, either ADDITIVE or SUBTRACTIVE */
/* UNKNOWN case (such as for palette colors) has been handled above */
iss.ColorPolarityAdditive =
penum->dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE;
/* Allocate a buffer for one source/destination line. */
{
uint out_size =
iss.WidthOut * max(iss.spp_interp * (iss.BitsPerComponentOut / 8),
arch_sizeof_color_index);
/* Allocate based upon frac size (as BitsPerComponentOut=16) output scan
line input plus output. The outsize may have an adjustment for
word boundary on it. Need to account for that now */
out_size += align_bitmap_mod;
line = gs_alloc_bytes(mem, in_size + out_size,
"image scale src+dst line");
}
pss = (stream_image_scale_state *)
s_alloc_state(mem, templat->stype, "image scale state");
if (line == 0 || pss == 0 ||
(pss->params = iss, pss->templat = templat,
(*pss->templat->init) ((stream_state *) pss) < 0)
) {
gs_free_object(mem, pss, "image scale state");
gs_free_object(mem, line, "image scale src+dst line");
/* Try again without interpolation. */
penum->interpolate = false;
return 0;
}
penum->line = line; /* Set to the input and output buffer */
penum->scaler = pss;
penum->line_xy = 0;
{
gx_dda_fixed x0;
x0 = penum->dda.pixel0.x;
if (penum->matrix.xx < 0)
dda_advance(x0, penum->rect.w);
penum->xyi.x = fixed2int_pixround(dda_current(x0)) + pss->params.LeftMarginOut;
}
penum->xyi.y = penum->yi0 + fixed2int_pixround_perfect((fixed)((int64_t)penum->rect.y
* penum->dst_height / penum->Height));
if_debug0('b', "[b]render=interpolate\n");
if (use_icc) {
/* Set up the link now */
const gs_color_space *pcs;
gsicc_rendering_param_t rendering_params;
int k;
int src_num_comp = cs_num_components(penum->pcs);
penum->icc_setup.need_decode = false;
/* Check if we need to do any decoding. If yes, then that will slow us down */
for (k = 0; k < src_num_comp; k++) {
if ( penum->map[k].decoding != sd_none ) {
penum->icc_setup.need_decode = true;
break;
}
}
/* Define the rendering intents */
rendering_params.black_point_comp = BP_ON;
rendering_params.graphics_type_tag = GS_IMAGE_TAG;
rendering_params.rendering_intent = penum->pis->renderingintent;
if (gs_color_space_is_PSCIE(penum->pcs) && penum->pcs->icc_equivalent != NULL) {
pcs = penum->pcs->icc_equivalent;
} else {
/* Look for indexed space */
if ( penum->pcs->type->index == gs_color_space_index_Indexed) {
pcs = penum->pcs->base_space;
} else {
pcs = penum->pcs;
}
}
penum->icc_setup.is_lab = pcs->cmm_icc_profile_data->islab;
if (penum->icc_setup.is_lab) penum->icc_setup.need_decode = false;
penum->icc_setup.must_halftone = gx_device_must_halftone(penum->dev);
penum->icc_setup.has_transfer =
gx_has_transfer(penum->pis, num_des_comps);
if (penum->icc_link == NULL) {
penum->icc_link = gsicc_get_link(penum->pis, penum->dev, pcs, NULL,
&rendering_params, penum->memory);
}
/* We need to make sure that we do the proper unpacking proc if we
are doing 16 bit */
if (penum->bps == 16) {
penum->unpack = sample_unpackicc_16_proc;
}
return &image_render_interpolate_icc;
} else {
return &image_render_interpolate;
}
}
/* ------ Rendering for interpolated images ------ */
/* This does some initial required decoding of index spaces and general
decoding of odd scaled image data needed prior to interpolation or
application of color management. */
static void
initial_decode(gx_image_enum * penum, const byte * buffer, int data_x, int h,
bool need_decode, stream_cursor_read *stream_r, bool is_icc)
{
stream_image_scale_state *pss = penum->scaler;
const gs_imager_state *pis = penum->pis;
const gs_color_space *pcs = penum->pcs;
gs_logical_operation_t lop = penum->log_op;
int spp_decode = pss->params.spp_decode;
stream_cursor_write w;
unsigned char index_space;
byte *out = penum->line;
if (h != 0) {
/* Convert the unpacked data to concrete values in the source buffer. */
int sizeofPixelIn = pss->params.BitsPerComponentIn / 8;
uint row_size = pss->params.WidthIn * spp_decode * sizeofPixelIn;
/* raw input data */
const unsigned char *bdata = buffer + data_x * spp_decode * sizeofPixelIn;
index_space = 0;
/* We have the following cases to worry about
1) Device 8 bit color but not indexed (e.g. ICC).
Apply CMM after interpolation if needed.
Also if ICC CIELAB do not do a decode operation
2) Indexed 8 bit color. Get to the base space. We will then be in
the same state as 1.
3) 16 bit not indexed. Remap after interpolation.
4) Indexed 16bit color. Get to base space in 16bit form. We
will then be in same state as 3.
*/
if (sizeofPixelIn == 1) {
if (pcs->type->index != gs_color_space_index_Indexed) {
/* An issue here is that we may not be "device color" due to
how the data is encoded. Need to check for that case here */
/* Decide here if we need to decode or not. Essentially, as
* far as I can gather, we use the top case if we DON'T need
* to decode. This is fairly obviously conditional on
* need_decode being set to 0. The major exception to this is
* that if the colorspace is CIE, we interpolate, THEN decode,
* so the decode is done later in the pipeline, so we needn't
* decode here (see Bugs 692225 and 692331). */
if (!need_decode) {
/* 8-bit color values, possibly device indep. or device
depend., not indexed. Decode range was [0 1] */
if (penum->matrix.xx >= 0) {
/* Use the input data directly. sets up data in the
stream buffer structure */
stream_r->ptr = bdata - 1;
} else {
/* Mirror the data in X. */
const byte *p = bdata + row_size - spp_decode;
byte *q = out;
int i;
for (i = 0; i < pss->params.WidthIn;
p -= spp_decode, q += spp_decode, ++i)
memcpy(q, p, spp_decode);
stream_r->ptr = out - 1;
out += round_up(pss->params.WidthIn *
spp_decode, align_bitmap_mod);
}
} else {
/* We need to do some decoding. Data will remain in 8 bits
This does not occur if color space was CIE encoded.
Then we do the decode during concretization which occurs
after interpolation */
int dc = penum->spp;
const byte *pdata = bdata;
byte *psrc = (byte *) penum->line;
int i, j;
int dpd = dc;
gs_client_color cc;
/* Go backwards through the data */
if (penum->matrix.xx < 0) {
pdata += (pss->params.WidthIn - 1) * dpd;
dpd = - dpd;
}
stream_r->ptr = (byte *) psrc - 1;
for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) {
/* Do the decode but remain in 8 bits */
for (j = 0; j < dc; ++j) {
decode_sample(pdata[j], cc, j);
psrc[j] = float_color_to_byte_color(cc.paint.values[j]);
}
pdata += dpd;
}
out += round_up(pss->params.WidthIn * spp_decode,
align_bitmap_mod);
}
} else {
/* indexed 8 bit color values, possibly a device indep. or
device depend. base space. We need to get out of the indexed
space and into the base color space. Note that we need to
worry about the decode function for the index values. */
int bps = penum->bps;
int dc = penum->spp;
const byte *pdata = bdata; /* Input buffer */
unsigned char *psrc = (unsigned char *) penum->line; /* Output */
int i;
int dpd = dc * (bps <= 8 ? 1 : sizeof(frac));
float max_range;
/* Get max of decode range */
max_range = (penum->map[0].decode_factor < 0 ?
penum->map[0].decode_base :
penum->map[0].decode_base + 255.0 * penum->map[0].decode_factor);
index_space = 1;
/* flip the horizontal direction if indicated by the matrix value */
if (penum->matrix.xx < 0) {
pdata += (pss->params.WidthIn - 1) * dpd;
dpd = - dpd;
}
stream_r->ptr = (byte *) psrc - 1;
for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) {
/* Let's get directly to a decoded byte type loaded into
psrc, and do the interpolation in the source space. Then
we will do the appropriate remap function after
interpolation. */
/* First we need to get the properly decoded value. */
float decode_value;
switch ( penum->map[0].decoding )
{
case sd_none:
/* while our indexin is going to be 0 to 255.0 due to
what is getting handed to us, the range of our
original data may not have been as such and we may
need to rescale, to properly lookup at the correct
location (or do the proc correctly) during the index
look-up. This occurs even if decoding was set to
sd_none. */
decode_value = (float) pdata[0] * (float)max_range / 255.0;
break;
case sd_lookup:
decode_value =
(float) penum->map[0].decode_lookup[pdata[0] >> 4];
break;
case sd_compute:
decode_value =
penum->map[0].decode_base +
((float) pdata[0]) * penum->map[0].decode_factor;
break;
default:
decode_value = 0; /* Quiet gcc warning. */
}
gs_cspace_indexed_lookup_bytes(pcs, decode_value,psrc);
pdata += dpd; /* Can't have just ++
since we could be going backwards */
}
/* We need to set the output to the end of the input buffer
moving it to the next desired word boundary. This must
be accounted for in the memory allocation of
gs_image_class_0_interpolate */
out += round_up(pss->params.WidthIn * spp_decode,
align_bitmap_mod);
}
} else {
/* More than 8-bits/color values */
/* Even in this case we need to worry about an indexed color space.
We need to get to the base color space for the interpolation and
then if necessary do the remap to the device space */
if (pcs->type->index != gs_color_space_index_Indexed) {
int bps = penum->bps;
int dc = penum->spp;
const byte *pdata = bdata;
frac *psrc = (frac *) penum->line;
int i, j;
int dpd = dc * (bps <= 8 ? 1 : sizeof(frac));
if (penum->matrix.xx < 0) {
pdata += (pss->params.WidthIn - 1) * dpd;
dpd = - dpd;
}
stream_r->ptr = (byte *) psrc - 1;
if_debug0('B', "[B]Remap row:\n[B]");
if (is_icc) {
stream_r->ptr = (byte *) pdata - 1;
} else {
for (i = 0; i < pss->params.WidthIn; i++,
psrc += spp_decode) {
/* Lets get directly to a frac type loaded into psrc,
and do the interpolation in the source space. Then we
will do the appropriate remap function after
interpolation. */
for (j = 0; j < dc; ++j) {
DECODE_FRAC_FRAC(((const frac *)pdata)[j], psrc[j], j);
}
pdata += dpd;
#ifdef DEBUG
if (gs_debug_c('B')) {
int ci;
for (ci = 0; ci < spp_decode; ++ci)
dprintf2("%c%04x", (ci == 0 ? ' ' : ','), psrc[ci]);
}
#endif
}
}
out += round_up(pss->params.WidthIn * spp_decode * sizeof(frac),
align_bitmap_mod);
if_debug0('B', "\n");
} else {
/* indexed and more than 8bps. Need to get to the base space */
int bps = penum->bps;
int dc = penum->spp;
const byte *pdata = bdata; /* Input buffer */
frac *psrc = (frac *) penum->line; /* Output buffer */
int i;
int dpd = dc * (bps <= 8 ? 1 : sizeof(frac));
float decode_value;
index_space = 1;
/* flip the horizontal direction if indicated by the matrix value */
if (penum->matrix.xx < 0) {
pdata += (pss->params.WidthIn - 1) * dpd;
dpd = - dpd;
}
stream_r->ptr = (byte *) psrc - 1;
for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) {
/* Lets get the decoded value. Then we need to do the lookup
of this */
decode_value = penum->map[i].decode_base +
(((const frac *)pdata)[0]) * penum->map[i].decode_factor;
/* Now we need to do the lookup of this value, and stick it
in psrc as a frac, which is what the interpolator is
expecting, since we had more than 8 bits of original
image data */
gs_cspace_indexed_lookup_frac(pcs, decode_value,psrc);
pdata += dpd;
}
/* We need to set the output to the end of the input buffer
moving it to the next desired word boundary. This must
be accounted for in the memory allocation of
gs_image_class_0_interpolate */
out += round_up(pss->params.WidthIn * spp_decode,
align_bitmap_mod);
} /* end of else on indexed */
} /* end of else on more than 8 bps */
stream_r->limit = stream_r->ptr + row_size;
} else { /* h == 0 */
stream_r->ptr = 0, stream_r->limit = 0;
index_space = 0;
}
}
static int
image_render_interpolate(gx_image_enum * penum, const byte * buffer,
int data_x, uint iw, int h, gx_device * dev)
{
stream_image_scale_state *pss = penum->scaler;
const gs_imager_state *pis = penum->pis;
const gs_color_space *pcs = penum->pcs;
gs_logical_operation_t lop = penum->log_op;
int spp_decode = pss->params.spp_decode;
stream_cursor_read stream_r;
stream_cursor_write stream_w;
bool is_index_space;
byte *out = penum->line;
bool islab = false;
bool need_decode;
if (pcs->cmm_icc_profile_data != NULL) {
islab = pcs->cmm_icc_profile_data->islab;
}
/* Perform any decode procedure if needed */
need_decode = !(penum->device_color || gs_color_space_is_CIE(pcs) || islab);
initial_decode(penum, buffer, data_x, h, need_decode, &stream_r, false);
is_index_space = (pcs->type->index == gs_color_space_index_Indexed);
/*
* Process input and/or collect output. By construction, the pixels are
* 1-for-1 with the device, but the Y coordinate might be inverted.
*/
{
int xo = penum->xyi.x;
int yo = penum->xyi.y;
int width = pss->params.WidthOut;
int sizeofPixelOut = pss->params.BitsPerComponentOut / 8;
int dy;
const gs_color_space *pconcs;
const gs_color_space *pactual_cs;
int bpp = dev->color_info.depth;
uint raster = bitmap_raster(width * bpp);
bool device_color;
if (penum->matrix.yy > 0)
dy = 1;
else
dy = -1, yo--;
for (;;) {
int ry = yo + penum->line_xy * dy;
int x;
const frac *psrc;
gx_device_color devc;
int status, code;
DECLARE_LINE_ACCUM_COPY(out, bpp, xo);
stream_w.limit = out + width *
max(spp_decode * sizeofPixelOut, arch_sizeof_color_index) - 1;
stream_w.ptr = stream_w.limit - width * spp_decode * sizeofPixelOut;
psrc = (const frac *)(stream_w.ptr + 1);
/* This is where the rescale takes place; this will consume the
* data from stream_r, and post processed data into stream_w. The
* data in stream_w may be bogus if we are outside the active
* region, and this will be indicated by pss->params.Active being
* set to false. */
status = (*pss->templat->process)
((stream_state *) pss, &stream_r, &stream_w, h == 0);
if (status < 0 && status != EOFC)
return_error(gs_error_ioerror);
if (stream_w.ptr == stream_w.limit) {
int xe = xo + pss->params.PatchWidthOut;
/* Are we active? (i.e. in the render rectangle) */
if (!pss->params.Active)
goto inactive;
if_debug1('B', "[B]Interpolated row %d:\n[B]",
penum->line_xy);
psrc += pss->params.LeftMarginOut * spp_decode;
for (x = xo; x < xe;) {
#ifdef DEBUG
if (gs_debug_c('B')) {
int ci;
for (ci = 0; ci < spp_decode; ++ci)
dprintf2("%c%04x", (ci == 0 ? ' ' : ','),
psrc[ci]);
}
#endif
/* if we are in a non device space then work
from the pcs not from the concrete space
also handle index case, where base case was device type */
if (pcs->type->index == gs_color_space_index_Indexed) {
pactual_cs = pcs->base_space;
} else {
pactual_cs = pcs;
}
pconcs = cs_concrete_space(pactual_cs, pis);
if (pconcs->cmm_icc_profile_data != NULL) {
device_color = false;
} else {
device_color = (pconcs == pactual_cs);
}
if (device_color) {
/* Use the underlying concrete space remap */
code = (*pconcs->type->remap_concrete_color)
(psrc, pconcs, &devc, pis, dev, gs_color_select_source);
} else {
/* if we are device dependent we need to get back to
float prior to remap. This stuff needs to be
reworked as part of the ICC flow update.
In such a flow, we will want the interpolation
algorithm output likely to be 8 bit (if the input
were 8 bit) and hit that buffer of values directly
with the linked transform */
gs_client_color cc;
int j;
int num_components =
gs_color_space_num_components(pactual_cs);
for (j = 0; j < num_components; ++j) {
/* If we were indexed, dont use the decode procedure
for the index values just get to float directly */
if (is_index_space || islab) {
cc.paint.values[j] = frac2float(psrc[j]);
} else {
decode_sample_frac_to_float(penum, psrc[j], &cc, j);
}
}
/* If the source colors are LAB then use the mapping
that does not rescale the source colors */
if (gs_color_space_is_ICC(pactual_cs) &&
pactual_cs->cmm_icc_profile_data != NULL &&
pactual_cs->cmm_icc_profile_data->islab) {
code = gx_remap_ICC_imagelab (&cc, pactual_cs, &devc,
pis, dev,
gs_color_select_source);
} else {
code = (pactual_cs->type->remap_color)
(&cc, pactual_cs, &devc, pis, dev,
gs_color_select_source);
}
}
if (code < 0)
return code;
if (color_is_pure(&devc)) {
/* Just pack colors into a scan line. */
gx_color_index color = devc.colors.pure;
/* Skip runs quickly for the common cases. */
switch (spp_decode) {
case 1:
do {
LINE_ACCUM(color, bpp);
vd_pixel(int2fixed(x), int2fixed(ry), color);
x++, psrc += 1;
} while (x < xe && psrc[-1] == psrc[0]);
break;
case 3:
do {
LINE_ACCUM(color, bpp);
vd_pixel(int2fixed(x), int2fixed(ry), color);
x++, psrc += 3;
} while (x < xe &&
psrc[-3] == psrc[0] &&
psrc[-2] == psrc[1] &&
psrc[-1] == psrc[2]);
break;
case 4:
do {
LINE_ACCUM(color, bpp);
x++, psrc += 4;
} while (x < xe &&
psrc[-4] == psrc[0] &&
psrc[-3] == psrc[1] &&
psrc[-2] == psrc[2] &&
psrc[-1] == psrc[3]);
break;
default:
LINE_ACCUM(color, bpp);
x++, psrc += spp_decode;
}
} else {
int rcode;
LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
rcode = gx_fill_rectangle_device_rop(x, ry, 1, 1,
&devc, dev, lop);
if (rcode < 0)
return rcode;
LINE_ACCUM_SKIP(bpp);
l_xprev = x + 1;
x++, psrc += spp_decode;
}
}
LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
/*if_debug1('w', "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */
inactive:
penum->line_xy++;
if_debug0('B', "\n");
}
if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC)
break;
}
}
return (h == 0 ? 0 : 1);
}
/* Interpolation with ICC based source spaces. This is done seperately to
enable optimization and avoid the multiple tranformations that occur in
the above code */
static int
image_render_interpolate_icc(gx_image_enum * penum, const byte * buffer,
int data_x, uint iw, int h, gx_device * dev)
{
stream_image_scale_state *pss = penum->scaler;
const gs_imager_state *pis = penum->pis;
const gs_color_space *pcs = penum->pcs;
gs_logical_operation_t lop = penum->log_op;
int spp_decode = pss->params.spp_decode;
byte *out = penum->line;
bool must_halftone = penum->icc_setup.must_halftone;
bool has_transfer = penum->icc_setup.has_transfer;
stream_cursor_read stream_r;
stream_cursor_write stream_w;
bool need_decode;
if (penum->icc_link == NULL) {
return gs_rethrow(-1, "ICC Link not created duringgs_image_class_0_interpolate");
}
/* Go ahead and take apart any indexed color space or do the decode
so that we can then perform the interpolation or color management */
need_decode = !((penum->device_color || penum->icc_setup.is_lab) &&
(penum->icc_setup.need_decode == 0) ||
gs_color_space_is_CIE(pcs));
initial_decode(penum, buffer, data_x, h, need_decode, &stream_r, true);
/*
* Process input and/or collect output. By construction, the pixels are
* 1-for-1 with the device, but the Y coordinate might be inverted.
* CM is performed on the entire row.
*/
{
int xo = penum->xyi.x;
int yo = penum->xyi.y;
int width = pss->params.WidthOut;
int width_in = pss->params.WidthIn;
int sizeofPixelOut = pss->params.BitsPerComponentOut / 8;
int dy;
int bpp = dev->color_info.depth;
uint raster = bitmap_raster(width * bpp);
unsigned short *p_cm_interp;
byte *p_cm_buff = NULL;
byte *psrc;
int spp_decode = pss->params.spp_decode;
int spp_interp = pss->params.spp_interp;
int spp_cm;
gsicc_bufferdesc_t input_buff_desc;
gsicc_bufferdesc_t output_buff_desc;
gx_color_index color;
int code;
cmm_dev_profile_t *dev_profile;
int num_bytes_decode = pss->params.BitsPerComponentIn / 8;
code = dev_proc(dev, get_profile)(dev, &dev_profile);
spp_cm = gsicc_get_device_profile_comps(dev_profile);
if (penum->matrix.yy > 0)
dy = 1;
else
dy = -1, yo--;
/* If it makes sense (if enlarging), do early CM */
if (pss->params.early_cm && !penum->icc_link->is_identity
&& stream_r.ptr != stream_r.limit) {
/* Get the buffers set up. */
p_cm_buff =
(byte *) gs_alloc_bytes(pis->memory,
num_bytes_decode * width_in * spp_cm,
"image_render_interpolate_icc");
/* Set up the buffer descriptors. We keep the bytes the same */
gsicc_init_buffer(&input_buff_desc, spp_decode, num_bytes_decode,
false, false, false, 0, width_in * spp_decode,
1, width_in);
gsicc_init_buffer(&output_buff_desc, spp_cm, num_bytes_decode,
false, false, false, 0, width_in * spp_cm,
1, width_in);
/* Do the transformation */
psrc = (byte*) (stream_r.ptr + 1);
(penum->icc_link->procs.map_buffer)(dev, penum->icc_link, &input_buff_desc,
&output_buff_desc, (void*) psrc,
(void*) p_cm_buff);
/* Re-set the reading stream to use the cm data */
stream_r.ptr = p_cm_buff - 1;
stream_r.limit = stream_r.ptr + num_bytes_decode * width_in * spp_cm;
} else {
/* CM after interpolation (or none). Just set up the buffers
if needed. 16 bit operations if CM takes place. */
if (!penum->icc_link->is_identity) {
p_cm_buff = (byte *) gs_alloc_bytes(pis->memory,
sizeof(unsigned short) * width * spp_cm,
"image_render_interpolate_icc");
/* Set up the buffer descriptors. */
gsicc_init_buffer(&input_buff_desc, spp_decode, 2,
false, false, false, 0, width * spp_decode,
1, width);
gsicc_init_buffer(&output_buff_desc, spp_cm, 2,
false, false, false, 0, width * spp_cm,
1, width);
}
}
for (;;) {
int ry = yo + penum->line_xy * dy;
int x;
const unsigned short *pinterp;
gx_device_color devc;
int status;
DECLARE_LINE_ACCUM_COPY(out, bpp, xo);
stream_w.limit = out + width *
max(spp_interp * sizeofPixelOut, arch_sizeof_color_index) - 1;
stream_w.ptr = stream_w.limit - width * spp_interp * sizeofPixelOut;
pinterp = (const unsigned short *)(stream_w.ptr + 1);
/* This is where the rescale takes place; this will consume the
* data from stream_r, and post processed data into stream_w. The
* data in stream_w may be bogus if we are outside the active
* region, and this will be indiated by pss->params.Active being
* set to false. */
status = (*pss->templat->process)
((stream_state *) pss, &stream_r, &stream_w, h == 0);
if (status < 0 && status != EOFC)
return_error(gs_error_ioerror);
if (stream_w.ptr == stream_w.limit) {
int xe = xo + pss->params.PatchWidthOut;
/* Are we active? (i.e. in the render rectangle) */
if (!pss->params.Active)
goto inactive;
if_debug1('B', "[B]Interpolated row %d:\n[B]",
penum->line_xy);
/* Take care of CM on the entire interpolated row, if we
did not already do CM */
if (penum->icc_link->is_identity || pss->params.early_cm) {
/* Fastest case. No CM needed */
p_cm_interp = (unsigned short *) pinterp;
} else {
/* Transform */
p_cm_interp = (unsigned short *) p_cm_buff;
(penum->icc_link->procs.map_buffer)(dev, penum->icc_link,
&input_buff_desc,
&output_buff_desc,
(void*) pinterp,
(void*) p_cm_interp);
}
p_cm_interp += pss->params.LeftMarginOut * spp_cm;
for (x = xo; x < xe;) {
#ifdef DEBUG
if (gs_debug_c('B')) {
int ci;
for (ci = 0; ci < spp_cm; ++ci)
dprintf2("%c%04x", (ci == 0 ? ' ' : ','),
p_cm_interp[ci]);
}
#endif
/* Get the device color */
/* Now we can do an encoding directly or we have to apply transfer
and or halftoning */
if (must_halftone || has_transfer) {
/* We need to do the tranfer function and/or the halftoning */
cmap_transfer_halftone(p_cm_interp, &devc, pis, dev,
has_transfer, must_halftone, gs_color_select_source);
} else {
/* encode as a color index. avoid all the cv to frac to cv
conversions */
color = dev_proc(dev, encode_color)(dev, p_cm_interp);
/* check if the encoding was successful; we presume failure is rare */
if (color != gx_no_color_index)
color_set_pure(&devc, color);
}
if (color_is_pure(&devc)) {
/* Just pack colors into a scan line. */
gx_color_index color = devc.colors.pure;
/* Skip runs quickly for the common cases. */
switch (spp_cm) {
case 1:
do {
LINE_ACCUM(color, bpp);
vd_pixel(int2fixed(x), int2fixed(ry), color);
x++, p_cm_interp += 1;
} while (x < xe && p_cm_interp[-1] == p_cm_interp[0]);
break;
case 3:
do {
LINE_ACCUM(color, bpp);
vd_pixel(int2fixed(x), int2fixed(ry), color);
x++, p_cm_interp += 3;
} while (x < xe && p_cm_interp[-3] == p_cm_interp[0] &&
p_cm_interp[-2] == p_cm_interp[1] &&
p_cm_interp[-1] == p_cm_interp[2]);
break;
case 4:
do {
LINE_ACCUM(color, bpp);
x++, p_cm_interp += 4;
} while (x < xe && p_cm_interp[-4] == p_cm_interp[0] &&
p_cm_interp[-3] == p_cm_interp[1] &&
p_cm_interp[-2] == p_cm_interp[2] &&
p_cm_interp[-1] == p_cm_interp[3]);
break;
default:
LINE_ACCUM(color, bpp);
x++, p_cm_interp += spp_cm;
}
} else {
int rcode;
LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
rcode = gx_fill_rectangle_device_rop(x, ry,
1, 1, &devc, dev, lop);
if (rcode < 0)
return rcode;
LINE_ACCUM_SKIP(bpp);
l_xprev = x + 1;
x++, p_cm_interp += spp_cm;
}
} /* End on x loop */
LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
/*if_debug1('w', "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */
inactive:
penum->line_xy++;
if_debug0('B', "\n");
}
if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC)
break;
}
/* Free cm buffer, if it was used */
if (p_cm_buff != NULL) {
gs_free_object(pis->memory, (byte *)p_cm_buff,
"image_render_interpolate_icc");
}
}
return (h == 0 ? 0 : 1);
}
/* Decode a 16-bit sample into a floating point color component.
This is used for cases where the spatial interpolation function output is 16 bit.
It is only used here, hence the static declaration for now. */
static void
decode_sample_frac_to_float(gx_image_enum *penum, frac sample_value, gs_client_color *cc, int i)
{
switch ( penum->map[i].decoding )
{
case sd_none:
cc->paint.values[i] = frac2float(sample_value);
break;
case sd_lookup:
cc->paint.values[i] =
penum->map[i].decode_lookup[(frac2byte(sample_value)) >> 4];
break;
case sd_compute:
cc->paint.values[i] =
penum->map[i].decode_base + frac2float(sample_value)*255.0 * penum->map[i].decode_factor;
}
}
|