1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Operand stack operators */
#include "memory_.h"
#include "ghost.h"
#include "ialloc.h"
#include "istack.h"
#include "oper.h"
#include "store.h"
/* <obj> pop - */
int
zpop(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_op(1);
pop(1);
return 0;
}
/* <obj1> <obj2> exch <obj2> <obj1> */
int
zexch(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
ref next;
check_op(2);
ref_assign_inline(&next, op - 1);
ref_assign_inline(op - 1, op);
ref_assign_inline(op, &next);
return 0;
}
/* <obj> dup <obj> <obj> */
int
zdup(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_op(1);
push(1);
ref_assign_inline(op, op - 1);
return 0;
}
/* <obj_n> ... <obj_0> <n> index <obj_n> ... <obj_0> <obj_n> */
int
zindex(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
register os_ptr opn;
check_type(*op, t_integer);
if ((ulong)op->value.intval >= (ulong)(op - osbot)) {
/* Might be in an older stack block. */
ref *elt;
if (op->value.intval < 0)
return_error(e_rangecheck);
elt = ref_stack_index(&o_stack, op->value.intval + 1);
if (elt == 0)
return_error(e_stackunderflow);
ref_assign(op, elt);
return 0;
}
opn = op + ~(int)op->value.intval;
ref_assign_inline(op, opn);
return 0;
}
/* <obj_n> ... <obj_0> <n> .argindex <obj_n> ... <obj_0> <obj_n> */
static int
zargindex(i_ctx_t *i_ctx_p)
{
int code = zindex(i_ctx_p);
/*
* Pseudo-operators should use .argindex rather than index to access
* their arguments on the stack, so that if there aren't enough, the
* result will be a stackunderflow rather than a rangecheck. (This is,
* in fact, the only reason this operator exists.)
*/
if (code == e_rangecheck && osp->value.intval >= 0)
code = gs_note_error(e_stackunderflow);
return code;
}
/* <obj_n-1> ... <obj_0> <n> <i> roll */
/* <obj_(i-1)_mod_ n> ... <obj_0> <obj_n-1> ... <obj_i_mod_n> */
int
zroll(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
os_ptr op1 = op - 1;
int count, mod;
register os_ptr from, to;
register int n;
check_type(*op1, t_integer);
check_type(*op, t_integer);
if ((uint) op1->value.intval > (uint)(op1 - osbot)) {
/*
* The data might span multiple stack blocks.
* There are efficient ways to handle this situation,
* but they're more complicated than seems worth implementing;
* for now, do something very simple and inefficient.
*/
int left, i;
if (op1->value.intval < 0)
return_error(e_rangecheck);
if (op1->value.intval + 2 > (int)ref_stack_count(&o_stack))
return_error(e_stackunderflow);
count = op1->value.intval;
if (count <= 1) {
pop(2);
return 0;
}
mod = op->value.intval;
if (mod >= count)
mod %= count;
else if (mod < 0) {
mod %= count;
if (mod < 0)
mod += count; /* can't assume % means mod! */
}
/* Use the chain rotation algorithm mentioned below. */
for (i = 0, left = count; left; i++) {
ref *elt = ref_stack_index(&o_stack, i + 2);
ref save;
int j, k;
ref *next;
save = *elt;
for (j = i, left--;; j = k, elt = next, left--) {
k = (j + mod) % count;
if (k == i)
break;
next = ref_stack_index(&o_stack, k + 2);
ref_assign(elt, next);
}
*elt = save;
}
pop(2);
return 0;
}
count = op1->value.intval;
if (count <= 1) {
pop(2);
return 0;
}
mod = op->value.intval;
/*
* The elegant approach, requiring no extra space, would be to
* rotate the elements in chains separated by mod elements.
* Instead, we simply check to make sure there is enough space
* above op to do the roll in two block moves.
* Unfortunately, we can't count on memcpy doing the right thing
* in *either* direction.
*/
switch (mod) {
case 1: /* common special case */
pop(2);
op -= 2;
{
ref top;
ref_assign_inline(&top, op);
for (from = op, n = count; --n; from--)
ref_assign_inline(from, from - 1);
ref_assign_inline(from, &top);
}
return 0;
case -1: /* common special case */
pop(2);
op -= 2;
{
ref bot;
to = op - count + 1;
ref_assign_inline(&bot, to);
for (n = count; --n; to++)
ref_assign(to, to + 1);
ref_assign_inline(to, &bot);
}
return 0;
}
if (mod < 0) {
mod += count;
if (mod < 0) {
mod %= count;
if (mod < 0)
mod += count; /* can't assume % means mod! */
}
} else if (mod >= count)
mod %= count;
if (mod <= count >> 1) {
/* Move everything up, then top elements down. */
if (mod >= ostop - op) {
o_stack.requested = mod;
return_error(e_stackoverflow);
}
pop(2);
op -= 2;
for (to = op + mod, from = op, n = count; n--; to--, from--)
ref_assign(to, from);
memcpy((char *)(from + 1), (char *)(op + 1), mod * sizeof(ref));
} else {
/* Move bottom elements up, then everything down. */
mod = count - mod;
if (mod >= ostop - op) {
o_stack.requested = mod;
return_error(e_stackoverflow);
}
pop(2);
op -= 2;
to = op - count + 1;
memcpy((char *)(op + 1), (char *)to, mod * sizeof(ref));
for (from = to + mod, n = count; n--; to++, from++)
ref_assign(to, from);
}
return 0;
}
/* |- ... clear |- */
/* The function name is changed, because the IRIS library has */
/* a function called zclear. */
static int
zclear_stack(i_ctx_t *i_ctx_p)
{
ref_stack_clear(&o_stack);
return 0;
}
/* |- <obj_n-1> ... <obj_0> count <obj_n-1> ... <obj_0> <n> */
static int
zcount(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
push(1);
make_int(op, ref_stack_count(&o_stack) - 1);
return 0;
}
/* - mark <mark> */
static int
zmark(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
push(1);
make_mark(op);
return 0;
}
/* <mark> ... cleartomark */
int
zcleartomark(i_ctx_t *i_ctx_p)
{
uint count = ref_stack_counttomark(&o_stack);
if (count == 0)
return_error(e_unmatchedmark);
ref_stack_pop(&o_stack, count);
return 0;
}
/* <mark> <obj_n-1> ... <obj_0> counttomark */
/* <mark> <obj_n-1> ... <obj_0> <n> */
static int
zcounttomark(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
uint count = ref_stack_counttomark(&o_stack);
if (count == 0)
return_error(e_unmatchedmark);
push(1);
make_int(op, count - 1);
return 0;
}
/* ------ Initialization procedure ------ */
const op_def zstack_op_defs[] =
{
{"2.argindex", zargindex},
{"0clear", zclear_stack},
{"0cleartomark", zcleartomark},
{"0count", zcount},
{"0counttomark", zcounttomark},
{"1dup", zdup},
{"2exch", zexch},
{"2index", zindex},
{"0mark", zmark},
{"1pop", zpop},
{"2roll", zroll},
op_def_end(0)
};
|