1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Utilities for Ghostscript interpreter */
#include "math_.h" /* for fabs */
#include "memory_.h"
#include "string_.h"
#include "ghost.h"
#include "ierrors.h"
#include "gsccode.h" /* for gxfont.h */
#include "gsmatrix.h"
#include "gsutil.h"
#include "gxfont.h"
#include "strimpl.h"
#include "sstring.h"
#include "idict.h"
#include "ifont.h" /* for FontID equality */
#include "imemory.h"
#include "iname.h"
#include "ipacked.h" /* for array_get */
#include "iutil.h" /* for checking prototypes */
#include "ivmspace.h"
#include "oper.h"
#include "store.h"
/*
* By design choice, none of the procedures in this file take a context
* pointer (i_ctx_p). Since a number of them require a gs_dual_memory_t
* for store checking or save bookkeeping, we need to #undef idmemory.
*/
#undef idmemory
/* ------ Object utilities ------ */
/* Define the table of ref type properties. */
const byte ref_type_properties[] = {
REF_TYPE_PROPERTIES_DATA
};
/* Copy refs from one place to another. */
int
refcpy_to_old(ref * aref, uint index, const ref * from,
uint size, gs_dual_memory_t *idmemory, client_name_t cname)
{
ref *to = aref->value.refs + index;
int code = refs_check_space(from, size, r_space(aref));
if (code < 0)
return code;
/* We have to worry about aliasing.... */
if (to <= from || from + size <= to)
while (size--)
ref_assign_old(aref, to, from, cname), to++, from++;
else
for (from += size, to += size; size--;)
from--, to--, ref_assign_old(aref, to, from, cname);
return 0;
}
void
refcpy_to_new(ref * to, const ref * from, uint size,
gs_dual_memory_t *idmemory)
{
while (size--)
ref_assign_new(to, from), to++, from++;
}
/* Fill a new object with nulls. */
void
refset_null_new(ref * to, uint size, uint new_mask)
{
for (; size--; ++to)
make_ta(to, t_null, new_mask);
}
/* Compare two objects for equality. */
static bool fid_eq(const gs_memory_t *mem, const gs_font *pfont1,
const gs_font *pfont2);
bool
obj_eq(const gs_memory_t *mem, const ref * pref1, const ref * pref2)
{
ref nref;
if (r_type(pref1) != r_type(pref2)) {
/*
* Only a few cases need be considered here:
* integer/real (and vice versa), name/string (and vice versa),
* arrays, and extended operators.
*/
switch (r_type(pref1)) {
case t_integer:
return (r_has_type(pref2, t_real) &&
pref2->value.realval == pref1->value.intval);
case t_real:
return (r_has_type(pref2, t_integer) &&
pref2->value.intval == pref1->value.realval);
case t_name:
if (!r_has_type(pref2, t_string))
return false;
name_string_ref(mem, pref1, &nref);
pref1 = &nref;
break;
case t_string:
if (!r_has_type(pref2, t_name))
return false;
name_string_ref(mem, pref2, &nref);
pref2 = &nref;
break;
/*
* Differing implementations of packedarray can be eq,
* if the length is zero, but an array is never eq to a
* packedarray.
*/
case t_mixedarray:
case t_shortarray:
/*
* Since r_type(pref1) is one of the above, this is a
* clever fast check for r_type(pref2) being the other.
*/
return ((int)r_type(pref1) + (int)r_type(pref2) ==
t_mixedarray + t_shortarray) &&
r_size(pref1) == 0 && r_size(pref2) == 0;
default:
if (r_btype(pref1) != r_btype(pref2))
return false;
}
}
/*
* Now do a type-dependent comparison. This would be very simple if we
* always filled in all the bytes of a ref, but we currently don't.
*/
switch (r_btype(pref1)) {
case t_array:
return ((pref1->value.refs == pref2->value.refs ||
r_size(pref1) == 0) &&
r_size(pref1) == r_size(pref2));
case t_mixedarray:
case t_shortarray:
return ((pref1->value.packed == pref2->value.packed ||
r_size(pref1) == 0) &&
r_size(pref1) == r_size(pref2));
case t_boolean:
return (pref1->value.boolval == pref2->value.boolval);
case t_dictionary:
return (pref1->value.pdict == pref2->value.pdict);
case t_file:
return (pref1->value.pfile == pref2->value.pfile &&
r_size(pref1) == r_size(pref2));
case t_integer:
return (pref1->value.intval == pref2->value.intval);
case t_mark:
case t_null:
return true;
case t_name:
return (pref1->value.pname == pref2->value.pname);
case t_oparray:
case t_operator:
return (op_index(pref1) == op_index(pref2));
case t_real:
return (pref1->value.realval == pref2->value.realval);
case t_save:
return (pref2->value.saveid == pref1->value.saveid);
case t_string:
return (!bytes_compare(pref1->value.bytes, r_size(pref1),
pref2->value.bytes, r_size(pref2)));
case t_device:
return (pref1->value.pdevice == pref2->value.pdevice);
case t_struct:
case t_astruct:
return (pref1->value.pstruct == pref2->value.pstruct);
case t_fontID:
/* This is complicated enough to deserve a separate procedure. */
return fid_eq(mem, r_ptr(pref1, gs_font), r_ptr(pref2, gs_font));
}
return false; /* shouldn't happen! */
}
/*
* Compare two FontIDs for equality. In the Adobe implementations,
* different scalings of a font have "equal" FIDs, so we do the same.
* Furthermore, in more recent Adobe interpreters, different *copies* of a
* font have equal FIDs -- at least for Type 1 and Type 3 fonts -- as long
* as the "contents" of the font are the same. We aren't sure that the
* following matches the Adobe algorithm, but it's close enough to pass the
* Genoa CET.
*/
/* (This is a single-use procedure, for clearer code.) */
static bool
fid_eq(const gs_memory_t *mem, const gs_font *pfont1, const gs_font *pfont2)
{
while (pfont1->base != pfont1)
pfont1 = pfont1->base;
while (pfont2->base != pfont2)
pfont2 = pfont2->base;
if (pfont1 == pfont2)
return true;
switch (pfont1->FontType) {
case 1: case 3:
if (pfont1->FontType == pfont2->FontType)
break;
default:
return false;
}
/* The following, while peculiar, appears to match CPSI. */
{
const gs_uid *puid1 = &((const gs_font_base *)pfont1)->UID;
const gs_uid *puid2 = &((const gs_font_base *)pfont2)->UID;
if (uid_is_UniqueID(puid1) || uid_is_UniqueID(puid2) ||
((uid_is_XUID(puid1) || uid_is_XUID(puid2)) &&
!uid_equal(puid1, puid2)))
return false;
}
{
const font_data *pfd1 = (const font_data *)pfont1->client_data;
const font_data *pfd2 = (const font_data *)pfont2->client_data;
if (!(obj_eq(mem, &pfd1->BuildChar, &pfd2->BuildChar) &&
obj_eq(mem, &pfd1->BuildGlyph, &pfd2->BuildGlyph) &&
obj_eq(mem, &pfd1->Encoding, &pfd2->Encoding) &&
obj_eq(mem, &pfd1->CharStrings, &pfd2->CharStrings)))
return false;
if (pfont1->FontType == 1) {
ref *ppd1, *ppd2;
if (dict_find_string(&pfd1->dict, "Private", &ppd1) > 0 &&
dict_find_string(&pfd2->dict, "Private", &ppd2) > 0 &&
!obj_eq(mem, ppd1, ppd2))
return false;
}
}
return true;
}
/* Compare two objects for identity. */
bool
obj_ident_eq(const gs_memory_t *mem, const ref * pref1, const ref * pref2)
{
if (r_type(pref1) != r_type(pref2))
return false;
if (r_has_type(pref1, t_string))
return (pref1->value.bytes == pref2->value.bytes &&
r_size(pref1) == r_size(pref2));
return obj_eq(mem, pref1, pref2);
}
/*
* Set *pchars and *plen to point to the data of a name or string, and
* return 0. If the object isn't a name or string, return e_typecheck.
* If the object is a string without read access, return e_invalidaccess.
*/
int
obj_string_data(const gs_memory_t *mem, const ref *op, const byte **pchars, uint *plen)
{
switch (r_type(op)) {
case t_name: {
ref nref;
name_string_ref(mem, op, &nref);
*pchars = nref.value.bytes;
*plen = r_size(&nref);
return 0;
}
case t_string:
check_read(*op);
*pchars = op->value.bytes;
*plen = r_size(op);
return 0;
default:
return_error(e_typecheck);
}
}
/*
* Create a printable representation of an object, a la cvs and =
* (full_print = 0), == (full_print = 1), or === (full_print = 2). Return 0
* if OK, 1 if the destination wasn't large enough, e_invalidaccess if the
* object's contents weren't readable. If the return value is 0 or 1,
* *prlen contains the amount of data returned. start_pos is the starting
* output position -- the first start_pos bytes of output are discarded.
*
* When (restart = false) return e_rangecheck the when destination wasn't
* large enough without modifying the destination. This is needed for
* compatibility with Adobe implementation of cvs and cvrs, which don't
* change the destination string on failure.
*
* The mem argument is only used for getting the type of structures,
* not for allocating; if it is NULL and full_print != 0, structures will
* print as --(struct)--.
*
* This rather complex API is needed so that a client can call obj_cvp
* repeatedly to print on a stream, which may require suspending at any
* point to handle stream callouts.
*/
static void ensure_dot(char *);
int
obj_cvp(const ref * op, byte * str, uint len, uint * prlen,
int full_print, uint start_pos, const gs_memory_t *mem, bool restart)
{
char buf[50]; /* big enough for any float, double, or struct name */
const byte *data = (const byte *)buf;
uint size;
int code;
ref nref;
if (full_print) {
static const char * const type_strings[] = { REF_TYPE_PRINT_STRINGS };
switch (r_btype(op)) {
case t_boolean:
case t_integer:
break;
case t_real: {
/*
* To get fully accurate output results for IEEE
* single-precision floats (24 bits of mantissa), the ANSI %g
* default of 6 digits is not enough; 9 are needed.
* Unfortunately, using %.9g for floats (as opposed to doubles)
* produces unfortunate artifacts such as 0.01 5 mul printing as
* 0.049999997. Therefore, we print using %g, and if the result
* isn't accurate enough, print again using %.9g.
* Unfortunately, a few PostScript programs 'know' that the
* printed representation of floats fits into 6 digits (e.g.,
* with cvs). We resolve this by letting cvs, cvrs, and = do
* what the Adobe interpreters appear to do (use %g), and only
* produce accurate output for ==, for which there is no
* analogue of cvs. What a hack!
*/
float value = op->value.realval;
float scanned;
sprintf(buf, "%g", value);
sscanf(buf, "%f", &scanned);
if (scanned != value)
sprintf(buf, "%.9g", value);
ensure_dot(buf);
goto rs;
}
case t_operator:
case t_oparray:
code = obj_cvp(op, (byte *)buf + 2, sizeof(buf) - 4, &size, 0, 0, mem, restart);
if (code < 0)
return code;
buf[0] = buf[1] = buf[size + 2] = buf[size + 3] = '-';
size += 4;
goto nl;
case t_name:
if (r_has_attr(op, a_executable)) {
code = obj_string_data(mem, op, &data, &size);
if (code < 0)
return code;
goto nl;
}
if (start_pos > 0)
return obj_cvp(op, str, len, prlen, 0, start_pos - 1, mem, restart);
if (len < 1)
return_error(e_rangecheck);
code = obj_cvp(op, str + 1, len - 1, prlen, 0, 0, mem, restart);
if (code < 0)
return code;
str[0] = '/';
++*prlen;
return code;
case t_null:
data = (const byte *)"null";
goto rs;
case t_string:
if (!r_has_attr(op, a_read))
goto other;
size = r_size(op);
{
bool truncate = (full_print == 1 && size > CVP_MAX_STRING);
stream_cursor_read r;
stream_cursor_write w;
uint skip;
byte *wstr;
uint len1;
int status = 1;
if (start_pos == 0) {
if (len < 1)
return_error(e_rangecheck);
str[0] = '(';
skip = 0;
wstr = str + 1;
} else {
skip = start_pos - 1;
wstr = str;
}
len1 = len + (str - wstr);
r.ptr = op->value.const_bytes - 1;
r.limit = r.ptr + (truncate ? CVP_MAX_STRING : size);
while (skip && status == 1) {
uint written;
w.ptr = (byte *)buf - 1;
w.limit = w.ptr + min(skip + len1, sizeof(buf));
status = s_PSSE_template.process(NULL, &r, &w, false);
written = w.ptr - ((byte *)buf - 1);
if (written > skip) {
written -= skip;
memcpy(wstr, buf + skip, written);
wstr += written;
skip = 0;
break;
}
skip -= written;
}
/*
* We can reach here with status == 0 (and skip != 0) if
* start_pos lies within the trailing ")" or "...)".
*/
if (status == 0) {
#ifdef DEBUG
if (skip > (truncate ? 4 : 1)) {
return_error(e_Fatal);
}
#endif
}
w.ptr = wstr - 1;
w.limit = str - 1 + len;
if (status == 1)
status = s_PSSE_template.process(NULL, &r, &w, false);
*prlen = w.ptr - (str - 1);
if (status != 0)
return 1;
if (truncate) {
if (len - *prlen < 4 - skip)
return 1;
memcpy(w.ptr + 1, "...)" + skip, 4 - skip);
*prlen += 4 - skip;
} else {
if (len - *prlen < 1 - skip)
return 1;
memcpy(w.ptr + 1, ")" + skip, 1 - skip);
*prlen += 1 - skip;
}
}
return 0;
case t_astruct:
case t_struct:
if (r_is_foreign(op)) {
/* gs_object_type may not work. */
data = (const byte *)"-foreign-struct-";
goto rs;
}
if (!mem) {
data = (const byte *)"-(struct)-";
goto rs;
}
data = (const byte *)
gs_struct_type_name_string(
gs_object_type(mem,
(const obj_header_t *)op->value.pstruct));
size = strlen((const char *)data);
if (size > 4 && !memcmp(data + size - 4, "type", 4))
size -= 4;
if (size > sizeof(buf) - 2)
return_error(e_rangecheck);
buf[0] = '-';
memcpy(buf + 1, data, size);
buf[size + 1] = '-';
size += 2;
data = (const byte *)buf;
goto nl;
default:
other:
{
int rtype = r_btype(op);
if (rtype >= countof(type_strings))
return_error(e_rangecheck);
data = (const byte *)type_strings[rtype];
if (data == 0)
return_error(e_rangecheck);
}
goto rs;
}
}
/* full_print = 0 */
switch (r_btype(op)) {
case t_boolean:
data = (const byte *)(op->value.boolval ? "true" : "false");
break;
case t_integer:
sprintf(buf, "%d", op->value.intval);
break;
case t_string:
check_read(*op);
/* falls through */
case t_name:
code = obj_string_data(mem, op, &data, &size);
if (code < 0)
return code;
goto nl;
case t_oparray: {
uint index = op_index(op);
const op_array_table *opt = get_op_array(mem, index);
name_index_ref(mem, opt->nx_table[index - opt->base_index], &nref);
name_string_ref(mem, &nref, &nref);
code = obj_string_data(mem, &nref, &data, &size);
if (code < 0)
return code;
goto nl;
}
case t_operator: {
/* Recover the name from the initialization table. */
uint index = op_index(op);
/*
* Check the validity of the index. (An out-of-bounds index
* is only possible when examining an invalid object using
* the debugger.)
*/
if (index > 0 && index < op_def_count) {
data = (const byte *)(op_index_def(index)->oname + 1);
break;
}
/* Internal operator, no name. */
sprintf(buf, "@0x%lx", (ulong) op->value.opproc);
break;
}
case t_real:
/*
* The value 0.0001 is a boundary case that the Adobe interpreters
* print in f-format but at least some gs versions print in
* e-format, presumably because of differences in the underlying C
* library implementation. Work around this here.
*/
if (op->value.realval == (float)0.0001) {
strcpy(buf, "0.0001");
} else {
sprintf(buf, "%g", op->value.realval);
}
ensure_dot(buf);
break;
default:
data = (const byte *)"--nostringval--";
}
rs: size = strlen((const char *)data);
nl: if (size < start_pos)
return_error(e_rangecheck);
if (!restart && size > len)
return_error(e_rangecheck);
size -= start_pos;
*prlen = min(size, len);
memmove(str, data + start_pos, *prlen);
return (size > len);
}
/*
* Make sure the converted form of a real number has at least one of an 'e'
* or a decimal point, so it won't be mistaken for an integer.
* Re-format the exponent to satisfy Genoa CET test.
*/
static void
ensure_dot(char *buf)
{
char *pe = strchr(buf, 'e');
if (pe) {
int i;
sscanf(pe + 1, "%d", &i);
/* MSVC .net 2005 express doesn't support "%+02d" */
if (i >= 0)
sprintf(pe + 1, "+%02d", i);
else
sprintf(pe + 1, "-%02d", -i);
} else if (strchr(buf, '.') == NULL) {
strcat(buf, ".0");
}
}
/*
* Create a printable representation of an object, a la cvs and =. Return 0
* if OK, e_rangecheck if the destination wasn't large enough,
* e_invalidaccess if the object's contents weren't readable. If pchars !=
* NULL, then if the object was a string or name, store a pointer to its
* characters in *pchars even if it was too large; otherwise, set *pchars =
* str. In any case, store the length in *prlen.
*/
int
obj_cvs(const gs_memory_t *mem, const ref * op, byte * str, uint len, uint * prlen,
const byte ** pchars)
{
int code = obj_cvp(op, str, len, prlen, 0, 0, mem, false); /* NB: NULL memptr */
if (code == 1) {
if (pchars)
obj_string_data(mem, op, pchars, prlen);
return gs_note_error(e_rangecheck);
} else {
if (pchars)
*pchars = str;
return code;
}
}
/* Find the index of an operator that doesn't have one stored in it. */
ushort
op_find_index(const ref * pref /* t_operator */ )
{
op_proc_t proc = real_opproc(pref);
const op_def *const *opp = op_defs_all;
const op_def *const *opend = opp + (op_def_count / OP_DEFS_MAX_SIZE);
for (; opp < opend; ++opp) {
const op_def *def = *opp;
for (; def->oname != 0; ++def)
if (def->proc == proc)
return (opp - op_defs_all) * OP_DEFS_MAX_SIZE + (def - *opp);
}
/* Lookup failed! This isn't possible.... */
return 0;
}
/*
* Convert an operator index to an operator or oparray ref.
* This is only used for debugging and for 'get' from packed arrays,
* so it doesn't have to be very fast.
*/
void
op_index_ref(const gs_memory_t *mem, uint index, ref * pref)
{
const op_array_table *opt;
if (op_index_is_operator(index)) {
make_oper(pref, index, op_index_proc(index));
return;
}
opt = get_op_array(mem, index);
make_tasv(pref, t_oparray, opt->attrs, index,
const_refs, (opt->table.value.const_refs
+ index - opt->base_index));
}
/* Get an element from an array of some kind. */
/* This is also used to index into Encoding vectors, */
/* the error name vector, etc. */
int
array_get(const gs_memory_t *mem, const ref * aref, long index_long, ref * pref)
{
if ((ulong)index_long >= r_size(aref))
return_error(e_rangecheck);
switch (r_type(aref)) {
case t_array:
{
const ref *pvalue = aref->value.refs + index_long;
ref_assign(pref, pvalue);
}
break;
case t_mixedarray:
{
const ref_packed *packed = aref->value.packed;
uint index = (uint)index_long;
for (; index--;)
packed = packed_next(packed);
packed_get(mem, packed, pref);
}
break;
case t_shortarray:
{
const ref_packed *packed = aref->value.packed + index_long;
packed_get(mem, packed, pref);
}
break;
default:
return_error(e_typecheck);
}
return 0;
}
/* Get an element from a packed array. */
/* (This works for ordinary arrays too.) */
/* Source and destination are allowed to overlap if the source is packed, */
/* or if they are identical. */
void
packed_get(const gs_memory_t *mem, const ref_packed * packed, ref * pref)
{
const ref_packed elt = *packed;
uint value = elt & packed_value_mask;
switch (elt >> r_packed_type_shift) {
default: /* (shouldn't happen) */
make_null(pref);
break;
case pt_executable_operator:
op_index_ref(mem, value, pref);
break;
case pt_integer:
make_int(pref, (int)value + packed_min_intval);
break;
case pt_literal_name:
name_index_ref(mem, value, pref);
break;
case pt_executable_name:
name_index_ref(mem, value, pref);
r_set_attrs(pref, a_executable);
break;
case pt_full_ref:
case pt_full_ref + 1:
ref_assign(pref, (const ref *)packed);
}
}
/* Check to make sure an interval contains no object references */
/* to a space younger than a given one. */
/* Return 0 or e_invalidaccess. */
int
refs_check_space(const ref * bot, uint size, uint space)
{
for (; size--; bot++)
store_check_space(space, bot);
return 0;
}
/* ------ String utilities ------ */
/* Convert a C string to a Ghostscript string */
int
string_to_ref(const char *cstr, ref * pref, gs_ref_memory_t * mem,
client_name_t cname)
{
uint size = strlen(cstr);
int code = gs_alloc_string_ref(mem, pref, a_all, size, cname);
if (code < 0)
return code;
memcpy(pref->value.bytes, cstr, size);
return 0;
}
/* Convert a Ghostscript string to a C string. */
/* Return 0 iff the buffer can't be allocated. */
char *
ref_to_string(const ref * pref, gs_memory_t * mem, client_name_t cname)
{
uint size = r_size(pref);
char *str = (char *)gs_alloc_string(mem, size + 1, cname);
if (str == 0)
return 0;
memcpy(str, (const char *)pref->value.bytes, size);
str[size] = 0;
return str;
}
/* ------ Operand utilities ------ */
/* Get N numeric operands from the stack or an array. */
/* Return a bit-mask indicating which ones are integers, */
/* or a (negative) error indication. */
/* The 1-bit in the bit-mask refers to the first operand. */
/* Store float versions of the operands at pval. */
/* The stack underflow check (check for t__invalid) is harmless */
/* if the operands come from somewhere other than the stack. */
int
num_params(const ref * op, int count, double *pval)
{
int mask = 0;
pval += count;
while (--count >= 0) {
mask <<= 1;
switch (r_type(op)) {
case t_real:
*--pval = op->value.realval;
break;
case t_integer:
*--pval = op->value.intval;
mask++;
break;
case t__invalid:
return_error(e_stackunderflow);
default:
return_error(e_typecheck);
}
op--;
}
/* If count is very large, mask might overflow. */
/* In this case we clearly don't care about the value of mask. */
return (mask < 0 ? 0 : mask);
}
/* float_params doesn't bother to keep track of the mask. */
int
float_params(const ref * op, int count, float *pval)
{
for (pval += count; --count >= 0; --op)
switch (r_type(op)) {
case t_real:
*--pval = op->value.realval;
break;
case t_integer:
*--pval = (float)op->value.intval;
break;
case t__invalid:
return_error(e_stackunderflow);
default:
return_error(e_typecheck);
}
return 0;
}
/* Get N numeric parameters (as floating point numbers) from an array */
int
process_float_array(const gs_memory_t *mem, const ref * parray, int count, float * pval)
{
int code = 0, indx0 = 0;
/* we assume parray is an array of some type, of adequate length */
if (r_has_type(parray, t_array))
return float_params(parray->value.refs + count - 1, count, pval);
/* short/mixed array; convert the entries to refs */
while (count > 0 && code >= 0) {
int i, subcount;
ref ref_buff[20]; /* 20 is arbitrary */
subcount = (count > countof(ref_buff) ? countof(ref_buff) : count);
for (i = 0; i < subcount && code >= 0; i++)
code = array_get(mem, parray, (long)(i + indx0), &ref_buff[i]);
if (code >= 0)
code = float_params(ref_buff + subcount - 1, subcount, pval);
count -= subcount;
pval += subcount;
indx0 += subcount;
}
return code;
}
/* Get a single real parameter. */
/* The only possible errors are e_typecheck and e_stackunderflow. */
/* If an error is returned, the return value is not updated. */
int
real_param(const ref * op, double *pparam)
{
switch (r_type(op)) {
case t_integer:
*pparam = op->value.intval;
break;
case t_real:
*pparam = op->value.realval;
break;
case t__invalid:
return_error(e_stackunderflow);
default:
return_error(e_typecheck);
}
return 0;
}
int
float_param(const ref * op, float *pparam)
{
double dval;
int code = real_param(op, &dval);
if (code >= 0)
*pparam = (float)dval; /* can't overflow */
return code;
}
/* Get an integer parameter in a given range. */
int
int_param(const ref * op, int max_value, int *pparam)
{
check_int_leu(*op, max_value);
*pparam = (int)op->value.intval;
return 0;
}
/* Make real values on the operand stack. */
int
make_reals(ref * op, const double *pval, int count)
{
/* This should return e_limitcheck if any real is too large */
/* to fit into a float on the stack. */
for (; count--; op++, pval++)
make_real(op, *pval);
return 0;
}
int
make_floats(ref * op, const float *pval, int count)
{
/* This should return e_undefinedresult for infinities. */
for (; count--; op++, pval++)
make_real(op, *pval);
return 0;
}
/* Compute the error code when check_proc fails. */
/* Note that the client, not this procedure, uses return_error. */
/* The stack underflow check is harmless in the off-stack case. */
int
check_proc_failed(const ref * pref)
{
if (r_is_array(pref)) {
if (r_has_attr(pref, a_executable))
return e_invalidaccess;
else
return e_typecheck;
} else {
if (r_has_type(pref, t__invalid))
return e_stackunderflow;
else
return e_typecheck;
}
}
/* Compute the error code when a type check on the stack fails. */
/* Note that the client, not this procedure, uses return_error. */
int
check_type_failed(const ref * op)
{
return (r_has_type(op, t__invalid) ? e_stackunderflow : e_typecheck);
}
/* ------ Matrix utilities ------ */
/* Read a matrix operand. */
/* Return 0 if OK, error code if not. */
int
read_matrix(const gs_memory_t *mem, const ref * op, gs_matrix * pmat)
{
int code;
ref values[6];
const ref *pvalues;
switch (r_type(op)) {
case t_array:
pvalues = op->value.refs;
break;
case t_mixedarray:
case t_shortarray:
{
int i;
for (i = 0; i < 6; ++i) {
code = array_get(mem, op, (long)i, &values[i]);
if (code < 0)
return code;
}
pvalues = values;
}
break;
default:
return_op_typecheck(op);
}
check_read(*op);
if (r_size(op) != 6)
return_error(e_rangecheck);
code = float_params(pvalues + 5, 6, (float *)pmat);
return (code < 0 ? code : 0);
}
/* Write a matrix operand. */
/* Return 0 if OK, error code if not. */
int
write_matrix_in(ref * op, const gs_matrix * pmat, gs_dual_memory_t *idmemory,
gs_ref_memory_t *imem)
{
ref *aptr;
const float *pel;
int i;
check_write_type(*op, t_array);
if (r_size(op) != 6)
return_error(e_rangecheck);
aptr = op->value.refs;
pel = (const float *)pmat;
for (i = 5; i >= 0; i--, aptr++, pel++) {
if (idmemory) {
ref_save(op, aptr, "write_matrix");
make_real_new(aptr, *pel);
} else {
make_tav(aptr, t_real, imemory_new_mask(imem), realval, *pel);
}
}
return 0;
}
|