1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Memory allocator for Ghostscript interpreter */
#include "gx.h"
#include "memory_.h"
#include "ierrors.h"
#include "gsstruct.h"
#include "iref.h" /* must precede iastate.h */
#include "iastate.h"
#include "igc.h" /* for gs_gc_reclaim */
#include "ipacked.h"
#include "iutil.h"
#include "ivmspace.h"
#include "store.h"
/*
* Define global and local instances.
*/
public_st_gs_dual_memory();
/* Initialize the allocator */
int
ialloc_init(gs_dual_memory_t *dmem, gs_memory_t * rmem, uint chunk_size,
bool level2)
{
gs_ref_memory_t *ilmem = ialloc_alloc_state(rmem, chunk_size);
gs_ref_memory_t *ilmem_stable = ialloc_alloc_state(rmem, chunk_size);
gs_ref_memory_t *igmem = 0;
gs_ref_memory_t *igmem_stable = 0;
gs_ref_memory_t *ismem = ialloc_alloc_state(rmem, chunk_size);
int i;
if (ilmem == 0 || ilmem_stable == 0 || ismem == 0)
goto fail;
ilmem->stable_memory = (gs_memory_t *)ilmem_stable;
if (level2) {
igmem = ialloc_alloc_state(rmem, chunk_size);
igmem_stable = ialloc_alloc_state(rmem, chunk_size);
if (igmem == 0 || igmem_stable == 0)
goto fail;
igmem->stable_memory = (gs_memory_t *)igmem_stable;
} else
igmem = ilmem, igmem_stable = ilmem_stable;
for (i = 0; i < countof(dmem->spaces_indexed); i++)
dmem->spaces_indexed[i] = 0;
dmem->space_local = ilmem;
dmem->space_global = igmem;
dmem->space_system = ismem;
dmem->spaces.vm_reclaim = gs_gc_reclaim; /* real GC */
dmem->reclaim = 0; /* no interpreter GC yet */
/* Level 1 systems have only local VM. */
igmem->space = avm_global;
igmem_stable->space = avm_global;
ilmem->space = avm_local; /* overrides if ilmem == igmem */
ilmem_stable->space = avm_local; /* ditto */
ismem->space = avm_system;
# if IGC_PTR_STABILITY_CHECK
igmem->space_id = (i_vm_global << 1) + 1;
igmem_stable->space_id = i_vm_global << 1;
ilmem->space_id = (i_vm_local << 1) + 1; /* overrides if ilmem == igmem */
ilmem_stable->space_id = i_vm_local << 1; /* ditto */
ismem->space_id = (i_vm_system << 1);
# endif
ialloc_set_space(dmem, avm_global);
return 0;
fail:
gs_free_object(rmem, igmem_stable, "ialloc_init failure");
gs_free_object(rmem, igmem, "ialloc_init failure");
gs_free_object(rmem, ismem, "ialloc_init failure");
gs_free_object(rmem, ilmem_stable, "ialloc_init failure");
gs_free_object(rmem, ilmem, "ialloc_init failure");
return_error(e_VMerror);
}
/* ================ Local/global VM ================ */
/* Get the space attribute of an allocator */
uint
imemory_space(const gs_ref_memory_t * iimem)
{
return iimem->space;
}
/* Select the allocation space. */
void
ialloc_set_space(gs_dual_memory_t * dmem, uint space)
{
gs_ref_memory_t *mem = dmem->spaces_indexed[space >> r_space_shift];
dmem->current = mem;
dmem->current_space = mem->space;
}
/* Get the l_new attribute of a current allocator. */
/* (A copy of the new_mask in the gs_dual_memory_t.) */
uint
imemory_new_mask(const gs_ref_memory_t *imem)
{
return imem->new_mask;
}
/* Get the save level of an allocator. */
int
imemory_save_level(const gs_ref_memory_t *imem)
{
return imem->save_level;
}
/* Reset the requests. */
void
ialloc_reset_requested(gs_dual_memory_t * dmem)
{
dmem->space_system->gc_status.requested = 0;
dmem->space_global->gc_status.requested = 0;
dmem->space_local->gc_status.requested = 0;
}
/* ================ Refs ================ */
#ifdef DEBUG
static int
ialloc_trace_space(const gs_ref_memory_t *imem)
{
return imem->space + (imem->stable_memory == (const gs_memory_t *)imem);
}
#endif
/* Register a ref root. */
int
gs_register_ref_root(gs_memory_t *mem, gs_gc_root_t *root,
void **pp, client_name_t cname)
{
return gs_register_root(mem, root, ptr_ref_type, pp, cname);
}
/*
* As noted in iastate.h, every run of refs has an extra ref at the end
* to hold relocation information for the garbage collector;
* since sizeof(ref) % obj_align_mod == 0, we never need to
* allocate any additional padding space at the end of the block.
*/
/* Allocate an array of refs. */
int
gs_alloc_ref_array(gs_ref_memory_t * mem, ref * parr, uint attrs,
uint num_refs, client_name_t cname)
{
ref *obj;
/* If we're allocating a run of refs already, */
/* and we aren't about to overflow the maximum run length, use it. */
if (mem->cc.rtop == mem->cc.cbot &&
num_refs < (mem->cc.ctop - mem->cc.cbot) / sizeof(ref) &&
mem->cc.rtop - (byte *) mem->cc.rcur + num_refs * sizeof(ref) <
max_size_st_refs
) {
ref *end;
obj = (ref *) mem->cc.rtop - 1; /* back up over last ref */
if_debug4('A', "[a%d:+$ ]%s(%u) = 0x%lx\n",
ialloc_trace_space(mem), client_name_string(cname),
num_refs, (ulong) obj);
mem->cc.rcur[-1].o_size += num_refs * sizeof(ref);
end = (ref *) (mem->cc.rtop = mem->cc.cbot +=
num_refs * sizeof(ref));
make_mark(end - 1);
} else {
/*
* Allocate a new run. We have to distinguish 3 cases:
* - Same chunk: pcc unchanged, end == cc.cbot.
* - Large chunk: pcc unchanged, end != cc.cbot.
* - New chunk: pcc changed.
*/
chunk_t *pcc = mem->pcc;
ref *end;
alloc_change_t *cp = 0;
int code = 0;
if ((gs_memory_t *)mem != mem->stable_memory) {
code = alloc_save_change_alloc(mem, "gs_alloc_ref_array", &cp);
if (code < 0)
return code;
}
obj = gs_alloc_struct_array((gs_memory_t *) mem, num_refs + 1,
ref, &st_refs, cname);
if (obj == 0)
return_error(e_VMerror);
/* Set the terminating ref now. */
end = (ref *) obj + num_refs;
make_mark(end);
/* Set has_refs in the chunk. */
if (mem->pcc != pcc || mem->cc.cbot == (byte *) (end + 1)) {
/* Ordinary chunk. */
mem->cc.rcur = (obj_header_t *) obj;
mem->cc.rtop = (byte *) (end + 1);
mem->cc.has_refs = true;
} else {
/* Large chunk. */
/* This happens only for very large arrays, */
/* so it doesn't need to be cheap. */
chunk_locator_t cl;
cl.memory = mem;
cl.cp = mem->clast;
chunk_locate_ptr(obj, &cl);
cl.cp->has_refs = true;
}
if (cp) {
mem->changes = cp;
cp->where = (ref_packed *)obj;
}
}
make_array(parr, attrs | mem->space, num_refs, obj);
return 0;
}
/* Resize an array of refs. Currently this is only implemented */
/* for shrinking, not for growing. */
int
gs_resize_ref_array(gs_ref_memory_t * mem, ref * parr,
uint new_num_refs, client_name_t cname)
{
uint old_num_refs = r_size(parr);
uint diff;
ref *obj = parr->value.refs;
if (new_num_refs > old_num_refs || !r_has_type(parr, t_array))
return_error(e_Fatal);
diff = old_num_refs - new_num_refs;
/* Check for LIFO. See gs_free_ref_array for more details. */
if (mem->cc.rtop == mem->cc.cbot &&
(byte *) (obj + (old_num_refs + 1)) == mem->cc.rtop
) {
/* Shorten the refs object. */
ref *end = (ref *) (mem->cc.cbot = mem->cc.rtop -=
diff * sizeof(ref));
if_debug4('A', "[a%d:<$ ]%s(%u) 0x%lx\n",
ialloc_trace_space(mem), client_name_string(cname), diff,
(ulong) obj);
mem->cc.rcur[-1].o_size -= diff * sizeof(ref);
make_mark(end - 1);
} else {
/* Punt. */
if_debug4('A', "[a%d:<$#]%s(%u) 0x%lx\n",
ialloc_trace_space(mem), client_name_string(cname), diff,
(ulong) obj);
mem->lost.refs += diff * sizeof(ref);
}
r_set_size(parr, new_num_refs);
return 0;
}
/* Deallocate an array of refs. Only do this if LIFO, or if */
/* the array occupies an entire chunk by itself. */
void
gs_free_ref_array(gs_ref_memory_t * mem, ref * parr, client_name_t cname)
{
uint num_refs = r_size(parr);
ref *obj = parr->value.refs;
/*
* Compute the storage size of the array, and check for LIFO
* freeing or a separate chunk. Note that the array might be packed;
* for the moment, if it's anything but a t_array, punt.
* The +1s are for the extra ref for the GC.
*/
if (!r_has_type(parr, t_array))
DO_NOTHING; /* don't look for special cases */
else if (mem->cc.rtop == mem->cc.cbot &&
(byte *) (obj + (num_refs + 1)) == mem->cc.rtop
) {
if ((obj_header_t *) obj == mem->cc.rcur) {
/* Deallocate the entire refs object. */
if ((gs_memory_t *)mem != mem->stable_memory)
alloc_save_remove(mem, (ref_packed *)obj, "gs_free_ref_array");
gs_free_object((gs_memory_t *) mem, obj, cname);
mem->cc.rcur = 0;
mem->cc.rtop = 0;
} else {
/* Deallocate it at the end of the refs object. */
if_debug4('A', "[a%d:-$ ]%s(%u) 0x%lx\n",
ialloc_trace_space(mem), client_name_string(cname),
num_refs, (ulong) obj);
mem->cc.rcur[-1].o_size -= num_refs * sizeof(ref);
mem->cc.rtop = mem->cc.cbot = (byte *) (obj + 1);
make_mark(obj);
}
return;
} else if (num_refs >= (mem->large_size / arch_sizeof_ref - 1)) {
/* See if this array has a chunk all to itself. */
/* We only make this check when freeing very large objects, */
/* so it doesn't need to be cheap. */
chunk_locator_t cl;
cl.memory = mem;
cl.cp = mem->clast;
if (chunk_locate_ptr(obj, &cl) &&
obj == (ref *) ((obj_header_t *) (cl.cp->cbase) + 1) &&
(byte *) (obj + (num_refs + 1)) == cl.cp->cend
) {
/* Free the chunk. */
if_debug4('a', "[a%d:-$L]%s(%u) 0x%lx\n",
ialloc_trace_space(mem), client_name_string(cname),
num_refs, (ulong) obj);
if ((gs_memory_t *)mem != mem->stable_memory)
alloc_save_remove(mem, (ref_packed *)obj, "gs_free_ref_array");
alloc_free_chunk(cl.cp, mem);
return;
}
}
/* Punt, but fill the array with nulls so that there won't be */
/* dangling references to confuse the garbage collector. */
if_debug4('A', "[a%d:-$#]%s(%u) 0x%lx\n",
ialloc_trace_space(mem), client_name_string(cname), num_refs,
(ulong) obj);
{
uint size;
switch (r_type(parr)) {
case t_shortarray:
size = num_refs * sizeof(ref_packed);
break;
case t_mixedarray:{
/* We have to parse the array to compute the storage size. */
uint i = 0;
const ref_packed *p = parr->value.packed;
for (; i < num_refs; ++i)
p = packed_next(p);
size = (const byte *)p - (const byte *)parr->value.packed;
break;
}
case t_array:
size = num_refs * sizeof(ref);
break;
default:
lprintf3("Unknown type 0x%x in free_ref_array(%u,0x%lx)!",
r_type(parr), num_refs, (ulong) obj);
return;
}
/*
* If there are any leftover packed elements, we don't
* worry about them, since they can't be dangling references.
*/
refset_null_new(obj, size / sizeof(ref), 0);
mem->lost.refs += size;
}
}
/* Allocate a string ref. */
int
gs_alloc_string_ref(gs_ref_memory_t * mem, ref * psref,
uint attrs, uint nbytes, client_name_t cname)
{
byte *str = gs_alloc_string((gs_memory_t *) mem, nbytes, cname);
if (str == 0)
return_error(e_VMerror);
make_string(psref, attrs | mem->space, nbytes, str);
return 0;
}
|