1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Rendering for non-mesh shadings */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsmatrix.h" /* for gscoord.h */
#include "gscoord.h"
#include "gspath.h"
#include "gsptype2.h"
#include "gxcspace.h"
#include "gxdcolor.h"
#include "gxfarith.h"
#include "gxfixed.h"
#include "gxistate.h"
#include "gxpath.h"
#include "gxshade.h"
#include "gxdevcli.h"
#include "gxshade4.h"
#include "vdtrace.h"
#include "gsicc_cache.h"
#define VD_TRACE_AXIAL_PATCH 1
#define VD_TRACE_RADIAL_PATCH 1
#define VD_TRACE_FUNCTIONAL_PATCH 1
/* ---------------- Function-based shading ---------------- */
typedef struct Fb_frame_s { /* A rudiment of old code. */
gs_rect region;
gs_client_color cc[4]; /* colors at 4 corners */
int state;
} Fb_frame_t;
typedef struct Fb_fill_state_s {
shading_fill_state_common;
const gs_shading_Fb_t *psh;
gs_matrix_fixed ptm; /* parameter space -> device space */
Fb_frame_t frame;
} Fb_fill_state_t;
/****** NEED GC DESCRIPTOR ******/
static inline void
make_other_poles(patch_curve_t curve[4])
{
int i, j;
for (i = 0; i < 4; i++) {
j = (i + 1) % 4;
curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3;
curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3;
curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3;
curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3;
curve[i].straight = true;
}
}
/* Transform a point with a fixed-point result. */
static void
gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat,
floatp x, floatp y, gs_fixed_point * ppt)
{
gs_point fpt;
gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
ppt->x = clamp_coord(fpt.x);
ppt->y = clamp_coord(fpt.y);
}
static int
Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect)
{
patch_fill_state_t pfs1;
patch_curve_t curve[4];
Fb_frame_t * fp = &pfs->frame;
int code;
if (VD_TRACE_FUNCTIONAL_PATCH && vd_allowed('s')) {
vd_get_dc('s');
vd_set_shift(0, 0);
vd_set_scale(0.01);
vd_set_origin(0, 0);
}
memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t));
pfs1.Function = pfs->psh->params.Function;
code = init_patch_fill_state(&pfs1);
if (code < 0)
return code;
pfs1.maybe_self_intersecting = false;
pfs1.n_color_args = 2;
pfs1.rect = *rect;
gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p);
gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p);
gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p);
gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p);
make_other_poles(curve);
curve[0].vertex.cc[0] = fp->region.p.x; curve[0].vertex.cc[1] = fp->region.p.y;
curve[1].vertex.cc[0] = fp->region.q.x; curve[1].vertex.cc[1] = fp->region.p.y;
curve[2].vertex.cc[0] = fp->region.q.x; curve[2].vertex.cc[1] = fp->region.q.y;
curve[3].vertex.cc[0] = fp->region.p.x; curve[3].vertex.cc[1] = fp->region.q.y;
code = patch_fill(&pfs1, curve, NULL, NULL);
if (term_patch_fill_state(&pfs1))
return_error(gs_error_unregistered); /* Must not happen. */
if (VD_TRACE_FUNCTIONAL_PATCH && vd_allowed('s'))
vd_release_dc;
return code;
}
int
gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect * rect_clip,
gx_device * dev, gs_imager_state * pis)
{
const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0;
gs_matrix save_ctm;
int xi, yi, code;
float x[2], y[2];
Fb_fill_state_t state;
code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pis);
if (code < 0)
return code;
state.psh = psh;
/****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/
gs_currentmatrix((gs_state *) pis, &save_ctm);
gs_concat((gs_state *) pis, &psh->params.Matrix);
state.ptm = pis->ctm;
gs_setmatrix((gs_state *) pis, &save_ctm);
/* Compute the parameter X and Y ranges. */
{
gs_rect pbox;
gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox);
x[0] = max(pbox.p.x, psh->params.Domain[0]);
x[1] = min(pbox.q.x, psh->params.Domain[1]);
y[0] = max(pbox.p.y, psh->params.Domain[2]);
y[1] = min(pbox.q.y, psh->params.Domain[3]);
}
if (x[0] > x[1] || y[0] > y[1]) {
/* The region is outside the shading area. */
if (state.icclink != NULL) gsicc_release_link(state.icclink);
return 0;
}
for (xi = 0; xi < 2; ++xi)
for (yi = 0; yi < 2; ++yi) {
float v[2];
v[0] = x[xi], v[1] = y[yi];
gs_function_evaluate(psh->params.Function, v,
state.frame.cc[yi * 2 + xi].paint.values);
}
state.frame.region.p.x = x[0];
state.frame.region.p.y = y[0];
state.frame.region.q.x = x[1];
state.frame.region.q.y = y[1];
code = Fb_fill_region(&state, rect_clip);
if (state.icclink != NULL) gsicc_release_link(state.icclink);
return code;
}
/* ---------------- Axial shading ---------------- */
typedef struct A_fill_state_s {
const gs_shading_A_t *psh;
gs_point delta;
double length;
double t0, t1;
double v0, v1, u0, u1;
} A_fill_state_t;
/****** NEED GC DESCRIPTOR ******/
/* Note t0 and t1 vary over [0..1], not the Domain. */
static int
A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1)
{
const gs_shading_A_t * const psh = pfs->psh;
double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0;
double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0;
double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1;
double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1;
double h0 = pfs->u0, h1 = pfs->u1;
patch_curve_t curve[4];
gs_point_transform2fixed(&pfs1->pis->ctm, x0 + pfs->delta.y * h0, y0 - pfs->delta.x * h0, &curve[0].vertex.p);
gs_point_transform2fixed(&pfs1->pis->ctm, x1 + pfs->delta.y * h0, y1 - pfs->delta.x * h0, &curve[1].vertex.p);
gs_point_transform2fixed(&pfs1->pis->ctm, x1 + pfs->delta.y * h1, y1 - pfs->delta.x * h1, &curve[2].vertex.p);
gs_point_transform2fixed(&pfs1->pis->ctm, x0 + pfs->delta.y * h1, y0 - pfs->delta.x * h1, &curve[3].vertex.p);
curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */
curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle priocessing in gxshade.6.c . */
curve[2].vertex.cc[0] = pfs->t1;
curve[3].vertex.cc[0] = pfs->t0;
curve[0].vertex.cc[1] = 0; /* The element cc[1] is set to a dummy value against */
curve[1].vertex.cc[1] = 0; /* interrupts while an idle priocessing in gxshade.6.c . */
curve[2].vertex.cc[1] = 0;
curve[3].vertex.cc[1] = 0;
make_other_poles(curve);
return patch_fill(pfs1, curve, NULL, NULL);
}
static inline int
gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect *clip_rect,
gx_device * dev, gs_imager_state * pis)
{
const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0;
gs_function_t * const pfn = psh->params.Function;
gs_matrix cmat;
gs_rect t_rect;
A_fill_state_t state;
patch_fill_state_t pfs1;
float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
float dd = d1 - d0;
double t0, t1;
gs_point dist;
int code;
state.psh = psh;
code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pis);
if (code < 0)
return code;
pfs1.Function = pfn;
pfs1.rect = *clip_rect;
code = init_patch_fill_state(&pfs1);
if (code < 0) {
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
return code;
}
pfs1.maybe_self_intersecting = false;
pfs1.function_arg_shift = 1;
/*
* Compute the parameter range. We construct a matrix in which
* (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1,
* and use it to inverse-map the rectangle to be filled.
*/
cmat.tx = psh->params.Coords[0];
cmat.ty = psh->params.Coords[1];
state.delta.x = psh->params.Coords[2] - psh->params.Coords[0];
state.delta.y = psh->params.Coords[3] - psh->params.Coords[1];
cmat.yx = state.delta.x;
cmat.yy = state.delta.y;
cmat.xx = cmat.yy;
cmat.xy = -cmat.yx;
gs_bbox_transform_inverse(rect, &cmat, &t_rect);
t0 = min(max(t_rect.p.y, 0), 1);
t1 = max(min(t_rect.q.y, 1), 0);
state.v0 = t0;
state.v1 = t1;
state.u0 = t_rect.p.x;
state.u1 = t_rect.q.x;
state.t0 = t0 * dd + d0;
state.t1 = t1 * dd + d0;
gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pis),
&dist);
state.length = hypot(dist.x, dist.y); /* device space line length */
code = A_fill_region(&state, &pfs1);
if (psh->params.Extend[0] && t0 > t_rect.p.y) {
if (code < 0) {
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
return code;
}
/* Use the general algorithm, because we need the trapping. */
state.v0 = t_rect.p.y;
state.v1 = t0;
state.t0 = state.t1 = t0 * dd + d0;
code = A_fill_region(&state, &pfs1);
}
if (psh->params.Extend[1] && t1 < t_rect.q.y) {
if (code < 0) {
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
return code;
}
/* Use the general algorithm, because we need the trapping. */
state.v0 = t1;
state.v1 = t_rect.q.y;
state.t0 = state.t1 = t1 * dd + d0;
code = A_fill_region(&state, &pfs1);
}
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
if (term_patch_fill_state(&pfs1))
return_error(gs_error_unregistered); /* Must not happen. */
return code;
}
int
gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect * rect_clip,
gx_device * dev, gs_imager_state * pis)
{
int code;
if (VD_TRACE_AXIAL_PATCH && vd_allowed('s')) {
vd_get_dc('s');
vd_set_shift(0, 0);
vd_set_scale(0.01);
vd_set_origin(0, 0);
}
code = gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pis);
if (VD_TRACE_AXIAL_PATCH && vd_allowed('s'))
vd_release_dc;
return code;
}
/* ---------------- Radial shading ---------------- */
/* Some notes on what I have struggled to understand about the following
* function. This function renders the 'tube' given by interpolating one
* circle to another.
*
* The first circle is at (x0, y0) with radius r0, and has 'color' t0.
* The other circle is at (x1, y1) with radius r1, and has 'color' t1.
*
* We perform this rendering by approximating each quadrant of the 'tube'
* by a tensor patch. The tensor patch is formed by taking a curve along
* 1/4 of the circumference of the first circle, a straight line to the
* equivalent point on the circumference of the second circle, a curve
* back along the circumference of the second circle, and then a straight
* line back to where we started.
*
* There is additional logic in this function that forms the directions of
* the curves differently for different quadrants. This is done to ensure
* that we always paint 'around' the tube from the back towards the front,
* so we don't get unexpected regions showing though. This is explained more
* below.
*
* The original code here examined the position change between the two
* circles dx and dy. Based upon this vector it would pick which quadrant/
* tensor patch to draw first. It would draw the quadrants/tensor patches
* in anticlockwise order. Presumably this was intended to be done so that
* the 'top' quadrant would be drawn last.
*
* Unfortunately this did not always work; see bug 692513. If the quadrants
* were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces
* on top of 0, which was unexpected.
*
* I have therefore altered the code slightly; rather than picking a start
* quadrant and moving anticlockwise, we now draw the 'undermost' quadrant,
* then the two adjacent quadrants, then the topmost quadrant.
*
* For the purposes of explaination, we shall label the octants as below:
*
* \2|1/ and Quadrants as: |
* 3\|/0 Q1 | Q0
* ---+--- ----+----
* 4/|\7 Q2 | Q3
* /5|6\ |
*
* We find (dx,dy), the difference between the centres of the circles.
* We look to see which octant this falls in. Firstly, this tells us which
* quadrant of the circle we need to draw first (Octant n, starts with
* Quadrant floor(n/2)). Secondly, it tells us which direction to form the
* tensor patch in; we always want to draw from the side 'closest' to
* dx/dy to the side further away. This ensures that we don't overwrite
* pixels in the incorrect order as the patch decomposes.
*/
static int
R_tensor_annulus(patch_fill_state_t *pfs,
double x0, double y0, double r0, double t0,
double x1, double y1, double r1, double t1)
{
double dx = x1 - x0, dy = y1 - y0;
double d = hypot(dx, dy);
gs_point p0, p1, pc0, pc1;
int k, j, code, dirn;
bool inside = 0;
/* pc0 and pc1 are the centres of the respective circles. */
pc0.x = x0, pc0.y = y0;
pc1.x = x1, pc1.y = y1;
/* Set p0 up so it's a unit vector giving the direction of 90 degrees
* to the right of the major axis as we move from p0c to p1c. */
if (r0 + d <= r1 || r1 + d <= r0) {
/* One circle is inside another one.
Use any subdivision,
but don't depend on dx, dy, which may be too small. */
p0.x = 0, p0.y = -1, dirn = 0;
/* Align stripes along radii for faster triangulation : */
inside = 1;
} else {
/* Must generate canonic quadrangle arcs,
because we approximate them with curves. */
if(dx >= 0) {
if (dy >= 0)
p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0);
else
p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1);
} else {
if (dy >= 0)
p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0);
else
p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1);
}
}
/* fixme: wish: cut invisible parts off.
Note : when r0 != r1 the invisible part is not a half circle. */
for (k = 0; k < 4; k++) {
gs_point p[12];
patch_curve_t curve[4];
/* Set p1 to be 90 degrees anticlockwise from p0 */
p1.x = -p0.y; p1.y = p0.x;
if (dirn == 0) { /* Clockwise */
make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0);
make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1);
} else { /* Anticlockwise */
make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0);
make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1);
}
p[4].x = (p[3].x * 2 + p[6].x) / 3;
p[4].y = (p[3].y * 2 + p[6].y) / 3;
p[5].x = (p[3].x + p[6].x * 2) / 3;
p[5].y = (p[3].y + p[6].y * 2) / 3;
p[10].x = (p[9].x * 2 + p[0].x) / 3;
p[10].y = (p[9].y * 2 + p[0].y) / 3;
p[11].x = (p[9].x + p[0].x * 2) / 3;
p[11].y = (p[9].y + p[0].y * 2) / 3;
for (j = 0; j < 4; j++) {
int jj = (j + inside) % 4;
if (gs_point_transform2fixed(&pfs->pis->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0)
gs_point_transform2fixed_clamped(&pfs->pis->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p);
if (gs_point_transform2fixed(&pfs->pis->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0)
gs_point_transform2fixed_clamped(&pfs->pis->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]);
if (gs_point_transform2fixed(&pfs->pis->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0)
gs_point_transform2fixed_clamped(&pfs->pis->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]);
curve[j].straight = (((j + inside) & 1) != 0);
}
curve[(0 + inside) % 4].vertex.cc[0] = t0;
curve[(1 + inside) % 4].vertex.cc[0] = t0;
curve[(2 + inside) % 4].vertex.cc[0] = t1;
curve[(3 + inside) % 4].vertex.cc[0] = t1;
curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */
curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */
code = patch_fill(pfs, curve, NULL, NULL);
if (code < 0)
return code;
/* Move p0 to be ready for the next position */
if (k == 0) {
/* p0 moves clockwise */
p1 = p0;
p0.x = p1.y; p0.y = -p1.x;
dirn = 0;
} else if (k == 1) {
/* p0 flips sides */
p0.x = -p0.x; p0.y = -p0.y;
dirn = 1;
} else if (k == 2) {
/* p0 moves anti-clockwise */
p1 = p0;
p0.x = -p1.y; p0.y = p1.x;
dirn = 0;
}
}
return 0;
}
static int
R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double r0,
double x1, double y1, double r1,
double *x2, double *y2, double *r2)
{
double dx = x1 - x0, dy = y1 - y0;
double sp, sq, s;
/* Compute a cone circle, which contacts the rect externally. */
/* Don't bother with all 4 sides of the rect,
just do with the X or Y span only,
so it's not an exact contact, sorry. */
if (any_abs(dx) > any_abs(dy)) {
/* Solving :
x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px
(x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0
sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0)
x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx
(x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0
sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0)
*/
if (x1 - x0 + r1 - r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
if (x1 - x0 - r1 + r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0);
sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0);
} else {
/* Same by Y. */
if (y1 - y0 + r1 - r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
if (y1 - y0 - r1 + r0 == 0) /* We checked for obtuse cone. */
return_error(gs_error_unregistered); /* Must not happen. */
sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0);
sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0);
}
if (sp >= 1 && sq >= 1)
s = max(sp, sq);
else if(sp >= 1)
s = sp;
else if (sq >= 1)
s = sq;
else {
/* The circle 1 is outside the rect, use it. */
s = 1;
}
if (r0 + (r1 - r0) * s < 0) {
/* Passed the cone apex, use the apex. */
s = r0 / (r0 - r1);
*r2 = 0;
} else
*r2 = r0 + (r1 - r0) * s;
*x2 = x0 + (x1 - x0) * s;
*y2 = y0 + (y1 - y0) * s;
return 0;
}
static double
R_rect_radius(const gs_rect *rect, double x0, double y0)
{
double d, dd;
dd = hypot(rect->p.x - x0, rect->p.y - y0);
d = hypot(rect->p.x - x0, rect->q.y - y0);
dd = max(dd, d);
d = hypot(rect->q.x - x0, rect->q.y - y0);
dd = max(dd, d);
d = hypot(rect->q.x - x0, rect->p.y - y0);
dd = max(dd, d);
return dd;
}
static int
R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double x1, double y1, double x2, double y2, double t)
{
shading_vertex_t p0, p1, p2;
patch_color_t *c;
int code;
reserve_colors(pfs, &c, 1); /* Can't fail */
p0.c = c;
p1.c = c;
p2.c = c;
code = gs_point_transform2fixed(&pfs->pis->ctm, x0, y0, &p0.p);
if (code >= 0)
code = gs_point_transform2fixed(&pfs->pis->ctm, x1, y1, &p1.p);
if (code >= 0)
code = gs_point_transform2fixed(&pfs->pis->ctm, x2, y2, &p2.p);
if (code >= 0) {
c->t[0] = c->t[1] = t;
patch_resolve_color(c, pfs);
code = mesh_triangle(pfs, &p0, &p1, &p2);
}
release_colors(pfs, pfs->color_stack, 1);
return code;
}
static int
R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double r0,
double x1, double y1, double r1, double t0, double r_rect,
bool inwards)
{
double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
double d = hypot(dx, dy);
/* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */
double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */
double ax, ay, as; /* Cone apex. */
double g0; /* The distance from apex to the tangent point of the 0th circle. */
int code;
as = r0 / (r0 - r1);
ax = x0 + (x1 - x0) * as;
ay = y0 + (y1 - y0) * as;
g0 = sqrt(dx * dx + dy * dy - dr * dr) * as;
if (g0 < 1e-7 * r0) {
/* Nearly degenerate, replace with half-plane. */
/* Restrict the half plane with triangle, which covers the rect. */
gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit,
(right, left == when looking from the apex). */
p0.x = ax - dy * r / d;
p0.y = ay + dx * r / d;
p1.x = ax - dx * r / d;
p1.y = ay - dy * r / d;
p2.x = ax + dy * r / d;
p2.y = ay - dx * r / d;
/* Split into 2 triangles at the apex,
so that the apex is preciselly covered.
Especially important when it is not exactly degenerate. */
code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0);
if (code < 0)
return code;
return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0);
} else {
/* Compute the "limit" circle so that its
tangent points are outside the rect. */
/* Note: this branch is executed when the condition above is false :
g0 >= 1e-7 * r0 .
We believe that computing this branch with doubles
provides enough precision after converting coordinates into 'fixed',
and that the limit circle radius is not dramatically big.
*/
double es, er; /* The limit circle parameter, radius. */
double ex, ey; /* The limit circle centrum. */
es = as - as * r / g0; /* Always negative. */
er = r * r0 / g0 ;
ex = x0 + dx * es;
ey = y0 + dy * es;
/* Fill the annulus: */
code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0);
if (code < 0)
return code;
/* Fill entire ending circle to ensure entire rect is covered, but
* only if we are filling "inwards" (as otherwise we will overwrite
* all the hard work we have done to this point) */
if (inwards)
code = R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0);
return code;
}
}
static int
R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect,
double x0, double y0, double r0,
double x1, double y1, double r1, double t)
{
double as = r0 / (r0 - r1);
double ax = x0 + (x1 - x0) * as;
double ay = y0 + (y1 - y0) * as;
return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t);
}
/*
* A map of this code:
*
* R_extensions
* |-> (R_rect_radius)
* |-> (R_outer_circle)
* |-> R_obtuse_cone
* | |-> R_fill_triangle_new
* | | '-> mesh_triangle
* | | '-> mesh_triangle_rec <--.
* | | |--------------------'
* | | |-> small_mesh_triangle
* | | | '-> fill_triangle
* | | | '-> triangle_by_4 <--.
* | | | |----------------'
* | | | |-> constant_color_triangle
* | | | |-> make_wedge_median (etc)
* | | '-----------+--------------------.
* | '-------------------. |
* |-> R_tensor_cone_apex | |
* | '-------------------+ |
* '-> R_tensor_annulus <--' \|/
* |-> (make_quadrant_arc) |
* '-> patch_fill |
* |-> fill_patch <--. |
* | |-------------' |
* | |------------------------------------+
* | '-> fill_stripe |
* | |-----------------------. |
* | \|/ | |
* |-> fill_wedges | |
* '-> fill_wedges_aux <--. | |
* |------------------' \|/ |
* |----------------> mesh_padding '
* | '----------------------------------.
* '-> wedge_by_triangles <--. . |
* |---------------------' | |
* '-> fill_triangle_wedge <----' |
* '-> fill_triangle_wedge_aux |
* '-> fill_wedge_trap |
* '-> wedge_trap_decompose |
* '-> linear_color_trapezoid |
* '-> decompose_linear_color <--|
* |-------------------------'
* '-> constant_color_trapezoid
*/
static int
R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect,
double t0, double t1, bool Extend0, bool Extend1)
{
float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
floatp r0 = psh->params.Coords[2];
float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
floatp r1 = psh->params.Coords[5];
double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
double d = hypot(dx, dy), r;
int code;
if (dr >= d - 1e-7 * (d + dr)) {
/* Nested circles, or degenerate. */
if (r0 > r1) {
if (Extend0) {
r = R_rect_radius(rect, x0, y0);
if (r > r0) {
code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0);
if (code < 0)
return code;
}
}
if (Extend1 && r1 > 0)
return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
} else {
if (Extend1) {
r = R_rect_radius(rect, x1, y1);
if (r > r1) {
code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1);
if (code < 0)
return code;
}
}
if (Extend0 && r0 > 0)
return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
}
} else if (dr > d / 3) {
/* Obtuse cone. */
if (r0 > r1) {
if (Extend0) {
r = R_rect_radius(rect, x0, y0);
code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r, true);
if (code < 0)
return code;
}
if (Extend1 && r1 != 0)
return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1);
return 0;
} else {
if (Extend1) {
r = R_rect_radius(rect, x1, y1);
code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r, false);
if (code < 0)
return code;
}
if (Extend0 && r0 != 0)
return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0);
}
} else {
/* Acute cone or cylinder. */
double x2, y2, r2, x3, y3, r3;
if (Extend0) {
code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3);
if (code < 0)
return code;
if (x3 != x1 || y3 != y1) {
code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0);
if (code < 0)
return code;
}
}
if (Extend1) {
code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2);
if (code < 0)
return code;
if (x2 != x0 || y2 != y0) {
code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1);
if (code < 0)
return code;
}
}
}
return 0;
}
static int
R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t)
{
#if 0 /* Disabled because the clist writer device doesn't pass
the clipping path with fill_recatangle. */
patch_color_t pc;
const gs_color_space *pcs = pfs->direct_space;
gx_device_color dc;
int code;
code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
if (code < 0)
return code;
pcs->type->restrict_color(&pc.cc, pcs);
code = patch_color_to_device_color(pfs, &pc, &dc);
if (code < 0)
return code;
return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y),
fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x),
fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y),
&dc, pfs->dev, pfs->pis->log_op);
#else
/* Can't apply fill_rectangle, because the clist writer device doesn't pass
the clipping path with fill_recatangle. Convert into trapezoids instead.
*/
quadrangle_patch p;
shading_vertex_t pp[2][2];
const gs_color_space *pcs = pfs->direct_space;
patch_color_t pc;
int code;
code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
if (code < 0)
return code;
pcs->type->restrict_color(&pc.cc, pcs);
pc.t[0] = pc.t[1] = t;
pp[0][0].p = clip_rect->p;
pp[0][1].p.x = clip_rect->q.x;
pp[0][1].p.y = clip_rect->p.y;
pp[1][0].p.x = clip_rect->p.x;
pp[1][0].p.y = clip_rect->q.y;
pp[1][1].p = clip_rect->q;
pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc;
p.p[0][0] = &pp[0][0];
p.p[0][1] = &pp[0][1];
p.p[1][0] = &pp[1][0];
p.p[1][1] = &pp[1][1];
return constant_color_quadrangle(pfs, &p, false);
#endif
}
typedef struct radial_shading_attrs_s {
double x0, y0;
double x1, y1;
double span[2][2];
double apex;
bool have_apex;
bool have_root[2]; /* ongoing contact, outgoing contact. */
bool outer_contact[2];
gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */
} radial_shading_attrs_t;
#define Pw2(a) ((a)*(a))
static void
radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index)
{
double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t;
double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t;
double rx = rsa->p[point_index].x - cx;
double ry = rsa->p[point_index].y - cy;
double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x;
double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y;
if (at_corner) {
double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x;
double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y;
bool b1 = (dx * rx + dy * ry >= 0);
bool b2 = (Dx * rx + Dy * ry >= 0);
if (b1 & b2)
rsa->outer_contact[root_index] = true;
} else {
if (rx * dy - ry * dx < 0)
rsa->outer_contact[root_index] = true;
}
}
static void
store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner)
{
int i;
for (i = 0; i < 2; i++) {
bool good_root;
if (!have_root[i])
continue;
good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex));
if (good_root) {
radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i);
if (!rsa->have_root[i]) {
rsa->span[i][0] = rsa->span[i][1] = t[i];
rsa->have_root[i] = true;
} else {
if (rsa->span[i][0] > t[i])
rsa->span[i][0] = t[i];
if (rsa->span[i][1] < t[i])
rsa->span[i][1] = t[i];
}
}
}
}
static void
compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
{
double cc, c;
bool have_root[2] = {false, false};
double t[2];
bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x);
int i;
/* As t moves from 0 to 1, the circles move from r0 to r1, and from
* from position p0 to py. For simplicity, adjust so that p0 is at
* the origin. Consider the projection of the circle drawn at any given
* time onto the x axis. The range of points would be:
* p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last)
* moments when the range includes a point c on the x axis. So solve for:
* p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x.
* So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0)
* p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0)
*/
if (by_x) {
c = rsa->p[point_index].x - rsa->x0;
cc = rsa->x1 - rsa->x0;
} else {
c = rsa->p[point_index].y - rsa->y0;
cc = rsa->y1 - rsa->y0;
}
t[0] = (c - r0) / (cc + r1 - r0);
t[1] = (c + r0) / (cc - r1 + r0);
if (t[0] > t[1]) {
c = t[0];
t[0] = t[1];
t[1] = c;
}
for (i = 0; i < 2; i++) {
double d, d0, d1;
if (by_x) {
d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i];
d0 = rsa->p[point_index].y;
d1 = rsa->p[point_index + 1].y;
} else {
d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i];
d0 = rsa->p[point_index].x;
d1 = rsa->p[point_index + 1].x;
}
if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0)
have_root[i] = true;
}
store_roots(rsa, have_root, t, r0, r1, point_index, false);
}
static int
compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
{
/* As t moves from 0 to 1, the circles move from r0 to r1, and from
* from position p0 to py. At any given time t, therefore, we
* paint the points that are distance r0+(r1-r0)*t from point
* (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t).
*
* To simplify our algebra, adjust so that (p0x, p0y) is at the origin.
* To find the time(s) t at which the a point q is painted, we therefore
* solve for t in:
*
* |q-P(t)| = r0+(r1-r0)*t
*
* (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0
* = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 -
* (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2)
* = qx^2 + qy^2 - r0^2
* + -2(qx.p1x + qy.p1y + r0(r1-r0)).t
* + (p1x^2 + p1y^2 - (r1-r0)^2).t^2
*
* So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where
* a = p1x^2 + p1y^2 - (r1-r0)^2
* b = -2(qx.p1x + qy.p1y + r0(r1-r0))
* c = qx^2 + qy^2 - r0^2
*/
double p1x = rsa->x1 - rsa->x0;
double p1y = rsa->y1 - rsa->y0;
double qx = rsa->p[point_index].x - rsa->x0;
double qy = rsa->p[point_index].y - rsa->y0;
double a = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1));
bool have_root[2] = {false, false};
double t[2];
if (fabs(a) < 1e-8) {
/* Linear equation. */
/* This case is always the ongoing ellipse contact. */
double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0);
double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0);
t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2;
have_root[0] = true;
} else {
/* Square equation. No solution if b^2 - 4ac = 0. Equivalently if
* (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 === (-b/2)^2 - a.c = 0 */
double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy;
double c = Pw2(qx) + Pw2(qy) - Pw2(r0);
double desc2 = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */
if (desc2 < 0) {
return -1; /* The point is outside the shading coverage.
Do not shorten, because we didn't observe it in practice. */
} else {
double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */
if (a > 0) {
t[0] = (minushalfb - desc1) / a;
t[1] = (minushalfb + desc1) / a;
} else {
t[0] = (minushalfb + desc1) / a;
t[1] = (minushalfb - desc1) / a;
}
have_root[0] = have_root[1] = true;
}
}
store_roots(rsa, have_root, t, r0, r1, point_index, true);
if (have_root[0] && have_root[1])
return 15;
if (have_root[0])
return 15 - 4;
if (have_root[1])
return 15 - 2;
return -1;
}
#undef Pw2
static int
compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1)
{
int span_type0, span_type1;
span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1);
if (span_type0 == -1)
return -1;
span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4);
if (span_type0 != span_type1)
return -1;
compute_radial_shading_span_extended_side(rsa, r0, r1, 1);
compute_radial_shading_span_extended_side(rsa, r0, r1, 2);
compute_radial_shading_span_extended_side(rsa, r0, r1, 3);
compute_radial_shading_span_extended_side(rsa, r0, r1, 4);
return span_type0;
}
static int
compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, floatp r0, float x1, float y1, floatp r1, const gs_rect * rect)
{
/* If the shading area is much larger than the path bbox,
we want to shorten the shading for a faster rendering.
If any point of the path bbox falls outside the shading area,
our math is not applicable, and we render entire shading.
If the path bbox is inside the shading area,
we compute 1 or 2 'spans' - the shading parameter intervals,
which covers the bbox. For doing that we need to resolve
a square eqation by the shading parameter
for each corner of the bounding box,
and for each side of the shading bbox.
Note the equation to be solved in the user space.
Since each equation gives 2 roots (because the points are
strongly inside the shading area), we will get 2 parameter intervals -
the 'lower' one corresponds to the first (ongoing) contact of
the running circle, and the second one corresponds to the last (outgoing) contact
(like in a sun eclipse; well our sun is rectangular).
Here are few exceptions.
First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2)
appears equal to r0-r1. In this case the base circles do contact,
and the running circle does contact at the same point.
The equation degenerates to a linear one.
Since we don't want float precision noize to affect the result,
we compute this condition in 'fixed' coordinates.
Second, Postscript approximates any circle with 3d order beziers.
This approximation may give a 2% error.
Therefore using the precise roots may cause a dropout.
To prevetn them, we slightly modify the base radii.
However the sign of modification smartly depends
on the relative sizes of the base circles,
and on the contact number. Currently we don't want to
define and debug the smart optimal logic for that,
so we simply try all 4 variants for each source equation,
and use the union of intervals.
Third, we could compute which quarter of the circle
really covers the path bbox. Using it we could skip
rendering of uncovering quarters. Currently we do not
implement this optimization. The general tensor patch algorithm
will skip uncovering parts.
Fourth, when one base circle is (almost) inside the other,
the parameter interval must include the shading apex.
To know that, we determine whether the contacting circle
is outside the rectangle (the "outer" contact),
or it is (partially) inside the rectangle.
At last, a small shortening of a shading won't give a
sensible speedup, but it may replace a symmetric function domain
with an assymmetric one, so that the rendering
would be asymmetyric for a symmetric shading.
Therefore we do not perform a small sortening.
Instead we shorten only if the shading span
is much smaller that the shading domain.
*/
const double extent = 1.02;
int span_type0, span_type1, span_type;
memset(rsa, 0, sizeof(*rsa));
rsa->x0 = x0;
rsa->y0 = y0;
rsa->x1 = x1;
rsa->y1 = y1;
rsa->p[0] = rsa->p[4] = rect->p;
rsa->p[1].x = rsa->p[5].x = rect->p.x;
rsa->p[1].y = rsa->p[5].y = rect->q.y;
rsa->p[2] = rect->q;
rsa->p[3].x = rect->q.x;
rsa->p[3].y = rect->p.y;
rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0);
rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0);
span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent);
if (span_type0 == -1)
return -1;
span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent);
if (span_type0 != span_type1)
return -1;
span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent);
if (span_type1 == -1)
return -1;
if (r0 < r1) {
if (rsa->have_root[0] && !rsa->outer_contact[0])
rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */
if (rsa->have_root[1] && !rsa->outer_contact[1])
rsa->span[1][0] = rsa->apex;
} else if (r0 > r1) {
if (rsa->have_root[0] && !rsa->outer_contact[0])
rsa->span[0][1] = rsa->apex;
if (rsa->have_root[1] && !rsa->outer_contact[1])
rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */
}
span_type = 0;
if (rsa->have_root[0] && rsa->span[0][0] < 0)
span_type |= 1;
if (rsa->have_root[1] && rsa->span[1][0] < 0)
span_type |= 1;
if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1)
span_type |= 2;
if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1)
span_type |= 4;
if (rsa->have_root[0] && rsa->span[0][1] > 1)
span_type |= 8;
if (rsa->have_root[1] && rsa->span[1][1] > 1)
span_type |= 8;
return span_type;
}
static bool
shorten_radial_shading(float *x0, float *y0, floatp *r0, float *d0, float *x1, float *y1, floatp *r1, float *d1, double span_[2])
{
double s0 = span_[0], s1 = span_[1], w;
if (s0 < 0)
s0 = 0;
if (s1 < 0)
s1 = 0;
if (s0 > 1)
s0 = 1;
if (s1 > 1)
s1 = 1;
w = s1 - s0;
if (w == 0)
return false; /* Don't pass a degenerate shading. */
if (w > 0.3)
return false; /* The span is big, don't shorten it. */
{ /* Do shorten. */
double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0;
double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1;
*r0 = R0 + (R1 - R0) * s0;
*x0 = X0 + (X1 - X0) * s0;
*y0 = Y0 + (Y1 - Y0) * s0;
*d0 = D0 + (D1 - D0) * s0;
*r1 = R0 + (R1 - R0) * s1;
*x1 = X0 + (X1 - X0) * s1;
*y1 = Y0 + (Y1 - Y0) * s1;
*d1 = D0 + (D1 - D0) * s1;
}
return true;
}
static bool inline
is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect)
{
const double d = hypot(x1 - x0, y1 - y0);
const double area0 = M_PI * r0 * r0 / 2;
const double area1 = M_PI * r1 * r1 / 2;
const double area2 = (r0 + r1) / 2 * d;
const double arbitrary = 8;
double areaX, areaY;
/* The shading area is not equal to area0 + area1 + area2
when one circle is (almost) inside the other.
We believe that the 'arbitrary' coefficient recovers that
when it is set greater than 2. */
/* If one dimension is large enough, the shading parameter span is wide. */
areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x);
if (areaX * arbitrary < area0 + area1 + area2)
return true;
areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y);
if (areaY * arbitrary < area0 + area1 + area2)
return true;
return false;
}
static int
gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect *clip_rect,
gx_device * dev, gs_imager_state * pis)
{
const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0;
float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
floatp r0 = psh->params.Coords[2];
float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
floatp r1 = psh->params.Coords[5];
radial_shading_attrs_t rsa;
int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */
int code;
patch_fill_state_t pfs1;
if (r0 == 0 && r1 == 0)
return 0; /* PLRM requires to paint nothing. */
code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pis);
if (code < 0)
return code;
pfs1.Function = psh->params.Function;
code = init_patch_fill_state(&pfs1);
if (code < 0) {
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
return code;
}
pfs1.function_arg_shift = 1;
pfs1.rect = *clip_rect;
pfs1.maybe_self_intersecting = false;
if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect))
span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect);
else
span_type = -1;
if (span_type < 0) {
code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
if (code >= 0)
code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1);
if (code >= 0)
code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
} else if (span_type == 1) {
code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0);
} else if (span_type == 8) {
code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1);
} else {
bool second_interval = true;
code = 0;
if (span_type & 1)
code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
if ((code >= 0) && (span_type & 2)) {
float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
floatp R0 = r0, R1 = r1;
if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) {
double united[2];
united[0] = rsa.span[0][0];
united[1] = rsa.span[1][1];
shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united);
second_interval = false;
} else {
second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]);
}
code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
}
if (code >= 0 && second_interval) {
if (span_type & 4) {
float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
floatp R0 = r0, R1 = r1;
shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]);
code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
}
}
if (code >= 0 && (span_type & 8))
code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
}
if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
if (term_patch_fill_state(&pfs1))
return_error(gs_error_unregistered); /* Must not happen. */
return code;
}
int
gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
const gs_fixed_rect * rect_clip,
gx_device * dev, gs_imager_state * pis)
{
int code;
if (VD_TRACE_RADIAL_PATCH && vd_allowed('s')) {
vd_get_dc('s');
vd_set_shift(0, 0);
vd_set_scale(0.01);
vd_set_origin(0, 0);
}
code = gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pis);
if (VD_TRACE_FUNCTIONAL_PATCH && vd_allowed('s'))
vd_release_dc;
return code;
}
|