1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
/* Copyright (C) 2001-2012 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 7 Mt. Lassen Drive - Suite A-134, San Rafael,
CA 94903, U.S.A., +1(415)492-9861, for further information.
*/
/* Lab and ICCBased color space writing */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gxcspace.h"
#include "stream.h"
#include "gsicc.h"
#include "gserrors.h"
#include "gxcie.h"
#include "gdevpdfx.h"
#include "gdevpdfg.h"
#include "gdevpdfc.h"
#include "gdevpdfo.h"
#include "strimpl.h"
/* ------ CIE space synthesis ------ */
/* Add a /Range entry to a CIE-based color space dictionary. */
static int
pdf_cie_add_ranges(cos_dict_t *pcd, const gs_range *prange, int n, bool clamp)
{
cos_array_t *pca = cos_array_alloc(pcd->pdev, "pdf_cie_add_ranges");
int code = 0, i;
if (pca == 0)
return_error(gs_error_VMerror);
for (i = 0; i < n; ++i) {
floatp rmin = prange[i].rmin, rmax = prange[i].rmax;
if (clamp) {
if (rmin < 0) rmin = 0;
if (rmax > 1) rmax = 1;
}
if ((code = cos_array_add_real(pca, rmin)) < 0 ||
(code = cos_array_add_real(pca, rmax)) < 0
)
break;
}
if (code >= 0)
code = cos_dict_put_c_key_object(pcd, "/Range", COS_OBJECT(pca));
if (code < 0)
COS_FREE(pca, "pdf_cie_add_ranges");
return code;
}
/* Transform a CIEBased color to XYZ. */
static int
cie_to_xyz(const double *in, double out[3], const gs_color_space *pcs,
const gs_imager_state *pis, const gs_cie_common *pciec)
{
gs_client_color cc;
frac xyz[3];
int ncomp = gs_color_space_num_components(pcs);
int i;
gx_device dev;
cmm_dev_profile_t dev_profile;
gs_color_space_index cs_index;
const gs_vector3 *const pWhitePoint = &pciec->points.WhitePoint;
double xyz_float[3];
cs_index = gs_color_space_get_index(pcs);
/* Need a device profile */
dev_profile.device_profile[0] = pcs->cmm_icc_profile_data;
dev_profile.device_profile[1] = NULL;
dev_profile.device_profile[2] = NULL;
dev_profile.device_profile[3] = NULL;
dev_profile.link_profile = NULL;
dev_profile.proof_profile = NULL;
dev_profile.oi_profile = NULL;
dev.icc_struct = &(dev_profile);
for (i = 0; i < ncomp; ++i)
cc.paint.values[i] = in[i];
/* The standard concretization makes use of the equivalent ICC profile
to ensure that all color management is handled by the CMM.
Unfortunately, we can't do that here since we have no access to the
icc manager. Also the PDF write outputs have restrictions on the
ICC profiles that can be embedded so we must use this older form.
Need to add an ICC version number into the icc creator to enable
creation to and from various versions */
switch (cs_index) {
case gs_color_space_index_CIEA:
gx_psconcretize_CIEA(&cc, pcs, xyz, pis);
break;
case gs_color_space_index_CIEABC:
gx_psconcretize_CIEABC(&cc, pcs, xyz, pis);
break;
case gs_color_space_index_CIEDEF:
gx_psconcretize_CIEDEF(&cc, pcs, xyz, pis);
break;
case gs_color_space_index_CIEDEFG:
gx_psconcretize_CIEDEFG(&cc, pcs, xyz, pis);
break;
default:
break;
}
if (cs_index == gs_color_space_index_CIEA) {
/* AR forces this case to always be achromatic. We will
do the same even though it does not match the PS
specification */
/* Use the resulting Y value to scale the wp Illumination.
note that we scale to the whitepoint here. Matrix out
handles mapping to CIE D50. This forces an achromatic result */
xyz_float[1] = frac2float(xyz[1]);
xyz_float[0] = pWhitePoint->u * xyz_float[1];
xyz_float[2] = pWhitePoint->w * xyz_float[1];
} else {
xyz_float[0] = frac2float(xyz[0]);
xyz_float[1] = frac2float(xyz[1]);
xyz_float[2] = frac2float(xyz[2]);
}
/* Do wp mapping to D50 in XYZ for now. We should do bradford correction.
Will add that in next release */
out[0] = xyz_float[0]*0.9642/pWhitePoint->u;
out[1] = xyz_float[1];
out[2] = xyz_float[2]*0.8249/pWhitePoint->w;
return 0;
}
/* ------ Lab space writing and synthesis ------ */
/* Transform XYZ values to Lab. */
static double
lab_g_inverse(double v)
{
if (v >= (6.0 * 6.0 * 6.0) / (29 * 29 * 29))
return pow(v, 1.0 / 3); /* use cbrt if available? */
else
return (v * (841.0 / 108) + 4.0 / 29);
}
static void
xyz_to_lab(const double xyz[3], double lab[3], const gs_cie_common *pciec)
{
const gs_vector3 *const pWhitePoint = &pciec->points.WhitePoint;
double L, lunit;
/* Calculate L* first. */
L = lab_g_inverse(xyz[1] / pWhitePoint->v) * 116 - 16;
/* Clamp L* to the PDF range [0..100]. */
if (L < 0)
L = 0;
else if (L > 100)
L = 100;
lab[1] = L;
lunit = (L + 16) / 116;
/* Calculate a* and b*. */
lab[0] = (lab_g_inverse(xyz[0] / pWhitePoint->u) - lunit) * 500;
lab[2] = (lab_g_inverse(xyz[2] / pWhitePoint->w) - lunit) * -200;
}
/* Create a PDF Lab color space corresponding to a CIEBased color space. */
static int
lab_range(gs_range range_out[3] /* only [1] and [2] used */,
const gs_color_space *pcs, const gs_cie_common *pciec,
const gs_range *ranges, gs_memory_t *mem)
{
/*
* Determine the range of a* and b* by evaluating the color space
* mapping at all of its extrema.
*/
int ncomp = gs_color_space_num_components(pcs);
gs_imager_state *pis;
int code = gx_cie_to_xyz_alloc(&pis, pcs, mem);
int i, j;
if (code < 0)
return code;
for (j = 1; j < 3; ++j)
range_out[j].rmin = 1000.0, range_out[j].rmax = -1000.0;
for (i = 0; i < 1 << ncomp; ++i) {
double in[4], xyz[3];
for (j = 0; j < ncomp; ++j)
in[j] = (i & (1 << j) ? ranges[j].rmax : ranges[j].rmin);
if (cie_to_xyz(in, xyz, pcs, pis, pciec) >= 0) {
double lab[3];
xyz_to_lab(xyz, lab, pciec);
for (j = 1; j < 3; ++j) {
range_out[j].rmin = min(range_out[j].rmin, lab[j]);
range_out[j].rmax = max(range_out[j].rmax, lab[j]);
}
}
}
gx_cie_to_xyz_free(pis);
return 0;
}
/*
* Create a Lab color space object.
* This procedure is exported for Lab color spaces in gdevpdfc.c.
*/
int
pdf_put_lab_color_space(cos_array_t *pca, cos_dict_t *pcd,
const gs_range ranges[3] /* only [1] and [2] used */)
{
int code;
cos_value_t v;
if ((code = cos_array_add(pca, cos_c_string_value(&v, "/Lab"))) >= 0)
code = pdf_cie_add_ranges(pcd, ranges + 1, 2, false);
return code;
}
/*
* Create a Lab color space for a CIEBased space that can't be represented
* directly as a Calxxx or Lab space.
*/
static int
pdf_convert_cie_to_lab(gx_device_pdf *pdev, cos_array_t *pca,
const gs_color_space *pcs,
const gs_cie_common *pciec, const gs_range *prange)
{
cos_dict_t *pcd;
gs_range ranges[3];
int code;
/****** NOT IMPLEMENTED YET, REQUIRES TRANSFORMING VALUES ******/
if (1) return_error(gs_error_rangecheck);
pcd = cos_dict_alloc(pdev, "pdf_convert_cie_to_lab(dict)");
if (pcd == 0)
return_error(gs_error_VMerror);
if ((code = lab_range(ranges, pcs, pciec, prange, pdev->pdf_memory)) < 0 ||
(code = pdf_put_lab_color_space(pca, pcd, ranges)) < 0 ||
(code = pdf_finish_cie_space(pca, pcd, pciec)) < 0
)
COS_FREE(pcd, "pdf_convert_cie_to_lab(dict)");
return code;
}
/* ------ ICCBased space writing and synthesis ------ */
/*
* Create an ICCBased color space object (internal). The client must write
* the profile data on *ppcstrm.
*/
static int
pdf_make_iccbased(gx_device_pdf *pdev, cos_array_t *pca, int ncomps,
const gs_range *prange /*[4]*/,
const gs_color_space *pcs_alt,
cos_stream_t **ppcstrm,
const gs_range_t **pprange /* if scaling is needed */)
{
cos_value_t v;
int code;
cos_stream_t * pcstrm = 0;
cos_array_t * prngca = 0;
bool std_ranges = true;
bool scale_inputs = false;
int i;
/* Check the ranges. */
if (pprange)
*pprange = 0;
for (i = 0; i < ncomps; ++i) {
double rmin = prange[i].rmin, rmax = prange[i].rmax;
if (rmin < 0.0 || rmax > 1.0) {
/* We'll have to scale the inputs. :-( */
if (pprange == 0)
return_error(gs_error_rangecheck); /* scaling not allowed */
*pprange = prange;
scale_inputs = true;
}
else if (rmin > 0.0 || rmax < 1.0)
std_ranges = false;
}
/* Range values are a bit tricky to check.
For example, CIELAB ICC profiles have
a unique range. I am not convinced
that a check is needed in the new
color architecture as I am carefull
to get them properly set during
creation of the ICC profile data. */
/* ICCBased color spaces are essentially copied to the output. */
if ((code = cos_array_add(pca, cos_c_string_value(&v, "/ICCBased"))) < 0)
return code;
/* Create a stream for the output. */
if ((pcstrm = cos_stream_alloc(pdev, "pdf_make_iccbased(stream)")) == 0) {
code = gs_note_error(gs_error_VMerror);
goto fail;
}
/* Indicate the number of components. */
code = cos_dict_put_c_key_int(cos_stream_dict(pcstrm), "/N", ncomps);
if (code < 0)
goto fail;
/* Indicate the range, if needed. */
if (!std_ranges && !scale_inputs) {
code = pdf_cie_add_ranges(cos_stream_dict(pcstrm), prange, ncomps, true);
if (code < 0)
goto fail;
}
/* In the new design there may not be a specified alternate color space */
if (pcs_alt != NULL){
/* Output the alternate color space, if necessary. */
switch (gs_color_space_get_index(pcs_alt)) {
case gs_color_space_index_DeviceGray:
case gs_color_space_index_DeviceRGB:
case gs_color_space_index_DeviceCMYK:
break; /* implicit (default) */
default:
if ((code = pdf_color_space_named(pdev, &v, NULL, pcs_alt,
&pdf_color_space_names, false, NULL, 0)) < 0 ||
(code = cos_dict_put_c_key(cos_stream_dict(pcstrm), "/Alternate",
&v)) < 0
)
goto fail;
}
}
/* Wrap up. */
if ((code = cos_array_add_object(pca, COS_OBJECT(pcstrm))) < 0)
goto fail;
*ppcstrm = pcstrm;
return code;
fail:
if (prngca)
COS_FREE(prngca, "pdf_make_iccbased(Range)");
if (pcstrm)
COS_FREE(pcstrm, "pdf_make_iccbased(stream)");
return code;
}
/*
* Finish writing the data stream for an ICCBased color space object.
*/
static int
pdf_finish_iccbased(cos_stream_t *pcstrm)
{
/*
* The stream must be an indirect object. Assign an ID, and write the
* object out now.
*/
gx_device_pdf *pdev = pcstrm->pdev;
pcstrm->id = pdf_obj_ref(pdev);
return cos_write_object(COS_OBJECT(pcstrm), pdev, resourceICC);
}
/*
* Create an ICCBased color space for a CIEBased space that can't be
* represented directly as a Calxxx or Lab space.
*/
typedef struct profile_table_s profile_table_t;
struct profile_table_s {
const char *tag;
const byte *data;
uint length;
uint data_length; /* may be < length if write != 0 */
int (*write)(cos_stream_t *, const profile_table_t *, gs_memory_t *,
const gs_cie_common *pciec);
const void *write_data;
const gs_range_t *ranges;
};
static profile_table_t *
add_table(profile_table_t **ppnt, const char *tag, const byte *data,
uint length)
{
profile_table_t *pnt = (*ppnt)++;
pnt->tag = tag, pnt->data = data, pnt->length = length;
pnt->data_length = length;
pnt->write = NULL;
/* write_data not set */
pnt->ranges = NULL;
return pnt;
}
static void
set_uint32(byte bytes[4], uint value)
{
bytes[0] = (byte)(value >> 24);
bytes[1] = (byte)(value >> 16);
bytes[2] = (byte)(value >> 8);
bytes[3] = (byte)value;
}
static void
set_XYZ(byte bytes[4], floatp value)
{
set_uint32(bytes, (uint)(int)(value * 65536));
}
static void
add_table_xyz3(profile_table_t **ppnt, const char *tag, byte bytes[20],
const gs_vector3 *pv)
{
memcpy(bytes, "XYZ \000\000\000\000", 8);
set_XYZ(bytes + 8, pv->u);
set_XYZ(bytes + 12, pv->v);
set_XYZ(bytes + 16, pv->w);
DISCARD(add_table(ppnt, tag, bytes, 20));
}
static void
set_sample16(byte *p, floatp v)
{
int value = (int)(v * 65535);
if (value < 0)
value = 0;
else if (value > 65535)
value = 65535;
p[0] = (byte)(value >> 8);
p[1] = (byte)value;
}
/* Create and write a TRC curve table. */
static int write_trc_abc(cos_stream_t *, const profile_table_t *, gs_memory_t *, const gs_cie_common *);
static int write_trc_lmn(cos_stream_t *, const profile_table_t *, gs_memory_t *, const gs_cie_common *);
static profile_table_t *
add_trc(profile_table_t **ppnt, const char *tag, byte bytes[12],
const gs_cie_common *pciec, cie_cache_one_step_t one_step)
{
const int count = gx_cie_cache_size;
profile_table_t *pnt;
memcpy(bytes, "curv\000\000\000\000", 8);
set_uint32(bytes + 8, count);
pnt = add_table(ppnt, tag, bytes, 12);
pnt->length += count * 2;
pnt->write = (one_step == ONE_STEP_ABC ? write_trc_abc : write_trc_lmn);
pnt->write_data = (const gs_cie_abc *)pciec;
return pnt;
}
static int
rgb_to_index(const profile_table_t *pnt)
{
switch (pnt->tag[0]) {
case 'r': return 0;
case 'g': return 1;
case 'b': default: /* others can't happen */ return 2;
}
}
static double
cache_arg(int i, int denom, const gs_range_t *range)
{
double arg = i / (double)denom;
if (range) {
/* Sample over the range [range->rmin .. range->rmax]. */
arg = arg * (range->rmax - range->rmin) + range->rmin;
}
return arg;
}
static int
write_trc_abc(cos_stream_t *pcstrm, const profile_table_t *pnt,
gs_memory_t *ignore_mem, const gs_cie_common *unused)
{
/* Write the curve table from DecodeABC. */
const gs_cie_abc *pabc = pnt->write_data;
int ci = rgb_to_index(pnt);
gs_cie_abc_proc proc = pabc->DecodeABC.procs[ci];
byte samples[gx_cie_cache_size * 2];
byte *p = samples;
int i;
for (i = 0; i < gx_cie_cache_size; ++i, p += 2)
set_sample16(p, proc(cache_arg(i, gx_cie_cache_size - 1, pnt->ranges),
pabc));
return cos_stream_add_bytes(pcstrm, samples, gx_cie_cache_size * 2);
}
static int
write_trc_lmn(cos_stream_t *pcstrm, const profile_table_t *pnt,
gs_memory_t *ignore_mem, const gs_cie_common *unused)
{
const gs_cie_common *pciec = pnt->write_data;
int ci = rgb_to_index(pnt);
gs_cie_common_proc proc = pciec->DecodeLMN.procs[ci];
byte samples[gx_cie_cache_size * 2];
byte *p = samples;
int i;
/* Write the curve table from DecodeLMN. */
for (i = 0; i < gx_cie_cache_size; ++i, p += 2)
set_sample16(p, proc(cache_arg(i, gx_cie_cache_size - 1, pnt->ranges),
pciec));
return cos_stream_add_bytes(pcstrm, samples, gx_cie_cache_size * 2);
}
/* Create and write an a2b0 lookup table. */
#define NUM_IN_ENTRIES 2 /* assume linear interpolation */
#define NUM_OUT_ENTRIES 2 /* ibid. */
#define MAX_CLUT_ENTRIES 2500 /* enough for 7^4 */
typedef struct icc_a2b0_s {
byte header[52];
const gs_color_space *pcs;
int num_points; /* on each axis of LUT */
int count; /* total # of entries in LUT */
} icc_a2b0_t;
static int write_a2b0(cos_stream_t *, const profile_table_t *, gs_memory_t *,
const gs_cie_common *pciec);
static profile_table_t *
add_a2b0(profile_table_t **ppnt, icc_a2b0_t *pa2b, int ncomps,
const gs_color_space *pcs)
{
static const byte a2b0_data[sizeof(pa2b->header)] = {
'm', 'f', 't', '2', /* type signature */
0, 0, 0, 0, /* reserved, 0 */
0, /* # of input channels **VARIABLE** */
3, /* # of output channels */
0, /* # of CLUT points **VARIABLE** */
0, /* reserved, padding */
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* matrix column 0 */
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, /* matrix column 1 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, /* matrix column 2 */
0, NUM_IN_ENTRIES, /* # of input table entries */
0, NUM_OUT_ENTRIES /* # of output table entries */
};
int num_points = (int)floor(pow(MAX_CLUT_ENTRIES, 1.0 / ncomps));
profile_table_t *pnt;
num_points = min(num_points, 255);
memcpy(pa2b->header, a2b0_data, sizeof(a2b0_data));
pa2b->header[8] = ncomps;
pa2b->header[10] = num_points;
pa2b->pcs = pcs;
pa2b->num_points = num_points;
pa2b->count = (int)pow(num_points, ncomps);
pnt = add_table(ppnt, "A2B0", pa2b->header,
sizeof(pa2b->header) +
ncomps * 2 * NUM_IN_ENTRIES + /* in */
pa2b->count * (3 * 2) + /* clut: XYZ, 16-bit values */
3 * 2 * NUM_OUT_ENTRIES /* out */
);
pnt->data_length = sizeof(pa2b->header); /* only write fixed part */
pnt->write = write_a2b0;
pnt->write_data = pa2b;
return pnt;
}
static int
write_a2b0(cos_stream_t *pcstrm, const profile_table_t *pnt,
gs_memory_t *mem, const gs_cie_common *pciec)
{
const icc_a2b0_t *pa2b = pnt->write_data;
const gs_color_space *pcs = pa2b->pcs;
int ncomps = pa2b->header[8];
int num_points = pa2b->num_points;
int i;
#define MAX_NCOMPS 4 /* CIEBasedDEFG */
static const byte v01[MAX_NCOMPS * 2 * 2] = {
0,0, 255,255, 0,0, 255,255, 0,0, 255,255, 0,0, 255,255
};
gs_imager_state *pis;
int code;
/* Write the input table. */
if ((code = cos_stream_add_bytes(pcstrm, v01, ncomps * 4)) < 0
)
return code;
/* Write the lookup table. */
code = gx_cie_to_xyz_alloc(&pis, pcs, mem);
if (code < 0)
return code;
for (i = 0; i < pa2b->count; ++i) {
double in[MAX_NCOMPS], xyz[3];
byte entry[3 * 2];
byte *p = entry;
int n, j;
for (n = i, j = ncomps - 1; j >= 0; --j, n /= num_points)
in[j] = cache_arg(n % num_points, num_points - 1,
(pnt->ranges ? pnt->ranges + j : NULL));
cie_to_xyz(in, xyz, pcs, pis, pciec);
/*
* NOTE: Due to an obscure provision of the ICC Profile
* specification, values in a2b0 lookup tables do *not* represent
* the range [0 .. 1], but rather the range [0
* .. MAX_ICC_XYZ_VALUE]. This caused us a lot of grief before we
* figured it out!
*/
#define MAX_ICC_XYZ_VALUE (1 + 32767.0/32768)
for (j = 0; j < 3; ++j, p += 2)
set_sample16(p, xyz[j] / MAX_ICC_XYZ_VALUE);
#undef MAX_ICC_XYZ_VALUE
if ((code = cos_stream_add_bytes(pcstrm, entry, sizeof(entry))) < 0)
break;
}
gx_cie_to_xyz_free(pis);
if (code < 0)
return code;
/* Write the output table. */
return cos_stream_add_bytes(pcstrm, v01, 3 * 4);
}
/* XYZ wp mapping for now. Will replace later with Bradford or other */
static void
adjust_wp(const gs_vector3 *color_in, const gs_vector3 *wp_in,
gs_vector3 *color_out, const gs_vector3 *wp_out)
{
color_out->u = color_in->u * wp_out->u / wp_in->u;
color_out->v = color_in->v * wp_out->v / wp_in->v;
color_out->w = color_in->w * wp_out->w / wp_in->w;
}
static int
pdf_convert_cie_to_iccbased(gx_device_pdf *pdev, cos_array_t *pca,
const gs_color_space *pcs, const char *dcsname,
const gs_cie_common *pciec, const gs_range *prange,
cie_cache_one_step_t one_step,
const gs_matrix3 *pmat, const gs_range_t **pprange)
{
/*
* We have two options for creating an ICCBased color space to represent
* a CIEBased space. For CIEBasedABC spaces using only a single
* Decode step followed by a single Matrix step, we can use [rgb]TRC
* and [rgb]XYZ; for CIEBasedA spaces using only DecodeA, we could use
* kTRC (but don't); otherwise, we must use a mft2 LUT.
*/
int code;
int ncomps = gs_color_space_num_components(pcs);
gs_color_space *alt_space;
cos_stream_t *pcstrm;
gs_vector3 white_d50;
gs_vector3 temp_xyz;
/*
* because it requires random access to the output stream
* we construct the ICC profile by hand.
*/
/* Header */
byte header[128];
static const byte header_data[] = {
0, 0, 0, 0, /* profile size **VARIABLE** */
0, 0, 0, 0, /* CMM type signature */
0x02, 0x20, 0, 0, /* profile version number */
's', 'c', 'n', 'r', /* profile class signature */
0, 0, 0, 0, /* data color space **VARIABLE** */
'X', 'Y', 'Z', ' ', /* connection color space */
2002 / 256, 2002 % 256, 0, 1, 0, 1, /* date (1/1/2002) */
0, 0, 0, 0, 0, 0, /* time */
'a', 'c', 's', 'p', /* profile file signature */
0, 0, 0, 0, /* primary platform signature */
0, 0, 0, 3, /* profile flags (embedded use only) */
0, 0, 0, 0, 0, 0, 0, 0, /* device manufacturer */
0, 0, 0, 0, /* device model */
0, 0, 0, 0, 0, 0, 0, 2 /* device attributes */
/* Remaining fields are zero or variable. */
/* [4] */ /* rendering intent */
/* 3 * [4] */ /* illuminant */
};
/* Description */
#define DESC_LENGTH 5 /* "adhoc" */
byte desc[12 + DESC_LENGTH + 1 + 11 + 67];
static const byte desc_data[] = {
'd', 'e', 's', 'c', /* type signature */
0, 0, 0, 0, /* reserved, 0 */
0, 0, 0, DESC_LENGTH + 1, /* ASCII description length */
'a', 'd', 'h', 'o', 'c', 0, /* ASCII description */
/* Remaining fields are zero. */
};
/* White point */
byte wtpt[20];
/* Copyright (useless, but required by icclib) */
static const byte cprt_data[] = {
't', 'e', 'x', 't', /* type signature */
0, 0, 0, 0, /* reserved, 0 */
'n', 'o', 'n', 'e', 0 /* must be null-terminated (!) */
};
/* Lookup table */
icc_a2b0_t a2b0;
/* [rgb]TRC */
byte rTRC[12], gTRC[12], bTRC[12];
/* [rgb]XYZ */
byte rXYZ[20], gXYZ[20], bXYZ[20];
/* Table structures */
#define MAX_NUM_TABLES 9 /* desc, [rgb]TRC, [rgb]xYZ, wtpt, cprt */
profile_table_t tables[MAX_NUM_TABLES];
profile_table_t *next_table = tables;
/* White point must be D50 */
white_d50.u = 0.9642f;
white_d50.v = 1.0f;
white_d50.w = 0.8249f;
pdf_cspace_init_Device(pdev->memory, &alt_space, ncomps); /* can't fail */
code = pdf_make_iccbased(pdev, pca, ncomps, prange, alt_space,
&pcstrm, pprange);
rc_decrement_cs(alt_space, "pdf_convert_cie_to_iccbased");
if (code < 0)
return code;
/* Fill in most of the header, except for the total size. */
memset(header, 0, sizeof(header));
memcpy(header, header_data, sizeof(header_data));
memcpy(header + 16, dcsname, 4);
/* Construct the tables. */
/* desc */
memset(desc, 0, sizeof(desc));
memcpy(desc, desc_data, sizeof(desc_data));
DISCARD(add_table(&next_table, "desc", desc, sizeof(desc)));
/* wtpt. must be D50 */
add_table_xyz3(&next_table, "wtpt", wtpt, &white_d50);
memcpy(header + 68, wtpt + 8, 12); /* illuminant = white point */
/* cprt */
/* (We have no use for this tag, but icclib requires it.) */
DISCARD(add_table(&next_table, "cprt", cprt_data, sizeof(cprt_data)));
/* Use TRC + XYZ if possible, otherwise AToB. */
if ((one_step == ONE_STEP_ABC || one_step == ONE_STEP_LMN) && pmat != 0) {
/* Use TRC + XYZ. */
profile_table_t *tr =
add_trc(&next_table, "rTRC", rTRC, pciec, one_step);
profile_table_t *tg =
add_trc(&next_table, "gTRC", gTRC, pciec, one_step);
profile_table_t *tb =
add_trc(&next_table, "bTRC", bTRC, pciec, one_step);
if (*pprange) {
tr->ranges = *pprange;
tg->ranges = *pprange + 1;
tb->ranges = *pprange + 2;
}
/* These values need to be adjusted to D50. Again
use XYZ wp mapping for now. Later we will add in
the bradford stuff */
adjust_wp(&(pmat->cu), &(pciec->points.WhitePoint), &temp_xyz, &white_d50);
add_table_xyz3(&next_table, "rXYZ", rXYZ, &temp_xyz);
adjust_wp(&(pmat->cv), &(pciec->points.WhitePoint), &temp_xyz, &white_d50);
add_table_xyz3(&next_table, "gXYZ", gXYZ, &temp_xyz);
adjust_wp(&(pmat->cw), &(pciec->points.WhitePoint), &temp_xyz, &white_d50);
add_table_xyz3(&next_table, "bXYZ", bXYZ, &temp_xyz);
} else {
/* General case, use a lookup table. */
/* AToB (mft2) */
profile_table_t *pnt = add_a2b0(&next_table, &a2b0, ncomps, pcs);
pnt->ranges = *pprange;
}
/* Write the profile. */
{
byte bytes[4 + MAX_NUM_TABLES * 12];
int num_tables = next_table - tables;
int i;
byte *p;
uint table_size = 4 + num_tables * 12;
uint offset = sizeof(header) + table_size;
set_uint32(bytes, next_table - tables);
for (i = 0, p = bytes + 4; i < num_tables; ++i, p += 12) {
memcpy(p, tables[i].tag, 4);
set_uint32(p + 4, offset);
set_uint32(p + 8, tables[i].length);
offset += round_up(tables[i].length, 4);
}
set_uint32(header, offset);
if ((code = cos_stream_add_bytes(pcstrm, header, sizeof(header))) < 0 ||
(code = cos_stream_add_bytes(pcstrm, bytes, table_size)) < 0
)
return code;
for (i = 0; i < num_tables; ++i) {
uint len = tables[i].data_length;
static const byte pad[3] = {0, 0, 0};
if ((code = cos_stream_add_bytes(pcstrm, tables[i].data, len)) < 0 ||
(tables[i].write != 0 &&
(code = tables[i].write(pcstrm, &tables[i], pdev->pdf_memory, pciec)) < 0) ||
(code = cos_stream_add_bytes(pcstrm, pad,
-(int)(tables[i].length) & 3)) < 0
)
return code;
}
}
return pdf_finish_iccbased(pcstrm);
}
/* ------ Entry points (from gdevpdfc.c) ------ */
/*
* Create an ICCBased color space. This is a single-use procedure,
* broken out only for readability.
*/
int
pdf_iccbased_color_space(gx_device_pdf *pdev, cos_value_t *pvalue,
const gs_color_space *pcs, cos_array_t *pca)
{
/*
* This would arise only in a pdf ==> pdf translation, but we
* should allow for it anyway.
*/
cos_stream_t * pcstrm;
int code =
pdf_make_iccbased(pdev, pca, pcs->cmm_icc_profile_data->num_comps,
pcs->cmm_icc_profile_data->Range.ranges,
pcs->base_space,
&pcstrm, NULL);
if (code < 0)
return code;
/* Transfer the buffer data */
code = cos_stream_add_bytes(pcstrm, pcs->cmm_icc_profile_data->buffer,
pcs->cmm_icc_profile_data->buffer_size);
if (code >= 0)
code = pdf_finish_iccbased(pcstrm);
/*
* The stream has been added to the array: in case of failure, the
* caller will free the array, so there is no need to free the stream
* explicitly here.
*/
return code;
}
/* Convert a CIEBased space to Lab or ICCBased. */
int
pdf_convert_cie_space(gx_device_pdf *pdev, cos_array_t *pca,
const gs_color_space *pcs, const char *dcsname,
const gs_cie_common *pciec, const gs_range *prange,
cie_cache_one_step_t one_step, const gs_matrix3 *pmat,
const gs_range_t **pprange)
{
return (pdev->CompatibilityLevel < 1.3 ?
/* PDF 1.2 or earlier, use a Lab space. */
pdf_convert_cie_to_lab(pdev, pca, pcs, pciec, prange) :
/* PDF 1.3 or later, use an ICCBased space. */
pdf_convert_cie_to_iccbased(pdev, pca, pcs, dcsname, pciec, prange,
one_step, pmat, pprange)
);
}
|