1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* CIE color operators */
#include "math_.h"
#include "memory_.h"
#include "ghost.h"
#include "oper.h"
#include "gsstruct.h"
#include "gxcspace.h" /* gscolor2.h requires gscspace.h */
#include "gscolor2.h"
#include "gscie.h"
#include "estack.h"
#include "ialloc.h"
#include "idict.h"
#include "idparam.h"
#include "igstate.h"
#include "icie.h"
#include "isave.h"
#include "ivmspace.h"
#include "store.h" /* for make_null */
#include "zcie.h"
#include "gsicc_create.h"
#include "gsicc_manage.h"
#include "gsicc_profilecache.h"
/* Prototype */
int cieicc_prepare_caches(i_ctx_t *i_ctx_p, const gs_range * domains,
const ref * procs,
cie_cache_floats * pc0, cie_cache_floats * pc1,
cie_cache_floats * pc2, cie_cache_floats * pc3,
void *container,
const gs_ref_memory_t * imem, client_name_t cname);
static int
cie_prepare_iccproc(i_ctx_t *i_ctx_p, const gs_range * domain, const ref * proc,
cie_cache_floats * pcache, void *container,
const gs_ref_memory_t * imem, client_name_t cname);
/* Empty procedures */
static const ref empty_procs[4] =
{
empty_ref_data(t_array, a_readonly | a_executable),
empty_ref_data(t_array, a_readonly | a_executable),
empty_ref_data(t_array, a_readonly | a_executable),
empty_ref_data(t_array, a_readonly | a_executable)
};
/* ------ Parameter extraction utilities ------ */
/* Get a range array parameter from a dictionary. */
/* We know that count <= 4. */
int
dict_ranges_param(const gs_memory_t *mem,
const ref * pdref, const char *kstr, int count,
gs_range * prange)
{
int code = dict_floats_param(mem, pdref, kstr, count * 2,
(float *)prange, NULL);
if (code < 0)
return code;
else if (code == 0)
memcpy(prange, Range4_default.ranges, count * sizeof(gs_range));
return 0;
}
/* Get an array of procedures from a dictionary. */
/* We know count <= countof(empty_procs). */
int
dict_proc_array_param(const gs_memory_t *mem,
const ref *pdict, const char *kstr,
uint count, ref *pparray)
{
ref *pvalue;
if (dict_find_string(pdict, kstr, &pvalue) > 0) {
uint i;
check_array_only(*pvalue);
if (r_size(pvalue) != count)
return_error(e_rangecheck);
for (i = 0; i < count; i++) {
ref proc;
array_get(mem, pvalue, (long)i, &proc);
check_proc_only(proc);
}
*pparray = *pvalue;
return 0;
} else {
make_const_array(pparray, a_readonly | avm_foreign,
count, &empty_procs[0]);
return 1;
}
}
/* Get 3 ranges from a dictionary. */
int
dict_range3_param(const gs_memory_t *mem,
const ref *pdref, const char *kstr,
gs_range3 *prange3)
{
return dict_ranges_param(mem, pdref, kstr, 3, prange3->ranges);
}
/* Get a 3x3 matrix from a dictionary. */
int
dict_matrix3_param(const gs_memory_t *mem,
const ref *pdref, const char *kstr, gs_matrix3 *pmat3)
{
/*
* We can't simply call dict_float_array_param with the matrix
* cast to a 9-element float array, because compilers may insert
* padding elements after each of the vectors. However, we can be
* confident that there is no padding within a single vector.
*/
float values[9], defaults[9];
int code;
memcpy(&defaults[0], &Matrix3_default.cu, 3 * sizeof(float));
memcpy(&defaults[3], &Matrix3_default.cv, 3 * sizeof(float));
memcpy(&defaults[6], &Matrix3_default.cw, 3 * sizeof(float));
code = dict_floats_param(mem, pdref, kstr, 9, values, defaults);
if (code < 0)
return code;
memcpy(&pmat3->cu, &values[0], 3 * sizeof(float));
memcpy(&pmat3->cv, &values[3], 3 * sizeof(float));
memcpy(&pmat3->cw, &values[6], 3 * sizeof(float));
return 0;
}
/* Get 3 procedures from a dictionary. */
int
dict_proc3_param(const gs_memory_t *mem, const ref *pdref, const char *kstr, ref proc3[3])
{
return dict_proc_array_param(mem, pdref, kstr, 3, proc3);
}
/* Get WhitePoint and BlackPoint values. */
int
cie_points_param(const gs_memory_t *mem,
const ref * pdref, gs_cie_wb * pwb)
{
int code;
if ((code = dict_floats_param(mem, pdref, "WhitePoint", 3,
(float *)&pwb->WhitePoint, NULL)) < 0 ||
(code = dict_floats_param(mem, pdref, "BlackPoint", 3,
(float *)&pwb->BlackPoint, (const float *)&BlackPoint_default)) < 0
)
return code;
if (pwb->WhitePoint.u <= 0 ||
pwb->WhitePoint.v != 1 ||
pwb->WhitePoint.w <= 0 ||
pwb->BlackPoint.u < 0 ||
pwb->BlackPoint.v < 0 ||
pwb->BlackPoint.w < 0
)
return_error(e_rangecheck);
return 0;
}
/* Process a 3- or 4-dimensional lookup table from a dictionary. */
/* The caller has set pclt->n and pclt->m. */
/* ptref is known to be a readable array of size at least n+1. */
static int cie_3d_table_param(const ref * ptable, uint count, uint nbytes,
gs_const_string * strings);
int
cie_table_param(const ref * ptref, gx_color_lookup_table * pclt,
const gs_memory_t * mem)
{
int n = pclt->n, m = pclt->m;
const ref *pta = ptref->value.const_refs;
int i;
uint nbytes;
int code;
gs_const_string *table;
for (i = 0; i < n; ++i) {
check_type_only(pta[i], t_integer);
if (pta[i].value.intval <= 1 || pta[i].value.intval > max_ushort)
return_error(e_rangecheck);
pclt->dims[i] = (int)pta[i].value.intval;
}
nbytes = m * pclt->dims[n - 2] * pclt->dims[n - 1];
if (n == 3) {
table =
gs_alloc_struct_array(mem->stable_memory, pclt->dims[0], gs_const_string,
&st_const_string_element, "cie_table_param");
if (table == 0)
return_error(e_VMerror);
code = cie_3d_table_param(pta + 3, pclt->dims[0], nbytes, table);
} else { /* n == 4 */
int d0 = pclt->dims[0], d1 = pclt->dims[1];
uint ntables = d0 * d1;
const ref *psuba;
check_read_type(pta[4], t_array);
if (r_size(pta + 4) != d0)
return_error(e_rangecheck);
table =
gs_alloc_struct_array(mem->stable_memory, ntables, gs_const_string,
&st_const_string_element, "cie_table_param");
if (table == 0)
return_error(e_VMerror);
psuba = pta[4].value.const_refs;
/*
* We know that d0 > 0, so code will always be set in the loop:
* we initialize code to 0 here solely to pacify stupid compilers.
*/
for (code = 0, i = 0; i < d0; ++i) {
code = cie_3d_table_param(psuba + i, d1, nbytes, table + d1 * i);
if (code < 0)
break;
}
}
if (code < 0) {
gs_free_object(mem, table, "cie_table_param");
return code;
}
pclt->table = table;
return 0;
}
static int
cie_3d_table_param(const ref * ptable, uint count, uint nbytes,
gs_const_string * strings)
{
const ref *rstrings;
uint i;
check_read_type(*ptable, t_array);
if (r_size(ptable) != count)
return_error(e_rangecheck);
rstrings = ptable->value.const_refs;
for (i = 0; i < count; ++i) {
const ref *const prt2 = rstrings + i;
check_read_type(*prt2, t_string);
if (r_size(prt2) != nbytes)
return_error(e_rangecheck);
strings[i].data = prt2->value.const_bytes;
strings[i].size = nbytes;
}
return 0;
}
/* ------ CIE setcolorspace ------ */
/* Common code for the CIEBased* cases of setcolorspace. */
static int
cie_lmnp_param(const gs_memory_t *mem, const ref * pdref, gs_cie_common * pcie,
ref_cie_procs * pcprocs, bool *has_lmn_procs)
{
int code;
if ((code = dict_range3_param(mem, pdref, "RangeLMN", &pcie->RangeLMN)) < 0 ||
(code = dict_matrix3_param(mem, pdref, "MatrixLMN", &pcie->MatrixLMN)) < 0 ||
(code = cie_points_param(mem, pdref, &pcie->points)) < 0
)
return code;
code = dict_proc3_param(mem, pdref, "DecodeLMN", &pcprocs->DecodeLMN);
if (code < 0)
return code;
*has_lmn_procs = !code; /* Need to know for efficient creation of ICC profile */
pcie->DecodeLMN = DecodeLMN_default;
return 0;
}
/* Get objects associated with cie color space */
static int
cie_a_param(const gs_memory_t *mem, const ref * pdref, gs_cie_a * pcie,
ref_cie_procs * pcprocs, bool *has_a_procs, bool *has_lmn_procs)
{
int code;
code = dict_floats_param(mem, pdref, "RangeA", 2, (float *)&pcie->RangeA,
(const float *)&RangeA_default);
if (code < 0)
return code;
code = dict_floats_param(mem, pdref, "MatrixA", 3, (float *)&pcie->MatrixA,
(const float *)&MatrixA_default);
if (code < 0)
return code;
code = cie_lmnp_param(mem, pdref, &pcie->common, pcprocs, has_lmn_procs);
if (code < 0)
return code;
if ((code = dict_proc_param(pdref, "DecodeA", &(pcprocs->Decode.A), true)) < 0)
return code;
*has_a_procs = !code;
return 0;
}
/* Common code for the CIEBasedABC/DEF[G] cases of setcolorspace. */
static int
cie_abc_param(i_ctx_t *i_ctx_p, const gs_memory_t *mem, const ref * pdref,
gs_cie_abc * pcie, ref_cie_procs * pcprocs,
bool *has_abc_procs, bool *has_lmn_procs)
{
int code;
gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
if ((code = dict_range3_param(mem, pdref, "RangeABC", &pcie->RangeABC)) < 0 ||
(code = dict_matrix3_param(mem, pdref, "MatrixABC", &pcie->MatrixABC)) < 0 ||
(code = cie_lmnp_param(mem, pdref, &pcie->common, pcprocs, has_lmn_procs)) < 0
)
return code;
code = dict_proc3_param(mem, pdref, "DecodeABC", &pcprocs->Decode.ABC);
if (code < 0)
return code;
*has_abc_procs = !code;
pcie->DecodeABC = DecodeABC_default;
/* At this point, we have all the parameters in pcie including knowing if
there
are procedures present. If there are no procedures, life is simple for us.
If there are procedures, we can not create the ICC profile until we have the procedures
sampled, which requires pushing the appropriate commands upon the postscript execution stack
to create the sampled procs and then having a follow up operation to create the ICC profile.
Because the procs may have to be merged with other operators and/or packed
in a particular form, we will have the PS operators stuff them in the already
existing static buffers that already exist for this purpose in the cie structures
e.g. gx_cie_vector_cache3_t that are in the common (params.abc.common.caches.DecodeLMN)
and unique entries (e.g. params.abc.caches.DecodeABC.caches) */
if (*has_abc_procs) {
cieicc_prepare_caches(i_ctx_p, (&pcie->RangeABC)->ranges,
pcprocs->Decode.ABC.value.const_refs,
&(pcie->caches.DecodeABC.caches)->floats,
&(pcie->caches.DecodeABC.caches)[1].floats,
&(pcie->caches.DecodeABC.caches)[2].floats,
NULL, pcie, imem, "Decode.ABC(ICC)");
} else {
pcie->caches.DecodeABC.caches->floats.params.is_identity = true;
(pcie->caches.DecodeABC.caches)[1].floats.params.is_identity = true;
(pcie->caches.DecodeABC.caches)[2].floats.params.is_identity = true;
}
if (*has_lmn_procs) {
cieicc_prepare_caches(i_ctx_p, (&pcie->common.RangeLMN)->ranges,
pcprocs->DecodeLMN.value.const_refs,
&(pcie->common.caches.DecodeLMN)->floats,
&(pcie->common.caches.DecodeLMN)[1].floats,
&(pcie->common.caches.DecodeLMN)[2].floats,
NULL, pcie, imem, "Decode.LMN(ICC)");
} else {
pcie->common.caches.DecodeLMN->floats.params.is_identity = true;
(pcie->common.caches.DecodeLMN)[1].floats.params.is_identity = true;
(pcie->common.caches.DecodeLMN)[2].floats.params.is_identity = true;
}
return 0;
}
/* Finish setting a CIE space (successful or not). */
int
cie_set_finish(i_ctx_t *i_ctx_p, gs_color_space * pcs,
const ref_cie_procs * pcprocs, int edepth, int code)
{
if (code >= 0)
code = gs_setcolorspace(igs, pcs);
/* Delete the extra reference to the parameter tables. */
rc_decrement_only_cs(pcs, "cie_set_finish");
if (code < 0) {
ref_stack_pop_to(&e_stack, edepth);
return code;
}
istate->colorspace[0].procs.cie = *pcprocs;
pop(1);
return (ref_stack_count(&e_stack) == edepth ? 0 : o_push_estack);
}
/* Forward references */
static int cie_defg_finish(i_ctx_t *);
static int
cie_defg_param(i_ctx_t *i_ctx_p, const gs_memory_t *mem, const ref * pdref,
gs_cie_defg * pcie, ref_cie_procs * pcprocs, bool *has_abc_procs,
bool *has_lmn_procs, bool *has_defg_procs, ref *ptref)
{
int code;
gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
/* First get all the ABC and LMN information related to this space */
code = cie_abc_param(i_ctx_p, mem, pdref, (gs_cie_abc *) pcie, pcprocs,
has_abc_procs, has_lmn_procs);
if (code < 0)
return code;
code = dict_ranges_param(mem, pdref, "RangeDEFG", 4, pcie->RangeDEFG.ranges);
if (code < 0)
return code;
code = dict_ranges_param(mem, pdref, "RangeHIJK", 4, pcie->RangeHIJK.ranges);
if (code < 0)
return code;
code = cie_table_param(ptref, &pcie->Table, mem);
if (code < 0)
return code;
code = dict_proc_array_param(mem, pdref, "DecodeDEFG", 4,
&(pcprocs->PreDecode.DEFG));
if (code < 0)
return code;
*has_defg_procs = !code;
if (*has_defg_procs) {
cieicc_prepare_caches(i_ctx_p, (&pcie->RangeDEFG)->ranges,
pcprocs->PreDecode.DEFG.value.const_refs,
&(pcie->caches_defg.DecodeDEFG)->floats,
&(pcie->caches_defg.DecodeDEFG)[1].floats,
&(pcie->caches_defg.DecodeDEFG)[2].floats,
&(pcie->caches_defg.DecodeDEFG)[3].floats,
pcie, imem, "Decode.DEFG(ICC)");
} else {
pcie->caches_defg.DecodeDEFG->floats.params.is_identity = true;
(pcie->caches_defg.DecodeDEFG)[1].floats.params.is_identity = true;
(pcie->caches_defg.DecodeDEFG)[2].floats.params.is_identity = true;
(pcie->caches_defg.DecodeDEFG)[3].floats.params.is_identity = true;
}
return(0);
}
int
ciedefgspace(i_ctx_t *i_ctx_p, ref *CIEDict, ulong dictkey)
{
os_ptr op = osp;
int edepth = ref_stack_count(&e_stack);
gs_memory_t *mem = gs_state_memory(igs);
gs_color_space *pcs;
ref_cie_procs procs;
gs_cie_defg *pcie;
int code = 0;
ref *ptref;
bool has_defg_procs, has_abc_procs, has_lmn_procs;
gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
/* pcs = gsicc_find_cs(dictkey, igs); */
pcs = NULL;
push(1); /* Sacrificial */
procs = istate->colorspace[0].procs.cie;
if (pcs == NULL ) {
if ((code = dict_find_string(CIEDict, "Table", &ptref)) <= 0)
return (code < 0 ? code : gs_note_error(e_rangecheck));
check_read_type(*ptref, t_array);
if (r_size(ptref) != 5)
return_error(e_rangecheck);
/* Stable memory due to current caching of color space */
code = gs_cspace_build_CIEDEFG(&pcs, NULL, mem->stable_memory);
if (code < 0)
return code;
pcie = pcs->params.defg;
pcie->Table.n = 4;
pcie->Table.m = 3;
code = cie_cache_push_finish(i_ctx_p, cie_defg_finish, imem, pcie);
code = cie_defg_param(i_ctx_p, imemory, CIEDict, pcie, &procs,
&has_abc_procs, &has_lmn_procs, &has_defg_procs,ptref);
/* Add the color space to the profile cache */
gsicc_add_cs(igs, pcs,dictkey);
} else {
rc_increment(pcs);
}
return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_defg_finish(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
gs_cie_defg *pcie = r_ptr(op, gs_cie_defg);
pcie->DecodeDEFG = DecodeDEFG_from_cache;
pcie->DecodeABC = DecodeABC_from_cache;
pcie->common.DecodeLMN = DecodeLMN_from_cache;
gs_cie_defg_complete(pcie);
pop(1);
return 0;
}
static int
cie_def_param(i_ctx_t *i_ctx_p, const gs_memory_t *mem, const ref * pdref,
gs_cie_def * pcie, ref_cie_procs * pcprocs,
bool *has_abc_procs, bool *has_lmn_procs,
bool *has_def_procs, ref *ptref)
{
int code;
gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
/* First get all the ABC and LMN information related to this space */
code = cie_abc_param(i_ctx_p, mem, pdref, (gs_cie_abc *) pcie, pcprocs,
has_abc_procs, has_lmn_procs);
if (code < 0)
return code;
code = dict_range3_param(mem, pdref, "RangeDEF", &pcie->RangeDEF);
if (code < 0)
return code;
code = dict_range3_param(mem, pdref, "RangeHIJ", &pcie->RangeHIJ);
if (code < 0)
return code;
code = cie_table_param(ptref, &pcie->Table, mem);
if (code < 0)
return code;
/* The DEF procs */
code = dict_proc3_param(mem, pdref, "DecodeDEF", &(pcprocs->PreDecode.DEF));
if (code < 0)
return code;
*has_def_procs = !code;
if (*has_def_procs) {
cieicc_prepare_caches(i_ctx_p, (&pcie->RangeDEF)->ranges,
pcprocs->PreDecode.DEF.value.const_refs,
&(pcie->caches_def.DecodeDEF)->floats,
&(pcie->caches_def.DecodeDEF)[1].floats,
&(pcie->caches_def.DecodeDEF)[2].floats,
NULL, pcie, imem, "Decode.DEF(ICC)");
} else {
pcie->caches_def.DecodeDEF->floats.params.is_identity = true;
(pcie->caches_def.DecodeDEF)[1].floats.params.is_identity = true;
(pcie->caches_def.DecodeDEF)[2].floats.params.is_identity = true;
}
return(0);
}
static int cie_def_finish(i_ctx_t *);
int
ciedefspace(i_ctx_t *i_ctx_p, ref *CIEDict, ulong dictkey)
{
os_ptr op = osp;
int edepth = ref_stack_count(&e_stack);
gs_memory_t *mem = gs_state_memory(igs);
gs_color_space *pcs;
ref_cie_procs procs;
gs_cie_def *pcie;
int code = 0;
ref *ptref;
bool has_def_procs, has_lmn_procs, has_abc_procs;
gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
/* pcs = gsicc_find_cs(dictkey, igs); */
pcs = NULL;
push(1); /* Sacrificial */
procs = istate->colorspace[0].procs.cie;
if (pcs == NULL ) {
if ((code = dict_find_string(CIEDict, "Table", &ptref)) <= 0)
return (code < 0 ? code : gs_note_error(e_rangecheck));
check_read_type(*ptref, t_array);
if (r_size(ptref) != 4)
return_error(e_rangecheck);
/* Stable memory due to current caching of color space */
code = gs_cspace_build_CIEDEF(&pcs, NULL, mem->stable_memory);
if (code < 0)
return code;
pcie = pcs->params.def;
pcie->Table.n = 3;
pcie->Table.m = 3;
code = cie_cache_push_finish(i_ctx_p, cie_def_finish, imem, pcie);
code = cie_def_param(i_ctx_p, imemory, CIEDict, pcie, &procs,
&has_abc_procs, &has_lmn_procs, &has_def_procs, ptref);
/* Add the color space to the profile cache */
gsicc_add_cs(igs, pcs,dictkey);
} else {
rc_increment(pcs);
}
return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_def_finish(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
gs_cie_def *pcie = r_ptr(op, gs_cie_def);
pcie->DecodeDEF = DecodeDEF_from_cache;
pcie->DecodeABC = DecodeABC_from_cache;
pcie->common.DecodeLMN = DecodeLMN_from_cache;
gs_cie_def_complete(pcie);
pop(1);
return 0;
}
static int cie_abc_finish(i_ctx_t *);
int
cieabcspace(i_ctx_t *i_ctx_p, ref *CIEDict, ulong dictkey)
{
os_ptr op = osp;
int edepth = ref_stack_count(&e_stack);
gs_memory_t *mem = gs_state_memory(igs);
gs_color_space *pcs;
ref_cie_procs procs;
gs_cie_abc *pcie;
int code = 0;
bool has_lmn_procs, has_abc_procs;
gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
/* See if the color space is in the profile cache */
/* pcs = gsicc_find_cs(dictkey, igs); */
pcs = NULL;
push(1); /* Sacrificial */
procs = istate->colorspace[0].procs.cie;
if (pcs == NULL ) {
/* Stable memory due to current caching of color space */
code = gs_cspace_build_CIEABC(&pcs, NULL, mem->stable_memory);
if (code < 0)
return code;
pcie = pcs->params.abc;
code = cie_cache_push_finish(i_ctx_p, cie_abc_finish, imem, pcie);
code = cie_abc_param(i_ctx_p, imemory, CIEDict, pcie, &procs,
&has_abc_procs, &has_lmn_procs);
/* Set the color space in the graphic state. The ICC profile
will be set later if we actually use the space. Procs will be
sampled now though. Also, the finish procedure is on the stack
since that is where the vector cache is completed from the scalar
caches. We may need the vector cache if we are going to go
ahead and create an MLUT for this thing */
/* Add the color space to the profile cache */
gsicc_add_cs(igs, pcs,dictkey);
} else {
rc_increment(pcs);
}
return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_abc_finish(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
gs_cie_abc *pcie = r_ptr(op, gs_cie_abc);
pcie->DecodeABC = DecodeABC_from_cache;
pcie->common.DecodeLMN = DecodeLMN_from_cache;
gs_cie_abc_complete(pcie);
pop(1);
return 0;
}
static int cie_a_finish(i_ctx_t *);
int
cieaspace(i_ctx_t *i_ctx_p, ref *CIEdict, ulong dictkey)
{
os_ptr op = osp;
int edepth = ref_stack_count(&e_stack);
gs_memory_t *mem = gs_state_memory(igs);
const gs_ref_memory_t *imem = (gs_ref_memory_t *)mem;
gs_color_space *pcs;
ref_cie_procs procs;
gs_cie_a *pcie;
int code = 0;
bool has_a_procs = false;
bool has_lmn_procs;
/* See if the color space is in the profile cache */
/* pcs = gsicc_find_cs(dictkey, igs); */
pcs = NULL;
push(1); /* Sacrificial */
procs = istate->colorspace[0].procs.cie;
if (pcs == NULL ) {
/* Stable memory due to current caching of color space */
code = gs_cspace_build_CIEA(&pcs, NULL, mem->stable_memory);
if (code < 0)
return code;
pcie = pcs->params.a;
code = cie_a_param(imemory, CIEdict, pcie, &procs, &has_a_procs,
&has_lmn_procs);
/* Push finalize procedure on the execution stack */
code = cie_cache_push_finish(i_ctx_p, cie_a_finish, imem, pcie);
if (!has_a_procs && !has_lmn_procs) {
pcie->common.caches.DecodeLMN->floats
.params.is_identity = true;
(pcie->common.caches.DecodeLMN)[1].floats.params.is_identity = true;
(pcie->common.caches.DecodeLMN)[2].floats.params.is_identity = true;
pcie->caches.DecodeA.floats.params.is_identity = true;
} else {
if (has_a_procs) {
code = cie_prepare_iccproc(i_ctx_p, &pcie->RangeA,
&procs.Decode.A, &pcie->caches.DecodeA.floats, pcie, imem, "Decode.A");
} else {
pcie->caches.DecodeA.floats.params.is_identity = true;
}
if (has_lmn_procs) {
cieicc_prepare_caches(i_ctx_p, (&pcie->common.RangeLMN)->ranges,
procs.DecodeLMN.value.const_refs,
&(pcie->common.caches.DecodeLMN)->floats,
&(pcie->common.caches.DecodeLMN)[1].floats,
&(pcie->common.caches.DecodeLMN)[2].floats,
NULL, pcie, imem, "Decode.LMN(ICC)");
} else {
pcie->common.caches.DecodeLMN->floats.params.is_identity = true;
(pcie->common.caches.DecodeLMN)[1].floats.params.is_identity = true;
(pcie->common.caches.DecodeLMN)[2].floats.params.is_identity = true;
}
}
/* Add the color space to the profile cache */
gsicc_add_cs(igs, pcs,dictkey);
} else {
rc_increment(pcs);
}
/* Set the color space in the graphic state. The ICC profile may be set after this
due to the needed sampled procs */
return cie_set_finish(i_ctx_p, pcs, &procs, edepth, code);
}
static int
cie_a_finish(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
gs_cie_a *pcie = r_ptr(op, gs_cie_a);
pcie->DecodeA = DecodeA_from_cache;
pcie->common.DecodeLMN = DecodeLMN_from_cache;
gs_cie_a_complete(pcie);
pop(1);
return 0;
}
/* ------ Internal routines ------ */
/* Prepare to cache the values for one or more procedures. */
/* RJW: No longer used, but keeping it around in case it becomes useful
* again in future.
* static int cie_cache_finish1(i_ctx_t *);
*/
static int cie_cache_finish(i_ctx_t *);
int
cie_prepare_cache(i_ctx_t *i_ctx_p, const gs_range * domain, const ref * proc,
cie_cache_floats * pcache, void *container,
gs_ref_memory_t * imem, client_name_t cname)
{
int space = imemory_space(imem);
gs_sample_loop_params_t lp;
es_ptr ep;
gs_cie_cache_init(&pcache->params, &lp, domain, cname);
pcache->params.is_identity = r_size(proc) == 0;
check_estack(9);
ep = esp;
make_real(ep + 9, lp.A);
make_int(ep + 8, lp.N);
make_real(ep + 7, lp.B);
ep[6] = *proc;
r_clear_attrs(ep + 6, a_executable);
make_op_estack(ep + 5, zcvx);
make_op_estack(ep + 4, zfor_samples);
make_op_estack(ep + 3, cie_cache_finish);
esp += 9;
/*
* The caches are embedded in the middle of other
* structures, so we represent the pointer to the cache
* as a pointer to the container plus an offset.
*/
make_int(ep + 2, (char *)pcache - (char *)container);
make_struct(ep + 1, space, container);
return o_push_estack;
}
/* Note that pc3 may be 0, indicating that there are only 3 caches to load. */
int
cie_prepare_caches_4(i_ctx_t *i_ctx_p, const gs_range * domains,
const ref * procs,
cie_cache_floats * pc0, cie_cache_floats * pc1,
cie_cache_floats * pc2, cie_cache_floats * pc3,
void *container,
gs_ref_memory_t * imem, client_name_t cname)
{
cie_cache_floats *pcn[4];
int i, n, code = 0;
pcn[0] = pc0, pcn[1] = pc1, pcn[2] = pc2;
if (pc3 == 0)
n = 3;
else
pcn[3] = pc3, n = 4;
for (i = 0; i < n && code >= 0; ++i)
code = cie_prepare_cache(i_ctx_p, domains + i, procs + i, pcn[i],
container, imem, cname);
return code;
}
/* Store the result of caching one procedure. */
static int
cie_cache_finish_store(i_ctx_t *i_ctx_p, bool replicate)
{
os_ptr op = osp;
cie_cache_floats *pcache;
int code;
check_esp(2);
/* See above for the container + offset representation of */
/* the pointer to the cache. */
pcache = (cie_cache_floats *) (r_ptr(esp - 1, char) + esp->value.intval);
pcache->params.is_identity = false; /* cache_set_linear computes this */
if_debug3('c', "[c]cache 0x%lx base=%g, factor=%g:\n",
(ulong) pcache, pcache->params.base, pcache->params.factor);
if (replicate ||
(code = float_params(op, gx_cie_cache_size, &pcache->values[0])) < 0
) {
/* We might have underflowed the current stack block. */
/* Handle the parameters one-by-one. */
uint i;
for (i = 0; i < gx_cie_cache_size; i++) {
code = float_param(ref_stack_index(&o_stack,
(replicate ? 0 : gx_cie_cache_size - 1 - i)),
&pcache->values[i]);
if (code < 0)
return code;
}
}
#ifdef DEBUG
if (gs_debug_c('c')) {
int i;
for (i = 0; i < gx_cie_cache_size; i += 4)
dlprintf5("[c] cache[%3d]=%g, %g, %g, %g\n", i,
pcache->values[i], pcache->values[i + 1],
pcache->values[i + 2], pcache->values[i + 3]);
}
#endif
ref_stack_pop(&o_stack, (replicate ? 1 : gx_cie_cache_size));
esp -= 2; /* pop pointer to cache */
return o_pop_estack;
}
static int
cie_cache_finish(i_ctx_t *i_ctx_p)
{
return cie_cache_finish_store(i_ctx_p, false);
}
#if 0
/* RJW: No longer used, but might be useful in future. */
static int
cie_cache_finish1(i_ctx_t *i_ctx_p)
{
return cie_cache_finish_store(i_ctx_p, true);
}
#endif
/* Push a finishing procedure on the e-stack. */
/* ptr will be the top element of the o-stack. */
int
cie_cache_push_finish(i_ctx_t *i_ctx_p, op_proc_t finish_proc,
gs_ref_memory_t * imem, void *data)
{
check_estack(2);
push_op_estack(finish_proc);
++esp;
make_struct(esp, imemory_space(imem), data);
return o_push_estack;
}
/* Special functions related to the creation of ICC profiles
from the PS CIE color management objects. These basically
make use of the existing objects in the CIE stuctures to
store the sampled procs. These sampled procs are then
used in the creation of the ICC profiles */
/* Push the sequence of commands onto the execution stack
so that we sample the procs */
static int cie_create_icc(i_ctx_t *);
static int
cie_prepare_iccproc(i_ctx_t *i_ctx_p, const gs_range * domain, const ref * proc,
cie_cache_floats * pcache, void *container,
const gs_ref_memory_t * imem, client_name_t cname)
{
int space = imemory_space(imem);
gs_sample_loop_params_t lp;
es_ptr ep;
gs_cie_cache_init(&pcache->params, &lp, domain, cname);
pcache->params.is_identity = r_size(proc) == 0;
check_estack(9);
ep = esp;
make_real(ep + 9, lp.A);
make_int(ep + 8, lp.N);
make_real(ep + 7, lp.B);
ep[6] = *proc;
r_clear_attrs(ep + 6, a_executable);
make_op_estack(ep + 5, zcvx);
make_op_estack(ep + 4, zfor_samples);
make_op_estack(ep + 3, cie_create_icc);
esp += 9;
/*
* The caches are embedded in the middle of other
* structures, so we represent the pointer to the cache
* as a pointer to the container plus an offset.
*/
make_int(ep + 2, (char *)pcache - (char *)container);
make_struct(ep + 1, space, container);
return o_push_estack;
}
int
cieicc_prepare_caches(i_ctx_t *i_ctx_p, const gs_range * domains,
const ref * procs,
cie_cache_floats * pc0, cie_cache_floats * pc1,
cie_cache_floats * pc2, cie_cache_floats * pc3,
void *container,
const gs_ref_memory_t * imem, client_name_t cname)
{
cie_cache_floats *pcn[4];
int i, n, code = 0;
pcn[0] = pc0, pcn[1] = pc1, pcn[2] = pc2;
if (pc3 == 0)
n = 3;
else
pcn[3] = pc3, n = 4;
for (i = 0; i < n && code >= 0; ++i)
code = cie_prepare_iccproc(i_ctx_p, domains + i, procs + i, pcn[i],
container, imem, cname);
return code;
}
/* We have sampled the procs. Go ahead and create the ICC profile. */
static int
cie_create_icc(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
cie_cache_floats *pcache;
int code;
check_esp(2);
/* See above for the container + offset representation of */
/* the pointer to the cache. */
pcache = (cie_cache_floats *) (r_ptr(esp - 1, char) + esp->value.intval);
pcache->params.is_identity = false; /* cache_set_linear computes this */
if_debug3('c', "[c]icc_sample_proc 0x%lx base=%g, factor=%g:\n",
(ulong) pcache, pcache->params.base, pcache->params.factor);
if ((code = float_params(op, gx_cie_cache_size, &pcache->values[0])) < 0) {
/* We might have underflowed the current stack block. */
/* Handle the parameters one-by-one. */
uint i;
for (i = 0; i < gx_cie_cache_size; i++) {
code = float_param(ref_stack_index(&o_stack,gx_cie_cache_size - 1 - i),
&pcache->values[i]);
if (code < 0)
return code;
}
}
#ifdef DEBUG
if (gs_debug_c('c')) {
int i;
for (i = 0; i < gx_cie_cache_size; i += 4)
dlprintf5("[c] icc_sample_proc[%3d]=%g, %g, %g, %g\n", i,
pcache->values[i], pcache->values[i + 1],
pcache->values[i + 2], pcache->values[i + 3]);
}
#endif
ref_stack_pop(&o_stack, gx_cie_cache_size);
esp -= 2; /* pop pointer to cache */
return o_pop_estack;
}
|