1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Memory device creation for Ghostscript library */
#include "math_.h" /* for fabs */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsdevice.h" /* for prototypes */
#include "gxarith.h"
#include "gxdevice.h"
#include "gxdevmem.h"
/* Make a memory (image) device. */
/* If colors_size = -16, -24, or -32, this is a true-color device; */
/* otherwise, colors_size is the size of the palette in bytes */
/* (2^N for gray scale, 3*2^N for RGB color). */
/* We separate device allocation and initialization at customer request. */
int
gs_initialize_wordimagedevice(gx_device_memory * new_dev, const gs_matrix * pmat,
uint width, uint height, const byte * colors, int colors_size,
bool word_oriented, bool page_device, gs_memory_t * mem)
{
const gx_device_memory *proto_dev;
int palette_count = colors_size;
int num_components = 1;
int pcount;
int bits_per_pixel;
float x_pixels_per_unit, y_pixels_per_unit;
byte palette[256 * 3];
bool has_color;
switch (colors_size) {
case 3 * 2:
palette_count = 2;
num_components = 3;
case 2:
bits_per_pixel = 1;
break;
case 3 * 4:
palette_count = 4;
num_components = 3;
case 4:
bits_per_pixel = 2;
break;
case 3 * 16:
palette_count = 16;
num_components = 3;
case 16:
bits_per_pixel = 4;
break;
case 3 * 256:
palette_count = 256;
num_components = 3;
case 256:
bits_per_pixel = 8;
break;
case -16:
bits_per_pixel = 16;
palette_count = 0;
break;
case -24:
bits_per_pixel = 24;
palette_count = 0;
break;
case -32:
bits_per_pixel = 32;
palette_count = 0;
break;
default:
return_error(gs_error_rangecheck);
}
proto_dev = (word_oriented ?
gdev_mem_word_device_for_bits(bits_per_pixel) :
gdev_mem_device_for_bits(bits_per_pixel));
if (proto_dev == 0) /* no suitable device */
return_error(gs_error_rangecheck);
pcount = palette_count * 3;
/* Check to make sure the palette contains white and black, */
/* and, if it has any colors, the six primaries. */
if (bits_per_pixel <= 8) {
const byte *p;
byte *q;
int primary_mask = 0;
int i;
has_color = false;
for (i = 0, p = colors, q = palette;
i < palette_count; i++, q += 3
) {
int mask = 1;
switch (num_components) {
case 1: /* gray */
q[0] = q[1] = q[2] = *p++;
break;
default /* case 3 */ : /* RGB */
q[0] = p[0], q[1] = p[1], q[2] = p[2];
p += 3;
}
#define shift_mask(b,n)\
switch ( b ) { case 0xff: mask <<= n; case 0: break; default: mask = 0; }
shift_mask(q[0], 4);
shift_mask(q[1], 2);
shift_mask(q[2], 1);
#undef shift_mask
primary_mask |= mask;
if (q[0] != q[1] || q[0] != q[2])
has_color = true;
}
switch (primary_mask) {
case 129: /* just black and white */
if (has_color) /* color but no primaries */
return_error(gs_error_rangecheck);
case 255: /* full color */
break;
default:
return_error(gs_error_rangecheck);
}
} else
has_color = true;
/*
* The initial transformation matrix must map 1 user unit to
* 1/72". Let W and H be the width and height in pixels, and
* assume the initial matrix is of the form [A 0 0 B X Y].
* Then the size of the image in user units is (W/|A|,H/|B|),
* hence the size in inches is ((W/|A|)/72,(H/|B|)/72), so
* the number of pixels per inch is
* (W/((W/|A|)/72),H/((H/|B|)/72)), or (|A|*72,|B|*72).
* Similarly, if the initial matrix is [0 A B 0 X Y] for a 90
* or 270 degree rotation, the size of the image in user
* units is (W/|B|,H/|A|), so the pixels per inch are
* (|B|*72,|A|*72). We forbid non-orthogonal transformation
* matrices.
*/
if (is_fzero2(pmat->xy, pmat->yx))
x_pixels_per_unit = pmat->xx, y_pixels_per_unit = pmat->yy;
else if (is_fzero2(pmat->xx, pmat->yy))
x_pixels_per_unit = pmat->yx, y_pixels_per_unit = pmat->xy;
else
return_error(gs_error_undefinedresult);
/* All checks done, initialize the device. */
if (bits_per_pixel == 1) {
/* Determine the polarity from the palette. */
gs_make_mem_device(new_dev, proto_dev, mem,
(page_device ? 1 : -1), 0);
/* This is somewhat bogus, but does the right thing */
/* in the only cases we care about. */
gdev_mem_mono_set_inverted(new_dev,
(palette[0] | palette[1] | palette[2]) != 0);
} else {
byte *dev_palette = gs_alloc_string(mem, pcount,
"gs_makeimagedevice(palette)");
if (dev_palette == 0)
return_error(gs_error_VMerror);
gs_make_mem_device(new_dev, proto_dev, mem,
(page_device ? 1 : -1), 0);
new_dev->palette.size = pcount;
new_dev->palette.data = dev_palette;
memcpy(dev_palette, palette, pcount);
if (!has_color) {
new_dev->color_info.num_components = 1;
new_dev->color_info.max_color = 0;
new_dev->color_info.dither_colors = 0;
new_dev->color_info.gray_index = 0;
}
}
/* Memory defice is always initialised as an internal device but */
/* this is an external device */
new_dev->retained = true;
rc_init(new_dev, new_dev->memory, 1);
new_dev->initial_matrix = *pmat;
new_dev->MarginsHWResolution[0] = new_dev->HWResolution[0] =
fabs(x_pixels_per_unit) * 72;
new_dev->MarginsHWResolution[1] = new_dev->HWResolution[1] =
fabs(y_pixels_per_unit) * 72;
gx_device_set_width_height((gx_device *) new_dev, width, height);
/* Set the ImagingBBox so we get a correct clipping region. */
{
gs_rect bbox;
bbox.p.x = 0;
bbox.p.y = 0;
bbox.q.x = width;
bbox.q.y = height;
gs_bbox_transform_inverse(&bbox, pmat, &bbox);
new_dev->ImagingBBox[0] = bbox.p.x;
new_dev->ImagingBBox[1] = bbox.p.y;
new_dev->ImagingBBox[2] = bbox.q.x;
new_dev->ImagingBBox[3] = bbox.q.y;
new_dev->ImagingBBox_set = true;
}
/* The bitmap will be allocated when the device is opened. */
new_dev->is_open = false;
new_dev->bitmap_memory = mem;
return 0;
}
int
gs_makewordimagedevice(gx_device ** pnew_dev, const gs_matrix * pmat,
uint width, uint height, const byte * colors, int num_colors,
bool word_oriented, bool page_device, gs_memory_t * mem)
{
int code;
gx_device_memory *pnew =
gs_alloc_struct(mem, gx_device_memory, &st_device_memory,
"gs_makeimagedevice(device)");
if (pnew == 0)
return_error(gs_error_VMerror);
/* Bug #697450 "Null pointer dereference in gx_device_finalize()"
* If we have incorrect data passed to gs_initialise_wordimagedevice() then the
* initialisation will fail, crucially it will fail *before* it calls
* gs_make_mem_device() which initialises the device. This means that the
* icc_struct member will be uninitialsed, but the device finalise method
* will unconditionally free that memory. Since its a garbage pointer, bad things happen.
* Apparently we do still need makeimagedevice to be available from
* PostScript, so in here just zero the device memory, which means that
* the finalise routine won't have a problem.
*/
memset(pnew, 0x00, st_device_memory.ssize);
code = gs_initialize_wordimagedevice(pnew, pmat, width, height,
colors, num_colors, word_oriented,
page_device, mem);
if (code < 0) {
gs_free_object(mem, pnew, "gs_makeimagedevice(device)");
return code;
}
*pnew_dev = (gx_device *) pnew;
return 0;
}
|