1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Dictionary implementation */
#include "math_.h" /* for frexp */
#include "string_.h" /* for strlen */
#include "ghost.h"
#include "gxalloc.h" /* for accessing masks */
#include "ierrors.h"
#include "imemory.h"
#include "idebug.h" /* for debug_print_name */
#include "inamedef.h"
#include "iname.h"
#include "ipacked.h"
#include "isave.h" /* for value cache in names */
#include "store.h"
#include "idict.h" /* interface definition */
#include "idictdef.h"
#include "iutil.h"
#include "ivmspace.h" /* for store check */
/*
#include "idicttpl.h" - Do not remove this comment.
"idicttpl.h" is included below.
*/
/*
* Dictionaries per se aren't supposed to know anything about the
* dictionary stack, let alone the interpreter's dictionary stack.
* Unfortunately, there is are two design couplings between them:
* dictionary stacks cache some of the elements of their top dictionary
* (requiring updating when that dictionary grows or is unpacked),
* and names may cache a pointer to their definition (requiring a
* check whether a dictionary appears on the dictionary stack).
* Therefore, we need iddstack.h here.
* We'd really like to fix this, but we don't see how.
*/
#include "iddstack.h"
/*
* Define the size of the largest valid dictionary.
* This is limited by the size field of the keys and values refs,
* and by the enumeration interface, which requires the size to
* fit in an int. As it happens, max_array_size will always be
* smaller than max_int.
*/
const uint dict_max_size = max_array_size - 1;
/* Define whether dictionaries are packed by default. */
enum {
dict_default_pack = true
};
/*
* Define the check for whether we can set the 1-element cache.
* We only set the cache if we aren't inside a save.
* This way, we never have to undo setting the cache.
*/
#define CAN_SET_PVALUE_CACHE(pds, pdref, mem)\
(pds && dstack_dict_is_permanent(pds, pdref) && !ref_saving_in(mem))
/* Forward references */
static int dict_create_contents(uint size, const ref * pdref, bool pack);
/* Debugging statistics */
#ifdef DEBUG
struct stats_dict_s {
long lookups; /* total lookups */
long probe1; /* successful lookups on only 1 probe */
long probe2; /* successful lookups on 2 probes */
} stats_dict;
/* Wrapper for dict_find */
int real_dict_find(const ref * pdref, const ref * key, ref ** ppvalue);
int
dict_find(const ref * pdref, const ref * pkey, ref ** ppvalue)
{
dict *pdict = pdref->value.pdict;
int code = real_dict_find(pdref, pkey, ppvalue);
stats_dict.lookups++;
if (r_has_type(pkey, t_name) && dict_is_packed(pdict)) {
uint nidx = name_index(dict_mem(pdict), pkey);
uint hash =
dict_hash_mod(dict_name_index_hash(nidx), npairs(pdict)) + 1;
if (pdict->keys.value.packed[hash] ==
pt_tag(pt_literal_name) + nidx
)
stats_dict.probe1++;
else if (pdict->keys.value.packed[hash - 1] ==
pt_tag(pt_literal_name) + nidx
)
stats_dict.probe2++;
}
/* Do the cheap flag test before the expensive remainder test. */
if (gs_debug_c('d') && !(stats_dict.lookups % 1000))
dlprintf3("[d]lookups=%ld probe1=%ld probe2=%ld\n",
stats_dict.lookups, stats_dict.probe1, stats_dict.probe2);
return code;
}
#define dict_find real_dict_find
#endif
/* Round up the size of a dictionary. Return 0 if too large. */
uint
dict_round_size_small(uint rsize)
{
return (rsize > dict_max_size ? 0 : rsize);
}
uint
dict_round_size_large(uint rsize)
{ /* Round up to a power of 2 if not huge. */
/* If the addition overflows, the new rsize will be zero, */
/* which will (correctly) be interpreted as a limitcheck. */
if (rsize > dict_max_non_huge)
return (rsize > dict_max_size ? 0 : rsize);
while (rsize & (rsize - 1))
rsize = (rsize | (rsize - 1)) + 1;
return (rsize <= dict_max_size ? rsize : dict_max_non_huge);
}
/* Create a dictionary using the given allocator. */
int
dict_alloc(gs_ref_memory_t * mem, uint size, ref * pdref)
{
ref arr;
int code =
gs_alloc_ref_array(mem, &arr, a_all, sizeof(dict) / sizeof(ref),
"dict_alloc");
dict *pdict;
ref dref;
if (code < 0)
return code;
pdict = (dict *) arr.value.refs;
make_tav(&dref, t_dictionary,
r_space(&arr) | imemory_new_mask(mem) | a_all,
pdict, pdict);
make_struct(&pdict->memory, avm_foreign, mem);
code = dict_create_contents(size, &dref, dict_default_pack);
if (code < 0) {
gs_free_ref_array(mem, &arr, "dict_alloc");
return code;
}
*pdref = dref;
return 0;
}
/* Create unpacked keys for a dictionary. */
/* The keys are allocated using the same allocator as the dictionary. */
static int
dict_create_unpacked_keys(uint asize, const ref * pdref)
{
dict *pdict = pdref->value.pdict;
gs_ref_memory_t *mem = dict_memory(pdict);
int code;
code = gs_alloc_ref_array(mem, &pdict->keys, a_all, asize,
"dict_create_unpacked_keys");
if (code >= 0) {
uint new_mask = imemory_new_mask(mem);
ref *kp = pdict->keys.value.refs;
r_set_attrs(&pdict->keys, new_mask);
refset_null_new(kp, asize, new_mask);
r_set_attrs(kp, a_executable); /* wraparound entry */
}
return code;
}
/* Create the contents (keys and values) of a newly allocated dictionary. */
/* Allocate in the current VM space, which is assumed to be the same as */
/* the VM space where the dictionary is allocated. */
static int
dict_create_contents(uint size, const ref * pdref, bool pack)
{
dict *pdict = pdref->value.pdict;
gs_ref_memory_t *mem = dict_memory(pdict);
uint new_mask = imemory_new_mask(mem);
uint asize = dict_round_size((size == 0 ? 1 : size));
int code;
register uint i;
if (asize == 0 || asize > max_array_size - 1) /* too large */
return_error(e_limitcheck);
asize++; /* allow room for wraparound entry */
code = gs_alloc_ref_array(mem, &pdict->values, a_all, asize,
"dict_create_contents(values)");
if (code < 0)
return code;
r_set_attrs(&pdict->values, new_mask);
refset_null_new(pdict->values.value.refs, asize, new_mask);
if (pack) {
uint ksize = (asize + packed_per_ref - 1) / packed_per_ref;
ref arr;
ref_packed *pkp;
ref_packed *pzp;
code = gs_alloc_ref_array(mem, &arr, a_all, ksize,
"dict_create_contents(packed keys)");
if (code < 0)
return code;
pkp = (ref_packed *) arr.value.refs;
make_tasv(&pdict->keys, t_shortarray,
r_space(&arr) | a_all | new_mask,
asize, packed, pkp);
for (pzp = pkp, i = 0; i < asize || i % packed_per_ref; pzp++, i++)
*pzp = packed_key_empty;
*pkp = packed_key_deleted; /* wraparound entry */
} else { /* not packed */
int code = dict_create_unpacked_keys(asize, pdref);
if (code < 0)
return code;
}
make_tav(&pdict->count, t_integer, new_mask, intval, 0);
make_tav(&pdict->maxlength, t_integer, new_mask, intval, size);
return 0;
}
/*
* Ensure that a dictionary uses the unpacked representation for keys.
* We can't just use dict_resize, because the values slots mustn't move.
*/
int
dict_unpack(ref * pdref, dict_stack_t *pds)
{
dict *pdict = pdref->value.pdict;
if (!dict_is_packed(pdict))
return 0; /* nothing to do */
{
gs_ref_memory_t *mem = dict_memory(pdict);
uint count = nslots(pdict);
const ref_packed *okp = pdict->keys.value.packed;
ref old_keys;
int code;
ref *nkp;
old_keys = pdict->keys;
if (ref_must_save_in(mem, &old_keys))
ref_do_save_in(mem, pdref, &pdict->keys, "dict_unpack(keys)");
code = dict_create_unpacked_keys(count, pdref);
if (code < 0)
return code;
for (nkp = pdict->keys.value.refs; count--; okp++, nkp++)
if (r_packed_is_name(okp)) {
packed_get((const gs_memory_t *)mem, okp, nkp);
ref_mark_new_in(mem, nkp);
} else if (*okp == packed_key_deleted)
r_set_attrs(nkp, a_executable);
if (!ref_must_save_in(mem, &old_keys))
gs_free_ref_array(mem, &old_keys, "dict_unpack(old keys)");
if (pds)
dstack_set_top(pds); /* just in case */
}
return 0;
}
/*
* Look up a key in a dictionary. Store a pointer to the value slot
* where found, or to the (value) slot for inserting.
* See idict.h for the possible return values.
*/
int
dict_find(const ref * pdref, const ref * pkey,
ref ** ppvalue /* result is stored here */ )
{
dict *pdict = pdref->value.pdict;
uint size = npairs(pdict);
register int etype;
uint nidx;
ref_packed kpack;
uint hash;
int ktype;
const gs_memory_t *mem = dict_mem(pdict);
/* Compute hash. The only types we bother with are strings, */
/* names, and (unlikely, but worth checking for) integers. */
switch (r_type(pkey)) {
case t_name:
nidx = name_index(mem, pkey);
nh:
hash = dict_name_index_hash(nidx);
kpack = packed_name_key(nidx);
ktype = t_name;
break;
case t_string: /* convert to a name first */
{
ref nref;
int code;
if (!r_has_attr(pkey, a_read))
return_error(e_invalidaccess);
code = name_ref(mem, pkey->value.bytes, r_size(pkey), &nref, 1);
if (code < 0)
return code;
nidx = name_index(mem, &nref);
}
goto nh;
case t_real:
/*
* Make sure that equal reals and integers hash the same.
*/
{
int expt, i;
double mant = frexp(pkey->value.realval, &expt);
/*
* The value is mant * 2^expt, where 0.5 <= mant < 1,
* or else expt == mant == 0.
*/
if (expt < sizeof(long) * 8 || pkey->value.realval == min_long)
i = (int)pkey->value.realval;
else
i = (int)(mant * min_long); /* MSVC 6.00.8168.0 cannot compile this */
hash = (uint)i * 30503; /* with -O2 as a single expression */
}
goto ih;
case t_integer:
hash = (uint)pkey->value.intval * 30503;
ih:
kpack = packed_key_impossible;
ktype = -1;
nidx = 0; /* only to pacify gcc */
break;
case t_null: /* not allowed as a key */
return_error(e_typecheck);
default:
hash = r_btype(pkey) * 99; /* yech */
kpack = packed_key_impossible;
ktype = -1;
nidx = 0; /* only to pacify gcc */
}
/* Search the dictionary */
if (dict_is_packed(pdict)) {
const ref_packed *pslot = 0;
# define found *ppvalue = packed_search_value_pointer; return 1
# define deleted if (pslot == 0) pslot = kp
# define missing goto miss
# include "idicttpl.h"
# undef missing
# undef deleted
# undef found
/*
* Double wraparound, dict is full.
* Note that even if there was an empty slot (pslot != 0),
* we must return dictfull if length = maxlength.
*/
if (pslot == 0 || d_length(pdict) == d_maxlength(pdict))
return_error(e_dictfull);
*ppvalue = pdict->values.value.refs + (pslot - kbot);
return 0;
miss: /* Key is missing, not double wrap. See above re dictfull. */
if (d_length(pdict) == d_maxlength(pdict))
return_error(e_dictfull);
if (pslot == 0)
pslot = kp;
*ppvalue = pdict->values.value.refs + (pslot - kbot);
return 0;
} else {
ref *kbot = pdict->keys.value.refs;
register ref *kp;
ref *pslot = 0;
int wrap = 0;
for (kp = kbot + dict_hash_mod(hash, size) + 2;;) {
--kp;
if ((etype = r_type(kp)) == ktype) { /* Fast comparison if both keys are names */
if (name_index(mem, kp) == nidx) {
*ppvalue = pdict->values.value.refs + (kp - kbot);
return 1;
}
} else if (etype == t_null) { /* Empty, deleted, or wraparound. */
/* Figure out which. */
if (kp == kbot) { /* wrap */
if (wrap++) { /* wrapped twice */
if (pslot == 0)
return_error(e_dictfull);
break;
}
kp += size + 1;
} else if (r_has_attr(kp, a_executable)) { /* Deleted entry, save the slot. */
if (pslot == 0)
pslot = kp;
} else /* key not found */
break;
} else {
if (obj_eq(mem, kp, pkey)) {
*ppvalue = pdict->values.value.refs + (kp - kbot);
return 1;
}
}
}
if (d_length(pdict) == d_maxlength(pdict))
return_error(e_dictfull);
*ppvalue = pdict->values.value.refs +
((pslot != 0 ? pslot : kp) - kbot);
return 0;
}
}
/*
* Look up a (constant) C string in a dictionary.
* Return 1 if found, <= 0 if not.
*/
int
dict_find_string(const ref * pdref, const char *kstr, ref ** ppvalue)
{
int code;
ref kname;
if ( pdref != 0 ) {
dict *pdict = pdref->value.pdict;
if ((code = name_ref(dict_mem(pdict),
(const byte *)kstr, strlen(kstr), &kname, -1)) < 0)
return code;
code = dict_find(pdref, &kname, ppvalue);
if (code == e_dictfull)
return_error(e_undefined);
return code;
}
return 0;
}
/*
* Enter a key-value pair in a dictionary.
* See idict.h for the possible return values.
*/
int
dict_put(ref * pdref /* t_dictionary */ , const ref * pkey, const ref * pvalue,
dict_stack_t *pds)
{
dict *pdict = pdref->value.pdict;
gs_ref_memory_t *mem = dict_memory(pdict);
gs_memory_t *pmem = dict_mem(pdict);
int rcode = 0;
int code;
ref *pvslot, kname;
/* Check the value. */
store_check_dest(pdref, pvalue);
top:if ((code = dict_find(pdref, pkey, &pvslot)) <= 0) { /* not found *//* Check for overflow */
uint index;
switch (code) {
case 0:
break;
case e_dictfull:
if (!pmem->gs_lib_ctx->dict_auto_expand)
return_error(e_dictfull);
code = dict_grow(pdref, pds);
if (code < 0)
return code;
goto top; /* keep things simple */
default: /* e_typecheck */
return code;
}
index = pvslot - pdict->values.value.refs;
/* If the key is a string, convert it to a name. */
if (r_has_type(pkey, t_string)) {
int code;
if (!r_has_attr(pkey, a_read))
return_error(e_invalidaccess);
code = name_from_string(pmem, pkey, &kname);
if (code < 0)
return code;
pkey = &kname;
}
if (dict_is_packed(pdict)) {
ref_packed *kp;
if (!r_has_type(pkey, t_name) ||
name_index(pmem, pkey) > packed_name_max_index
) { /* Change to unpacked representation. */
int code = dict_unpack(pdref, pds);
if (code < 0)
return code;
goto top;
}
kp = pdict->keys.value.writable_packed + index;
if (ref_must_save_in(mem, &pdict->keys)) { /* See initial comment for why it is safe */
/* not to save the change if the keys */
/* array itself is new. */
ref_do_save_in(mem, &pdict->keys, kp, "dict_put(key)");
}
*kp = pt_tag(pt_literal_name) + name_index(pmem, pkey);
} else {
ref *kp = pdict->keys.value.refs + index;
if_debug2('d', "[d]0x%lx: fill key at 0x%lx\n",
(ulong) pdict, (ulong) kp);
store_check_dest(pdref, pkey);
ref_assign_old_in(mem, &pdict->keys, kp, pkey,
"dict_put(key)"); /* set key of pair */
}
ref_save_in(mem, pdref, &pdict->count, "dict_put(count)");
pdict->count.value.intval++;
/* If the key is a name, update its 1-element cache. */
if (r_has_type(pkey, t_name)) {
name *pname = pkey->value.pname;
if (pname->pvalue == pv_no_defn &&
CAN_SET_PVALUE_CACHE(pds, pdref, mem)
) { /* Set the cache. */
if_debug0('d', "[d]set cache\n");
pname->pvalue = pvslot;
} else { /* The cache can't be used. */
if_debug0('d', "[d]no cache\n");
pname->pvalue = pv_other;
}
}
rcode = 1;
}
if_debug8('d', "[d]0x%lx: put key 0x%lx 0x%lx\n value at 0x%lx: old 0x%lx 0x%lx, new 0x%lx 0x%lx\n",
(ulong) pdref->value.pdict,
((const ulong *)pkey)[0], ((const ulong *)pkey)[1],
(ulong) pvslot,
((const ulong *)pvslot)[0], ((const ulong *)pvslot)[1],
((const ulong *)pvalue)[0], ((const ulong *)pvalue)[1]);
ref_assign_old_in(mem, &pdref->value.pdict->values, pvslot, pvalue,
"dict_put(value)");
return rcode;
}
/*
* Enter a key-value pair where the key is a (constant) C string.
*/
int
dict_put_string(ref * pdref, const char *kstr, const ref * pvalue,
dict_stack_t *pds)
{
int code;
ref kname;
dict *pdict = pdref->value.pdict;
if ((code = name_ref(dict_mem(pdict),
(const byte *)kstr, strlen(kstr), &kname, 0)) < 0)
return code;
return dict_put(pdref, &kname, pvalue, pds);
}
/* Remove an element from a dictionary. */
int
dict_undef(ref * pdref, const ref * pkey, dict_stack_t *pds)
{
gs_ref_memory_t *mem;
ref *pvslot;
dict *pdict;
uint index;
int code = dict_find(pdref, pkey, &pvslot);
switch (code) {
case 0:
case e_dictfull:
return_error(e_undefined);
case 1:
break;
default: /* other error */
return code;
}
/* Remove the entry from the dictionary. */
pdict = pdref->value.pdict;
index = pvslot - pdict->values.value.refs;
mem = dict_memory(pdict);
if (dict_is_packed(pdict)) {
ref_packed *pkp = pdict->keys.value.writable_packed + index;
bool must_save = ref_must_save_in(mem, &pdict->keys);
if_debug3('d', "[d]0x%lx: removing key at 0%lx: 0x%x\n",
(ulong)pdict, (ulong)pkp, (uint)*pkp);
/* See the initial comment for why it is safe not to save */
/* the change if the keys array itself is new. */
if (must_save)
ref_do_save_in(mem, &pdict->keys, pkp, "dict_undef(key)");
/*
* Accumulating deleted entries slows down lookup.
* Detect the easy case where we can use an empty entry
* rather than a deleted one, namely, when the next entry
* in the probe order is empty.
*/
if (pkp[-1] == packed_key_empty) {
/*
* In this case we can replace any preceding deleted keys with
* empty ones as well.
*/
uint end = nslots(pdict);
*pkp = packed_key_empty;
if (must_save) {
while (++index < end && *++pkp == packed_key_deleted) {
ref_do_save_in(mem, &pdict->keys, pkp, "dict_undef(key)");
*pkp = packed_key_empty;
}
} else {
while (++index < end && *++pkp == packed_key_deleted)
*pkp = packed_key_empty;
}
} else
*pkp = packed_key_deleted;
} else { /* not packed */
ref *kp = pdict->keys.value.refs + index;
if_debug4('d', "[d]0x%lx: removing key at 0%lx: 0x%lx 0x%lx\n",
(ulong)pdict, (ulong)kp, ((ulong *)kp)[0], ((ulong *)kp)[1]);
make_null_old_in(mem, &pdict->keys, kp, "dict_undef(key)");
/*
* Accumulating deleted entries slows down lookup.
* Detect the easy case where we can use an empty entry
* rather than a deleted one, namely, when the next entry
* in the probe order is empty.
*/
if (!r_has_type(kp - 1, t_null) || /* full entry */
r_has_attr(kp - 1, a_executable) /* deleted or wraparound */
)
r_set_attrs(kp, a_executable); /* mark as deleted */
}
ref_save_in(mem, pdref, &pdict->count, "dict_undef(count)");
pdict->count.value.intval--;
/* If the key is a name, update its 1-element cache. */
if (r_has_type(pkey, t_name)) {
name *pname = pkey->value.pname;
if (pv_valid(pname->pvalue)) {
#ifdef DEBUG
/* Check the the cache is correct. */
if (!(pds && dstack_dict_is_permanent(pds, pdref)))
lprintf1("dict_undef: cached name value pointer 0x%lx is incorrect!\n",
(ulong) pname->pvalue);
#endif
/* Clear the cache */
pname->pvalue = pv_no_defn;
}
}
make_null_old_in(mem, &pdict->values, pvslot, "dict_undef(value)");
return 0;
}
/* Return the number of elements in a dictionary. */
uint
dict_length(const ref * pdref /* t_dictionary */ )
{
return d_length(pdref->value.pdict);
}
/* Return the capacity of a dictionary. */
uint
dict_maxlength(const ref * pdref /* t_dictionary */ )
{
return d_maxlength(pdref->value.pdict);
}
/* Return the maximum index of a slot within a dictionary. */
uint
dict_max_index(const ref * pdref /* t_dictionary */ )
{
return npairs(pdref->value.pdict) - 1;
}
/*
* Copy one dictionary into another.
* If COPY_NEW_ONLY is set, only copy entries whose keys
* aren't already present in the destination.
* If COPY_FOR_RESIZE is set, reset any valid name cache entries to
* pv_no_defn before doing the dict_put.
*/
#define COPY_NEW_ONLY 1
#define COPY_FOR_RESIZE 2
static int
dict_copy_elements(const ref * pdrfrom /* t_dictionary */ ,
ref * pdrto /* t_dictionary */ , int options,
dict_stack_t *pds)
{
int space = r_space(pdrto);
int index;
ref elt[2];
ref *pvslot;
int code;
if (space != avm_max) {
/* Do the store check before starting the copy. */
index = dict_first(pdrfrom);
while ((index = dict_next(pdrfrom, index, elt)) >= 0)
if (!(options & COPY_NEW_ONLY) ||
dict_find(pdrto, &elt[0], &pvslot) <= 0
) {
store_check_space(space, &elt[0]);
store_check_space(space, &elt[1]);
}
}
/* Now copy the contents. */
index = dict_first(pdrfrom);
while ((index = dict_next(pdrfrom, index, elt)) >= 0) {
ref *pvalue = pv_no_defn;
if ((options & COPY_NEW_ONLY) &&
dict_find(pdrto, &elt[0], &pvslot) > 0
)
continue;
if ((options & COPY_FOR_RESIZE) &&
r_has_type(&elt[0], t_name) &&
(pvalue = elt[0].value.pname->pvalue, pv_valid(pvalue))
)
elt[0].value.pname->pvalue = pv_no_defn;
if ((code = dict_put(pdrto, &elt[0], &elt[1], pds)) < 0) {
/*
* If COPY_FOR_RESIZE is set, the dict_put isn't supposed to
* be able to fail, but we don't want to depend on this.
*/
if (pvalue != pv_no_defn)
elt[0].value.pname->pvalue = pvalue;
return code;
}
}
return 0;
}
int
dict_copy_entries(const ref *pdrfrom, ref *pdrto, bool new_only,
dict_stack_t *pds)
{
return dict_copy_elements(pdrfrom, pdrto, (new_only ? COPY_NEW_ONLY : 0),
pds);
}
/* Resize a dictionary. */
int
dict_resize(ref * pdref, uint new_size, dict_stack_t *pds)
{
dict *pdict = pdref->value.pdict;
gs_ref_memory_t *mem = dict_memory(pdict);
uint new_mask = imemory_new_mask(mem);
ushort orig_attrs = r_type_attrs(&pdict->values) & (a_all | a_executable);
dict dnew;
ref drto;
int code;
if (new_size < d_length(pdict)) {
if (!mem->gs_lib_ctx->dict_auto_expand)
return_error(e_dictfull);
new_size = d_length(pdict);
}
make_tav(&drto, t_dictionary, r_space(pdref) | a_all | new_mask,
pdict, &dnew);
dnew.memory = pdict->memory;
if ((code = dict_create_contents(new_size, &drto, dict_is_packed(pdict))) < 0)
return code;
/*
* We must suppress the store check, in case we are expanding
* systemdict or another global dictionary that is allowed
* to reference local objects.
*/
r_set_space(&drto, avm_local);
/*
* If we are expanding a permanent dictionary, we must make sure that
* dict_put doesn't think this is a second definition for any
* single-definition names. This in turn requires that
* dstack_dict_is_permanent must be true for the second ("to")
* argument of dict_copy_elements, which requires temporarily
* setting *pdref = drto.
*/
if (CAN_SET_PVALUE_CACHE(pds, pdref, mem)) {
ref drfrom;
drfrom = *pdref;
*pdref = drto;
dict_copy_elements(&drfrom, pdref, COPY_FOR_RESIZE, pds);
*pdref = drfrom;
} else {
dict_copy_elements(pdref, &drto, 0, pds);
}
/* Save or free the old dictionary. */
if (ref_must_save_in(mem, &pdict->values))
ref_do_save_in(mem, pdref, &pdict->values, "dict_resize(values)");
else
gs_free_ref_array(mem, &pdict->values, "dict_resize(old values)");
if (ref_must_save_in(mem, &pdict->keys))
ref_do_save_in(mem, pdref, &pdict->keys, "dict_resize(keys)");
else
gs_free_ref_array(mem, &pdict->keys, "dict_resize(old keys)");
ref_assign(&pdict->keys, &dnew.keys);
ref_assign(&pdict->values, &dnew.values);
r_store_attrs(&pdict->values, a_all | a_executable, orig_attrs);
ref_save_in(dict_memory(pdict), pdref, &pdict->maxlength,
"dict_resize(maxlength)");
d_set_maxlength(pdict, new_size);
if (pds)
dstack_set_top(pds); /* just in case this is the top dict */
return 0;
}
/* Grow a dictionary for dict_put. */
int
dict_grow(ref * pdref, dict_stack_t *pds)
{
dict *pdict = pdref->value.pdict;
/* We might have maxlength < npairs, if */
/* dict_round_size increased the size. */
ulong new_size = (ulong) d_maxlength(pdict);
/* Adobe does this */
if (new_size < 20)
new_size += 10;
else if (new_size < 200)
new_size *= 2;
else
new_size += new_size / 2;
#if arch_sizeof_int < arch_sizeof_long
if (new_size > max_uint)
new_size = max_uint;
#endif
if (new_size > npairs(pdict)) {
int code = dict_resize(pdref, (uint) new_size, pds);
if (code >= 0)
return code;
/* new_size was too big. */
if (npairs(pdict) < dict_max_size) {
code = dict_resize(pdref, dict_max_size, pds);
if (code >= 0)
return code;
}
if (npairs(pdict) == d_maxlength(pdict)) { /* Can't do it. */
return code;
}
/* We can't grow to new_size, but we can grow to npairs. */
new_size = npairs(pdict);
}
/* maxlength < npairs, we can grow in place */
ref_save_in(dict_memory(pdict), pdref, &pdict->maxlength,
"dict_put(maxlength)");
d_set_maxlength(pdict, new_size);
return 0;
}
/* Prepare to enumerate a dictionary. */
int
dict_first(const ref * pdref)
{
return (int)nslots(pdref->value.pdict);
}
/* Enumerate the next element of a dictionary. */
int
dict_next(const ref * pdref, int index, ref * eltp /* ref eltp[2] */ )
{
dict *pdict = pdref->value.pdict;
ref *vp = pdict->values.value.refs + index;
while (vp--, --index >= 0) {
array_get(dict_mem(pdict), &pdict->keys, (long)index, eltp);
/* Make sure this is a valid entry. */
if (r_has_type(eltp, t_name) ||
(!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
) {
eltp[1] = *vp;
if_debug6('d', "[d]0x%lx: index %d: %lx %lx, %lx %lx\n",
(ulong) pdict, index,
((ulong *) eltp)[0], ((ulong *) eltp)[1],
((ulong *) vp)[0], ((ulong *) vp)[1]);
return index;
}
}
return -1; /* no more elements */
}
/* Return the index of a value within a dictionary. */
int
dict_value_index(const ref * pdref, const ref * pvalue)
{
return (int)(pvalue - pdref->value.pdict->values.value.refs - 1);
}
/* Return the entry at a given index within a dictionary. */
/* If the index designates an unoccupied entry, return e_undefined. */
int
dict_index_entry(const ref * pdref, int index, ref * eltp /* ref eltp[2] */ )
{
const dict *pdict = pdref->value.pdict;
array_get(dict_mem(pdict), &pdict->keys, (long)(index + 1), eltp);
if (r_has_type(eltp, t_name) ||
(!dict_is_packed(pdict) && !r_has_type(eltp, t_null))
) {
eltp[1] = pdict->values.value.refs[index + 1];
return 0;
}
return e_undefined;
}
|