File: tutoriel.html

package info (click to toggle)
giac 1.6.0.41%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 64,540 kB
  • sloc: cpp: 351,842; ansic: 105,138; python: 30,545; javascript: 8,675; yacc: 2,690; lex: 2,449; makefile: 1,243; sh: 579; perl: 314; lisp: 216; asm: 62; java: 41; sed: 16; csh: 7; pascal: 6
file content (4227 lines) | stat: -rw-r--r-- 347,349 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
<!DOCTYPE html>
<html >
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta name="generator" content="hevea 2.32">
<style type="text/css">
.li-itemize{margin:1ex 0ex;}
.li-enumerate{margin:1ex 0ex;}
.dd-description{margin:0ex 0ex 1ex 4ex;}
.dt-description{margin:0ex;}
.toc{list-style:none;}
.footnotetext{margin:0ex; padding:0ex;}
div.footnotetext P{margin:0px; text-indent:1em;}
.thefootnotes{text-align:left;margin:0ex;}
.dt-thefootnotes{margin:0em;}
.dd-thefootnotes{margin:0em 0em 0em 2em;}
.footnoterule{margin:1em auto 1em 0px;width:50%;}
.caption{padding-left:2ex; padding-right:2ex; margin-left:auto; margin-right:auto}
.title{margin:2ex auto;text-align:center}
.titlemain{margin:1ex 2ex 2ex 1ex;}
.titlerest{margin:0ex 2ex;}
.center{text-align:center;margin-left:auto;margin-right:auto;}
.flushleft{text-align:left;margin-left:0ex;margin-right:auto;}
.flushright{text-align:right;margin-left:auto;margin-right:0ex;}
div table{margin-left:inherit;margin-right:inherit;margin-bottom:2px;margin-top:2px}
td table{margin:auto;}
table{border-collapse:collapse;}
td{padding:0;}
.cellpadding0 tr td{padding:0;}
.cellpadding1 tr td{padding:1px;}
pre{text-align:left;margin-left:0ex;margin-right:auto;}
blockquote{margin-left:4ex;margin-right:4ex;text-align:left;}
td p{margin:0px;}
.boxed{border:1px solid black}
.textboxed{border:1px solid black}
.vbar{border:none;width:2px;background-color:black;}
.hbar{border:none;height:2px;width:100%;background-color:black;}
.hfill{border:none;height:1px;width:200%;background-color:black;}
.vdisplay{border-collapse:separate;border-spacing:2px;width:auto; empty-cells:show; border:2px solid red;}
.vdcell{white-space:nowrap;padding:0px; border:2px solid green;}
.display{border-collapse:separate;border-spacing:2px;width:auto; border:none;}
.dcell{white-space:nowrap;padding:0px; border:none;}
.dcenter{margin:0ex auto;}
.vdcenter{border:solid #FF8000 2px; margin:0ex auto;}
.minipage{text-align:left; margin-left:0em; margin-right:auto;}
.marginpar{border:solid thin black; width:20%; text-align:left;}
.marginparleft{float:left; margin-left:0ex; margin-right:1ex;}
.marginparright{float:right; margin-left:1ex; margin-right:0ex;}
.theorem{text-align:left;margin:1ex auto 1ex 0ex;}
.part{margin:2ex auto;text-align:center}
</style>
<title>tutoriel</title>
</head>
<body >
<!--HEVEA command line is: /usr/bin/hevea -fix tutoriel.tex -->
<!--CUT STYLE article--><!--CUT DEF section 1 --><p>
<br>
<br>
<br>

</p><div class="center">
<span style="font-size:xx-large"><span style="font-size:150%">An </span></span><span style="font-size:xx-large"><span style="font-size:150%"><span style="font-family:monospace">Xcas</span></span></span><span style="font-size:xx-large"><span style="font-size:150%"> Tutorial</span></span>
</div><!--TOC section id="sec1" Contents-->
<h2 id="sec1" class="section">Contents</h2><!--SEC END --><ul class="toc"><li class="li-toc">
<a href="#sec2">1&#XA0;&#XA0;Getting started</a>
<ul class="toc"><li class="li-toc">
<a href="#sec3">1.1&#XA0;&#XA0;Starting <span style="font-family:monospace">Xcas</span></a>
</li><li class="li-toc"><a href="#sec4">1.2&#XA0;&#XA0;<span style="font-family:monospace">XCas</span> as a calculator</a>
</li><li class="li-toc"><a href="#sec5">1.3&#XA0;&#XA0;Functions and variables</a>
</li><li class="li-toc"><a href="#sec6">1.4&#XA0;&#XA0;Simplifying expressions</a>
</li><li class="li-toc"><a href="#sec7">1.5&#XA0;&#XA0;Graphs</a>
</li><li class="li-toc"><a href="#sec8">1.6&#XA0;&#XA0;The Help Index</a>
</li></ul>
</li><li class="li-toc"><a href="#sec9">2&#XA0;&#XA0;The interface</a>
<ul class="toc"><li class="li-toc">
<a href="#sec10">2.1&#XA0;&#XA0;Overview</a>
</li><li class="li-toc"><a href="#sec11">2.2&#XA0;&#XA0;The menu bar</a>
</li><li class="li-toc"><a href="#sec12">2.3&#XA0;&#XA0;Configuration</a>
</li><li class="li-toc"><a href="#sec13">2.4&#XA0;&#XA0;The command line</a>
</li></ul>
</li><li class="li-toc"><a href="#sec14">3&#XA0;&#XA0;Computational objects</a>
<ul class="toc"><li class="li-toc">
<a href="#sec15">3.1&#XA0;&#XA0;Numbers</a>
</li><li class="li-toc"><a href="#sec16">3.2&#XA0;&#XA0;Variables</a>
</li><li class="li-toc"><a href="#sec17">3.3&#XA0;&#XA0;Expressions</a>
</li><li class="li-toc"><a href="#sec18">3.4&#XA0;&#XA0;Functions</a>
</li><li class="li-toc"><a href="#sec19">3.5&#XA0;&#XA0;Lists, sequences and sets</a>
</li><li class="li-toc"><a href="#sec20">3.6&#XA0;&#XA0;Characters and strings</a>
</li><li class="li-toc"><a href="#sec21">3.7&#XA0;&#XA0;Calculation time and memory space</a>
</li></ul>
</li><li class="li-toc"><a href="#sec22">4&#XA0;&#XA0;Analysis with <span style="font-family:monospace">Xcas</span></a>
<ul class="toc"><li class="li-toc">
<a href="#sec23">4.1&#XA0;&#XA0;Derivatives</a>
</li><li class="li-toc"><a href="#sec24">4.2&#XA0;&#XA0;Limits and series</a>
</li><li class="li-toc"><a href="#sec25">4.3&#XA0;&#XA0;Antiderivatives and integrals</a>
</li><li class="li-toc"><a href="#sec26">4.4&#XA0;&#XA0;Solving equations</a>
</li><li class="li-toc"><a href="#sec27">4.5&#XA0;&#XA0;Differential equations</a>
</li></ul>
</li><li class="li-toc"><a href="#sec28">5&#XA0;&#XA0;Algebra with <span style="font-family:monospace">Xcas</span></a>
<ul class="toc"><li class="li-toc">
<a href="#sec29">5.1&#XA0;&#XA0;Integer arithmetic</a>
</li><li class="li-toc"><a href="#sec30">5.2&#XA0;&#XA0;Polynomials and rational functions</a>
</li><li class="li-toc"><a href="#sec31">5.3&#XA0;&#XA0;Trigonometry</a>
</li><li class="li-toc"><a href="#sec32">5.4&#XA0;&#XA0;Vectors and matrices</a>
</li><li class="li-toc"><a href="#sec33">5.5&#XA0;&#XA0;Linear systems</a>
</li><li class="li-toc"><a href="#sec34">5.6&#XA0;&#XA0;Matrix reduction</a>
</li></ul>
</li><li class="li-toc"><a href="#sec35">6&#XA0;&#XA0;Graphs</a>
<ul class="toc"><li class="li-toc">
<a href="#sec36">6.1&#XA0;&#XA0;Curves</a>
</li><li class="li-toc"><a href="#sec37">6.2&#XA0;&#XA0;Plane geometry</a>
</li><li class="li-toc"><a href="#sec38">6.3&#XA0;&#XA0;3D graphical objects</a>
</li></ul>
</li><li class="li-toc"><a href="#sec39">7&#XA0;&#XA0;Programming</a>
<ul class="toc"><li class="li-toc">
<a href="#sec40">7.1&#XA0;&#XA0;The language</a>
</li><li class="li-toc"><a href="#sec41">7.2&#XA0;&#XA0;Some examples</a>
</li><li class="li-toc"><a href="#sec42">7.3&#XA0;&#XA0;Programming style</a>
</li></ul>
</li><li class="li-toc"><a href="#sec43">8&#XA0;&#XA0;Exercises</a>
</li></ul><p><span style="font-family:monospace">Xcas</span> is a free (as in Free Software) computer algebra system.
Although there are other computer algebra systems, both free and
commercial, few if any are as versatile as <span style="font-family:monospace">Xcas</span>,
which is capable of, among other things:
</p><ul class="itemize"><li class="li-itemize">
Symbolic and numeric calculation.
</li><li class="li-itemize">Programming.
</li><li class="li-itemize">Graphing functions.
</li><li class="li-itemize">Working with spreadsheets.
</li><li class="li-itemize">Interactive geometry (both two- and three-dimensional).
</li><li class="li-itemize">Turtle geometry.
</li></ul><p>
This tutorial will briefly introduce you to calculating,
programming and graphing with <span style="font-family:monospace">Xcas</span>. The first section, 
&#X201C;Getting started&#X201D;, will be just enough information to get you
started. The second section will be a brief overview of the
graphic interface and the rest will be more in-depth tutorial.</p><p>For more information, you can refer to the manual or any of the other
sources of information under the <span style="font-family:monospace">Help</span> menu.</p>
<!--TOC section id="sec2" Getting started-->
<h2 id="sec2" class="section">1&#XA0;&#XA0;Getting started</h2><!--SEC END -->
<!--TOC subsection id="sec3" Starting <span style="font-family:monospace">Xcas</span>-->
<h3 id="sec3" class="subsection">1.1&#XA0;&#XA0;Starting <span style="font-family:monospace">Xcas</span></h3><!--SEC END --><p>
<a id="hevea_default0"></a></p><p><span style="font-family:monospace">Xcas</span> is available from 
<a href="http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html"><span style="font-family:monospace">http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html</span></a>.
<a id="hevea_default1"></a>
This page also has information on installation. Once installed, the
way to start the program depends on the operating system.
</p><ul class="itemize"><li class="li-itemize">
Under Windows, there should be a shortcut <span style="font-family:monospace">xcasen.bat</span> that
you can click on.
</li><li class="li-itemize">Under Linux, you can either find it on a menu provided by the
desktop environment, or enter <span style="font-family:monospace">xcas &amp;</span> in a terminal window.
</li><li class="li-itemize">Under MacOS, you can click on <span style="font-family:monospace">xcas</span> in the Applications menu.
</li></ul><p>
For this tutorial, you will mostly be working with the
command line, which will be a white rectangle next to the number
<span style="font-family:monospace">1</span>.<a id="hevea_default2"></a> There you can enter a command, after which there will be
a window with the result, followed by another command line with the
number <span style="font-family:monospace">2</span>.</p>
<!--TOC subsection id="sec4" <span style="font-family:monospace">XCas</span> as a calculator-->
<h3 id="sec4" class="subsection">1.2&#XA0;&#XA0;<span style="font-family:monospace">XCas</span> as a calculator</h3><!--SEC END --><p>Once you have started <span style="font-family:monospace">Xcas</span>, you can immediately use it as a
calculator. Simply type in the expression that you wish to
use using the standard arithmetic operators; namely <span style="font-family:monospace">+</span> for
addition, <span style="font-family:monospace">-</span> for subtraction, <span style="font-family:monospace">*</span> for multiplication,
<span style="font-family:monospace">/</span> for division and <span style="font-family:monospace">^</span> for exponentiation.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">34+45*12
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
574
</td></tr>
</table><p>
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">2/3 + 98/7
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">44</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">3</td></tr>
</table></td></tr>
</table><p>
The operators have a standard order of operations, and parentheses
can be used for grouping. (Brackets have a different meaning, see
section <a href="#lists">3.5</a>, &#X201C;Lists, sequences and sets&#X201D;.)</p><p>Notice that if you enter integers or other exact 
values,<a id="hevea_default3"></a>
<span style="font-family:monospace">Xcas</span> will give you the exact result. If you enter an
approximate value, such as a number with a decimal point (computers
regard numbers with decimal points as approximate values), then
<span style="font-family:monospace">Xcas</span> will give you an approximate 
result.<a id="hevea_default4"></a> For example, if
you enter
</p><blockquote class="quote"><span style="font-family:monospace">2/3 + 3/2
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">13</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">6</td></tr>
</table></td></tr>
</table><p>
but if you enter
</p><blockquote class="quote"><span style="font-family:monospace">2/3 + 1.5
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2.16666666667
</td></tr>
</table><p>
You can also get a decimal approximation using the <span style="font-family:monospace">evalf</span>
function.<a id="hevea_default5"></a> If you enter
</p><blockquote class="quote"><span style="font-family:monospace">evalf(2/3 + 3/2)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2.16666666667
</td></tr>
</table><p>
By default, <span style="font-family:monospace">Xcas</span> will give you 12 decimal places of accuracy
in its approximations, but this is configurable (see section
<a href="#config">2.3</a>, &#X201C;Configuration&#X201D;).</p><p><span style="font-family:monospace">Xcas</span> also has the standard functions, such as
<span style="font-family:monospace">sin</span>, <span style="font-family:monospace">cos</span>, <span style="font-family:monospace">asin</span> (for the arcsin),
<span style="font-family:monospace">log</span> (for the natural logarithm).
It also has common constants such as <span style="font-family:monospace">pi</span>, <span style="font-family:monospace">e</span> and <span style="font-family:monospace">i</span>.</p><p>The trigonometric functions assume that angles are measured in
radians. (This can be configured, see section <a href="#config">2.3</a>,
&#X201C;Configuration&#X201D;.) If you enter
</p><blockquote class="quote"><span style="font-family:monospace">sin(pi/4)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >2</td></tr>
</table></td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td></tr>
</table>
<!--TOC subsection id="sec5" Functions and variables-->
<h3 id="sec5" class="subsection">1.3&#XA0;&#XA0;Functions and variables</h3><!--SEC END --><p><span style="font-family:monospace">Xcas</span> can work with expressions and variables as well as 
numbers.<a id="hevea_default6"></a>
A variable in <span style="font-family:monospace">Xcas</span> needs to begin with a letter and can
include numbers and underscores. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">x^2 + x + 2*x + 2
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span><sup>2</sup>&#XA0;+&#XA0;3*<span style="font-style:italic">x</span>&#XA0;+&#XA0;2
</td></tr>
</table><p>
You can give a variable a value with the assignment operator,
<span style="font-family:monospace">:=</span>.<a id="hevea_default7"></a> To assign the variable
<span style="font-family:monospace">myvar</span> the value 5, for example, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">myvar := 5
</span></blockquote><p>
If you later use <span style="font-family:monospace">myvar</span> in an expression, it will be replaced
by <span style="font-family:monospace">5</span>; entering
</p><blockquote class="quote"><span style="font-family:monospace">myvar*x + myvar^2
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
5*<span style="font-style:italic">x</span>&#XA0;+&#XA0;25
</td></tr>
</table><p>The assignment operator can also be used to define 
functions.<a id="hevea_default8"></a> To
define the squaring function, for example, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">sqr(x) := x^2
</span></blockquote><p>
Afterwards, whenever you enter <span style="font-family:monospace">sqr(expression)</span> you will
get the expression squared. For example, entering
</p><blockquote class="quote"><span style="font-family:monospace">sqr(7)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
49
</td></tr>
</table><p>
and entering
</p><blockquote class="quote"><span style="font-family:monospace">sqr(x+1)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(<span style="font-style:italic">x</span>+1)<sup>2</sup>
</td></tr>
</table>
<!--TOC subsection id="sec6" Simplifying expressions-->
<h3 id="sec6" class="subsection">1.4&#XA0;&#XA0;Simplifying expressions</h3><!--SEC END --><p>When you enter an expression into <span style="font-family:monospace">Xcas</span>, some simplifications
will be done automatically. For example, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">a := 3
</span></blockquote><blockquote class="quote"><span style="font-family:monospace">b := 4
</span></blockquote><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">a*b*x + 4*b^2
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
12*<span style="font-style:italic">x</span>&#XA0;+&#XA0;64
</td></tr>
</table><p><span style="font-family:monospace">Xcas</span> has several transformations in case you want an
expression to be simplified beyond the automatic simplifications, or
perhaps transformed in another way. Some examples are:
</p><dl class="description"><dt class="dt-description">
<span style="font-weight:bold"><span style="font-family:monospace">expand</span></span></dt><dd class="dd-description"><a id="hevea_default9"></a>
This will expand integer powers, and more generally distribute
multiplication across addition. For example, if you enter
<blockquote class="quote"><span style="font-family:monospace">expand((x+1)^3)
</span></blockquote>
you will get
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span><sup>3</sup>&#XA0;+&#XA0;3*<span style="font-style:italic">x</span><sup>2</sup>&#XA0;+&#XA0;3*<span style="font-style:italic">x</span>&#XA0;+&#XA0;1
</td></tr>
</table></dd><dt class="dt-description"><span style="font-weight:bold"><span style="font-family:monospace">factor</span></span></dt><dd class="dd-description"><a id="hevea_default10"></a>
This will factor polynomials. For example, if you enter
<blockquote class="quote"><span style="font-family:monospace">factor(x^2 + 3*x + 2)
</span></blockquote>
you will get
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(<span style="font-style:italic">x</span>&#XA0;+&#XA0;1)*(<span style="font-style:italic">x</span>&#XA0;+&#XA0;2)
</td></tr>
</table>
</dd></dl>
<!--TOC subsection id="sec7" Graphs-->
<h3 id="sec7" class="subsection">1.5&#XA0;&#XA0;Graphs</h3><!--SEC END --><p><span style="font-family:monospace">Xcas</span> has several functions for plotting graphs; perhaps the
simplest is the <span style="font-family:monospace">plot</span> function.<a id="hevea_default11"></a> 
The <span style="font-family:monospace">plot</span> function requires two arguments, an expression to be
graphed and a variable. For example, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">plot(sin(x),x)
</span></blockquote><p>
you will get the graph
</p><div class="center">
<img src="tutoriel001.png">
</div><p>
To the right of the graph will be a panel you can use to control
various aspects. By default, the graph will cover values of the
variable from &#X2212;10 to 10; this is of course configurable (see
section <a href="#config">2.3</a>, &#X201C;Configuration&#X201D;). To plot
over a different interval you can also use a second argument of 
<span style="font-style:italic">var</span>=<span style="font-style:italic">min</span>..<span style="font-style:italic">max</span> instead of simply
<span style="font-style:italic">var</span>. For example, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">plot(sin(x),x=-pi..pi)
</span></blockquote><p>
you will get the graph
</p><div class="center">
<img src="tutoriel002.png">
</div>
<!--TOC subsection id="sec8" The Help Index-->
<h3 id="sec8" class="subsection">1.6&#XA0;&#XA0;The Help Index</h3><!--SEC END --><p>You can get a list of all <span style="font-family:monospace">Xcas</span> commands and variables using the
<span style="font-family:monospace">Help</span>&#X25B8;<span style="font-family:monospace">Index</span><a id="hevea_default12"></a> menu item.
This will bring up the following window:
</p><div class="center">
<img src="tutoriel003.png">
</div><p>
Under <span style="font-family:monospace">Index</span> will be a scrollable list of all the commands and
variables. 
If you begin typing to the right of the question mark, you will be
taken to the part of the list beginning with the characters you typed;
for example, if you type <span style="font-family:monospace">evalf</span>, <a id="hevea_default13"></a>
you will get the following:
</p><div class="center">
<img src="tutoriel004.png">
</div><p>
In the upper right-hand pane under <span style="font-family:monospace">Related</span> is a list of
commands related to the chosen command, below that is a list of
synonyms; you can see that the <span style="font-family:monospace">approx</span> command is the same as
the <span style="font-family:monospace">evalf</span> command. Below the line where you typed the
command name is a description of the command; here you
can see that <span style="font-family:monospace">evalf</span> takes an optional second argument
(brackets in the description indicate that an argument is optional)
which can specify the number of digits in the approximation; for
example, 
</p><blockquote class="quote"><span style="font-family:monospace">evalf(pi)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
3.14159265359
</td></tr>
</table><p>
but 
</p><blockquote class="quote"><span style="font-family:monospace">evalf(pi,20)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
3.1415926535897932385
</td></tr>
</table><p>
Below the description is a line where you can enter the arguments for
the command; if you enter values in these boxes then the command with
the chosen arguments will be placed on the <span style="font-family:monospace">Xcas</span> command line.
At the bottom of the help window is a list of examples of the command
being used; if you click on one of these examples it will appear on
the <span style="font-family:monospace">Xcas</span> command line.</p><p>As well as using the menu, you can get to the help 
index<a id="hevea_default14"></a> by using the
tab key while at the <span style="font-family:monospace">Xcas</span> command line. If you have typed
the beginning of a command before using the tab key, then that
beginning will be presented to you in the help index.</p>
<!--TOC section id="sec9" The interface-->
<h2 id="sec9" class="section">2&#XA0;&#XA0;The interface</h2><!--SEC END -->
<!--TOC subsection id="sec10" Overview-->
<h3 id="sec10" class="subsection">2.1&#XA0;&#XA0;Overview</h3><!--SEC END --><p>When you start <span style="font-family:monospace">Xcas</span>, you will be presented with a window which
looks like the following:
</p><div class="center">
<img src="tutoriel005.png">
</div><p>
From top to bottom, there is<a id="hevea_default15"></a>
</p><ul class="itemize"><li class="li-itemize">
A menu bar.<a id="hevea_default16"></a>
</li><li class="li-itemize">A tab indicating the name of the session, or <span style="font-family:monospace">Unnamed</span> if the
session has not been saved. You can run several sessions
simultaneously, in which case each session will get its own tab.
</li><li class="li-itemize">A session management bar, with
<ul class="itemize"><li class="li-itemize">
A <span style="font-family:monospace">?</span> button, which will open the help index.
</li><li class="li-itemize">A <span style="font-family:monospace">save</span> button to save the session.
</li><li class="li-itemize">A configuration button indicating how <span style="font-family:monospace">Xcas</span> is currently
configured. Clicking on this button will open a configuration
window.
</li><li class="li-itemize">A <span style="font-family:monospace">STOP</span> button you can use to interrupt a calculation
which is running on too long.
</li><li class="li-itemize">A <span style="font-family:monospace">Kbd</span> button to bring up an on-screen keyboard which you
can use to help enter your commands. It will come with a control panel
which you can use to display a message window (<span style="font-family:monospace">msg</span>) or
show an extra menu (<span style="font-family:monospace">cmds</span>) at the bottom.
</li><li class="li-itemize">An <span style="font-family:monospace">X</span> button to close the session.
</li></ul>
</li><li class="li-itemize">A numbered command line.
</li></ul>
<!--TOC subsection id="sec11" The menu bar-->
<h3 id="sec11" class="subsection">2.2&#XA0;&#XA0;The menu bar</h3><!--SEC END --><p>
<a id="hevea_default17"></a>
The menu items have submenus, and sometimes sub-submenus. When
indicating a submenu item, it will be separated from the menu item with
&#X25B8;; for example, you can save a session with
<span style="font-family:monospace">File</span>&#X25B8;<span style="font-family:monospace">Save</span>, which is the <span style="font-family:monospace">Save</span>
item in the <span style="font-family:monospace">File</span> menu.</p><p>The menu bar contains the usual menus for graphic programs. It also
contains all of the <span style="font-family:monospace">Xcas</span> commands grouped by themes. For
some commands, if you choose it from a menu then the command will be
put on the command line. If the message window is open (which you can
open with the
<span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Show</span>&#X25B8;<span style="font-family:monospace">msg</span>
menu item), a brief description of the command will appear in that
window. For other commands, for example the <span style="font-family:monospace">Graphic</span>
commands, you will get a dialog box which lets you specify the
arguments; afterwards, the command with the arguments will be placed
on the command line.</p><p>The <span style="font-family:monospace">Help</span> menu has links to the Help index, various manuals,
as well as the online forum. </p>
<!--TOC subsection id="sec12" Configuration-->
<h3 id="sec12" class="subsection">2.3&#XA0;&#XA0;Configuration</h3><!--SEC END --><p>
<a id="config"></a></p><p>The <span style="font-family:monospace">Cfg</span> menu has various items that allow you to configure
various aspects of <span style="font-family:monospace">Xcas</span>. This tutorial will
refer to the <span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Cas configuration</span> and 
<span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Graph configuration</span> menu items. The
<span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Cas configuration</span> menu item will
bring up the same configuration page as clicking on the status bar.
These items will bring up windows with various entry fields and
check boxes; after you make any changes, you can click the
<span style="font-family:monospace">Apply</span> button to apply them and the <span style="font-family:monospace">Save</span> button to
save them for future sessions.</p><p>The <span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Cas configuration</span> menu item will
bring up a window with options that determine how <span style="font-family:monospace">Xcas</span> computes.
This includes some things mentioned in this tutorial, such as:
</p><ul class="itemize"><li class="li-itemize">
<span style="font-weight:bold">Digits.</span><a id="hevea_default18"></a>
This entry field determines the number of significant digits used in
calculations. This resets the value of the variable <span style="font-family:monospace">Digits</span>,
which you can also reset from the command line.
</li><li class="li-itemize"><span style="font-weight:bold">epsilon.</span><a id="hevea_default19"></a>
This entry field determines how close the fraction returned by
<span style="font-family:monospace">exact</span> will be to the input. This resets the value of the
variable <span style="font-family:monospace">epsilon</span>, which you can also reset from the command
line.
</li><li class="li-itemize"><span style="font-weight:bold">radian.</span><a id="hevea_default20"></a>
This checkbox determines whether angles are measured in radians or
degrees.
</li><li class="li-itemize"><span style="font-weight:bold">Complex.</span><a id="hevea_default21"></a>
This checkbox determines whether computations will find complex
solutions to equations.
</li><li class="li-itemize"><span style="font-weight:bold">All_trig_sol.</span><a id="hevea_default22"></a>
This checkbox determines whether <span style="font-family:monospace">solve</span> will find the
primary solutions to trigonometric equations or all solutions.
</li></ul><p>The <span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Graph configuration</span> menu item
will bring up a window with options that determine how <span style="font-family:monospace">Xcas</span>
draws graphs. This includes the default ranges for the axes; the
<span style="font-style:italic">x</span>-axis will go from <span style="font-family:monospace">X-</span> to <span style="font-family:monospace">X+</span>, the <span style="font-style:italic">y</span>-axis will go
from <span style="font-family:monospace">Y-</span> to <span style="font-family:monospace">Y+</span> and the <span style="font-style:italic">z</span>-axis will go from
<span style="font-family:monospace">Z-</span> to <span style="font-family:monospace">Z+</span>.</p>
<!--TOC subsection id="sec13" The command line-->
<h3 id="sec13" class="subsection">2.4&#XA0;&#XA0;The command line</h3><!--SEC END --><p>
<a id="hevea_default23"></a></p><p>You can run a command by typing it into the command
line and pressing <span style="font-family:monospace">Enter</span>. If you want to enter more than one
command on a line, you can separate them with semicolons. If you want
to suppress the output of a command, you can end it with a
colon-semicolon (<span style="font-family:monospace">:;</span>).</p><p>If you have enough commands, there will be a scroll bar on the right
which you can use to scroll through different command line levels. The
<span style="font-family:monospace">Edit</span> menu will allow you to merge levels, group levels and
add comments.</p><p>All commands are kept in memory. You can scroll through previous
commands with <span style="font-family:monospace">Ctrl+</span> arrow keys, and modify them if you want.</p>
<!--TOC section id="sec14" Computational objects-->
<h2 id="sec14" class="section">3&#XA0;&#XA0;Computational objects</h2><!--SEC END -->
<!--TOC subsection id="sec15" Numbers-->
<h3 id="sec15" class="subsection">3.1&#XA0;&#XA0;Numbers</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Operations</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">+</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >addition</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">-</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >subtraction </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">*</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >multiplication </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">/</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >division</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">^</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >power </td></tr>
</table>
</div><p>
<a id="hevea_default24"></a>
<a id="hevea_default25"></a>
<a id="hevea_default26"></a>
<a id="hevea_default27"></a>
<a id="hevea_default28"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Conversions</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">evalf</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximate a number</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">exact</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >find an exact number close to the given number</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">epsilon</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >determine how close a fraction has to be to
a floating point number to be returned by
		 <span style="font-family:monospace">exact</span></td></tr>
</table>
</div><p>
<a id="hevea_default29"></a>
<a id="hevea_default30"></a>
<a id="hevea_default31"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Constants</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">pi</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >&#X3C0;&#X2243; 3.14159265359 </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">e</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-style:italic">e</span> &#X2243; 2.71828182846 </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">i</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-style:italic">i</span>=&#X221A;<span style="text-decoration:overline">&#X2212;1</span> </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">infinity</span> or <span style="font-family:monospace">inf</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >&#X221E; </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">+infinity</span> or <span style="font-family:monospace">+inf</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >+&#X221E; </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">-infinity</span> or <span style="font-family:monospace">-inf</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >&#X2212;&#X221E; </td></tr>
</table>
</div><p>
<a id="hevea_default32"></a>
<a id="hevea_default33"></a>
<a id="hevea_default34"></a>
<a id="hevea_default35"></a>
<a id="hevea_default36"></a></p><p>There are two types of numbers in <span style="font-family:monospace">Xcas</span>, approximate and exact.</p><p>Computer programs like <span style="font-family:monospace">Xcas</span> regard floating point numbers,
which are numbers displayed with decimal points, as 
approximations.<a id="hevea_default37"></a> Other
numbers will be regarded as exact.<a id="hevea_default38"></a> For example, the number
<span style="font-family:monospace">2</span> is exactly 2, while <span style="font-family:monospace">2.0</span> represents a number that
equals 2 to within the current precision, which by default is about 12
significant digits (see section <a href="#config">2.3</a>, &#X201C;Configuration&#X201D;).
Approximate numbers can be entered by
typing in a number with a decimal point or in scientific notation
(which is a decimal number followed by <span style="font-family:monospace">e</span> and then an integer,
where the integer represents the power of 10). So <span style="font-family:monospace">2000.0</span>,
<span style="font-family:monospace">2e3</span> and <span style="font-family:monospace">2.0e3</span> all represent the same approximate
number.</p><p>Exact numbers are integers, symbolic constants (like <span style="font-style:italic">e</span> and &#X3C0;),
and numeric expressions which only involve exact 
numbers.<a id="hevea_default39"></a> For example,
sin(1) will be exact, and so won&#X2019;t be given a decimal
approximation; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">sin(1)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
sin(1)
</td></tr>
</table><p>
However, sin(1.0) involves the approximate number <span style="font-family:monospace">1.0</span>, and
so will be regarded as approximate itself. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">sin(1.0)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
0.841470984808
</td></tr>
</table><p>As with many computer languages, if you enter an integer beginning
with the digit 0, the <span style="font-family:monospace">Xcas</span> will regard it as an integer
base 8;<a id="hevea_default40"></a> if you enter
</p><blockquote class="quote"><span style="font-family:monospace">011
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
9
</td></tr>
</table><p>
since 11 is the base 8 representation of the decimal number 9.
Similarly, if you write <span style="font-family:monospace">0x</span> at the beginning of an integer,
<span style="font-family:monospace">Xcas</span> will regard it as a hexadecimal (base 16) 
integer.<a id="hevea_default41"></a> If you enter
</p><blockquote class="quote"><span style="font-family:monospace">0x11
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
17
</td></tr>
</table><p>
since 11 is the base 16 representation of the decimal number 17.</p><p>The symbolic constants that are built in to <span style="font-family:monospace">Xcas</span> are
<span style="font-family:monospace">pi</span>, <span style="font-family:monospace">e</span>, <span style="font-family:monospace">i</span>, <span style="font-family:monospace">infinity</span>,
<span style="font-family:monospace">+infinity</span> and <span style="font-family:monospace">-infinity</span>.
Note that <span style="font-family:monospace">Xcas</span> distinguishes between <span style="font-family:monospace">+infinity</span>,
<span style="font-family:monospace">-infinity</span> and <span style="font-family:monospace">infinity</span>, which is unsigned infinity.
The distinction can be noted in the following calculations:
</p><blockquote class="quote"><span style="font-family:monospace">1/0
</span></blockquote><p>
will result in <span style="font-family:monospace">infinity</span>,
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X221E;
</td></tr>
</table><p>
while
</p><blockquote class="quote"><span style="font-family:monospace">(1/0)^2
</span></blockquote><p>
will result in <span style="font-family:monospace">+infinity</span>,
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
+&#X221E;
</td></tr>
</table><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">-(1/0)^2
</span></blockquote><p>
will result in <span style="font-family:monospace">-infinity</span>,
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X2212;&#X221E;
</td></tr>
</table><p>
These variables cannot be reassigned; in particular, the variable
<span style="font-family:monospace">i</span> can&#X2019;t be used as a loop index.</p><p><span style="font-family:monospace">Xcas</span> can handle integers of arbitrary length; if, for
example, you enter
</p><blockquote class="quote"><span style="font-family:monospace">500!
</span></blockquote><p>
you will be given all 1135 digits of the factorial of 500.</p><p>When <span style="font-family:monospace">Xcas</span> combines two numbers, the result will be exact
unless one of the numbers is approximate, in which case the result
will be approximate. For example, entering
</p><blockquote class="quote"><span style="font-family:monospace">3/2 + 1
</span></blockquote><p>
will return the exact value
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">5</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td></tr>
</table><p>
while entering
</p><blockquote class="quote"><span style="font-family:monospace">1.5 + 1
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2.5
</td></tr>
</table><p>The <span style="font-family:monospace">evalf</span><a id="hevea_default42"></a> function will
transform a number to an approximate value. While entering
</p><blockquote class="quote"><span style="font-family:monospace">sqrt(2)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >2</td></tr>
</table></td></tr>
</table><p>
entering
</p><blockquote class="quote"><span style="font-family:monospace">evalf(sqrt(2))
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1.41421356237
</td></tr>
</table><p>
which is the square root of two to the default precision, in this case
12 digits. The <span style="font-family:monospace">evalf</span> function can also take a second
argument which you can use to specify how many digits of precision
that you want; for example if you want to know the square root of two
to 50 digits, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">evalf(sqrt(2),50)
</span></blockquote><p>
and get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1.4142135623730950488016887242096980785696718753770
</td></tr>
</table><p>The <span style="font-family:monospace">exact</span><a id="hevea_default43"></a> function will turn 
an approximate value into a nearby
exact value. Specifically, given an approximate value <span style="font-style:italic">x</span>,
<span style="font-family:monospace">exact(</span><span style="font-style:italic">x</span><span style="font-family:monospace">)</span> will be a rational number <span style="font-style:italic">r</span> with
|<span style="font-style:italic">x</span> &#X2212; <span style="font-style:italic">r</span>| &lt; &#X454;, where &#X454; is the value of the variable
<span style="font-family:monospace">epsilon</span>, which has a default value of 10<sup>&#X2212;12</sup>. This value
is configurable (see section <a href="#config">2.3</a>, &#X201C;Configuration&#X201D;).</p>
<!--TOC subsection id="sec16" Variables-->
<h3 id="sec16" class="subsection">3.2&#XA0;&#XA0;Variables</h3><!--SEC END --><p>
<a id="hevea_default44"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Variables</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">:=</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >assignment </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">subst</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >give a variable a value for a single instance</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">assume</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >put assumptions on variables </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">and</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >combine assumptions</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">or</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >combine assumptions</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">purge</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >remove values and assumptions attached to variables </td></tr>
</table>
</div><p>
<a id="hevea_default45"></a>
<a id="hevea_default46"></a>
<a id="hevea_default47"></a>
<a id="hevea_default48"></a>
<a id="hevea_default49"></a>
<a id="hevea_default50"></a></p><p>A variable in <span style="font-family:monospace">Xcas</span> begins with a letter and can contain
letters, numbers and underscores. </p><p>A variable can be given a value with the assignment operator <span style="font-family:monospace">:=</span>.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">a := 3
</span></blockquote><p>
then <span style="font-family:monospace">a</span> will be replaced by <span style="font-family:monospace">3</span> in all later
calculations. If you later enter
</p><blockquote class="quote"><span style="font-family:monospace">4*a^2
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
36
</td></tr>
</table><p>
The <span style="font-family:monospace">purge</span> command will unassign a variable; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">purge(a)
</span></blockquote><p>
and then
</p><blockquote class="quote"><span style="font-family:monospace">4*a^2
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
4&#XB7;&#XA0;<span style="font-style:italic">a</span><sup>2</sup>
</td></tr>
</table><p>The assignment operator <span style="font-family:monospace">:=</span> is one of three types of
equalities used in <span style="font-family:monospace">Xcas</span>. They are
</p><ul class="itemize"><li class="li-itemize">
The assignment operator, <span style="font-family:monospace">:=</span>,<a id="hevea_default51"></a> 
which is used to assign values.
</li><li class="li-itemize">The Boolean equality, <span style="font-family:monospace">==</span>,<a id="hevea_default52"></a> 
which tells you whether two
quantities are equal to each other or not. If you enter
<span style="font-style:italic">A</span><span style="font-family:monospace">==</span><span style="font-style:italic">B</span>, then you will get either
<span style="font-family:monospace">true</span> or <span style="font-family:monospace">false</span> as a result. The predefined
constants <span style="font-family:monospace">true</span> and <span style="font-family:monospace">True</span> are equal to 1, the
predefined constants <span style="font-family:monospace">false</span> and <span style="font-family:monospace">False</span> are equal to 0.
<a id="hevea_default53"></a>
<a id="hevea_default54"></a>
<a id="hevea_default55"></a>
<a id="hevea_default56"></a>
<a id="hevea_default57"></a>
<a id="hevea_default58"></a> 
</li><li class="li-itemize">The equal sign <span style="font-family:monospace">=</span><a id="hevea_default59"></a> is used to define an 
equation. In this case, the equation will be the expression.
<a id="hevea_default60"></a>
<a id="hevea_default61"></a>
</li></ul><p>If you want to replace a variable by a value for a single expression,
you can use the <span style="font-family:monospace">subst</span> command. This command takes an
expression and an equation <span style="font-style:italic">var</span> <span style="font-family:monospace">=</span> <span style="font-style:italic">value</span> as a
second argument. If <span style="font-family:monospace">a</span> is an unassigned variable, for example, then
entering
</p><blockquote class="quote"><span style="font-family:monospace">subst(a^2 + 2, a=3)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
11
</td></tr>
</table><p>
Afterwards, <span style="font-family:monospace">a</span> will still be unassigned.</p><p>Even without giving a variable a value, you can still tell
<span style="font-family:monospace">Xcas</span> some of its properties with the <span style="font-family:monospace">assume</span> command.
For example, for a real number <span style="font-style:italic">a</span>, the expression &#X221A;<span style="text-decoration:overline"><span style="font-style:italic">a</span></span><sup><span style="text-decoration:overline">2</span></sup>
simplifies to |<span style="font-style:italic">a</span>|, since <span style="font-style:italic">a</span> could be positive or negative. If you
enter 
</p><blockquote class="quote"><span style="font-family:monospace">sqrt(a^2)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
|<span style="font-style:italic">a</span>|
</td></tr>
</table><p>
If you enter 
</p><blockquote class="quote"><span style="font-family:monospace">assume(a&lt;0)
</span></blockquote><p>
beforehand, then <span style="font-family:monospace">Xcas</span> will work under the assumption that
<span style="font-family:monospace">a</span> is negative, and so entering
</p><blockquote class="quote"><span style="font-family:monospace">sqrt(a^2)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X2212;<span style="font-style:italic">a</span>
</td></tr>
</table><p>
As well as assuming that a variable satifies an equation or
inequality, you can use the keywords <span style="font-family:monospace">and</span> and <span style="font-family:monospace">or</span> to
assume that a variable satisifies more than one inequality. Some
assumptions on a variable require a second argument; for example, to
assume that <span style="font-style:italic">a</span> is an integer you can enter
</p><blockquote class="quote"><span style="font-family:monospace">assume(a,integer)
</span></blockquote><p><a id="hevea_default62"></a>
Afterwards
</p><blockquote class="quote"><span style="font-family:monospace">sin(a*pi)
</span></blockquote><p>
will result in 
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
0
</td></tr>
</table><p>
The <span style="font-family:monospace">purge</span> command will remove any assumptions about a
variable as well as any assigned values.</p>
<!--TOC subsection id="sec17" Expressions-->
<h3 id="sec17" class="subsection">3.3&#XA0;&#XA0;Expressions</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Conversions</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">expand</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >expand powers and distribute multiplication </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">normal</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >reduce to lowest terms</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ratnormal</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >reduce to lowest terms</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">factor</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >factor</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">simplify</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >reduce an expression to simpler form</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tsimplify</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >reduce and expression to simpler form</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">convert</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert an expression to a different type</td></tr>
</table>
</div><p>
<a id="hevea_default63"></a>
<a id="hevea_default64"></a>
<a id="hevea_default65"></a>
<a id="hevea_default66"></a>
<a id="hevea_default67"></a>
<a id="hevea_default68"></a>
<a id="hevea_default69"></a></p><p>An expression is a combination of numbers and variables combined by
arithmetic operators. For example, <span style="font-family:monospace">x^2 + 2*x + c</span> is an
expression. </p><p>When you enter an expression, <span style="font-family:monospace">Xcas</span> will perform some
automatic simplifications,<a id="hevea_default70"></a> such as
</p><ul class="itemize"><li class="li-itemize">
Any variables that have been assigned are replaced by their values.
</li><li class="li-itemize">Operations on numbers are performed.
</li><li class="li-itemize">Trivial simplifications, such as <span style="font-style:italic">x</span>+0=<span style="font-style:italic">x</span> and <span style="font-style:italic">x</span>&#XB7; 0 = 0, are made.
</li><li class="li-itemize">Some trigonometric forms are rewritten; for example, <span style="font-family:monospace">cos(-x)</span> is
replaced by <span style="font-family:monospace">cos(x)</span> and <span style="font-family:monospace">cos(pi/4)</span> is replaced by &#X221A;<span style="text-decoration:overline">2</span>/2.
</li></ul><p>Other simplifications are not done automatically, since it isn&#X2019;t
always clear what sort of simplifications the user might want, and
besides non-trivial simplifications are time-consuming.
The most used commands for simplifying and transforming commands are:
</p><dl class="description"><dt class="dt-description">
<span style="font-weight:bold"><span style="font-family:monospace">expand</span></span></dt><dd class="dd-description">
This will expand integer powers and more generally distribute
multiplication across addition. For example, if you enter
<blockquote class="quote"><span style="font-family:monospace">expand((x+1)^3)
</span></blockquote>
you will get
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span><sup>3</sup>&#XA0;+&#XA0;3*<span style="font-style:italic">x</span><sup>2</sup>&#XA0;+&#XA0;3*<span style="font-style:italic">x</span>&#XA0;+&#XA0;1
</td></tr>
</table></dd><dt class="dt-description"><span style="font-weight:bold"><span style="font-family:monospace">normal</span></span><span style="font-weight:bold"> and </span><span style="font-weight:bold"><span style="font-family:monospace">ratnormal</span></span></dt><dd class="dd-description">
These commands will reduce a rational function to lowest terms. For
example, if you enter
<blockquote class="quote"><span style="font-family:monospace">normal((x^3-1)/(x^2-1))
</span></blockquote>
then <span style="font-family:monospace">Xcas</span> will cancel a common factor of <span style="font-style:italic">x</span>&#X2212;1 from the top
and bottom and return
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup>+<span style="font-style:italic">x</span>+1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>+1</td></tr>
</table></td></tr>
</table>
<span style="font-family:monospace">ratnormal</span> will have the same behavior on this expression.
The difference between the two commands is that <span style="font-family:monospace">ratnormal</span>
does not take into account reductions with algebraic numbers, while
<span style="font-family:monospace">normal</span> does. If you enter
<blockquote class="quote"><span style="font-family:monospace">ratnormal((x^2-2)/(x-sqrt(2)))
</span></blockquote>
you will get
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup>&#X2212;2</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">x</span>&#X2212;</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >2</td></tr>
</table></td></tr>
</table></td></tr>
</table></td></tr>
</table>
but if you enter
<blockquote class="quote"><span style="font-family:monospace">normal((x^2-2)/(x-sqrt(2)))
</span></blockquote>
you will get
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span>+</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >2</td></tr>
</table></td></tr>
</table><p>Neither of these commands will take into account relationships
between transcendental functions such as <span style="font-family:monospace">sin</span> and <span style="font-family:monospace">cos</span>.</p></dd><dt class="dt-description"><span style="font-weight:bold"><span style="font-family:monospace">factor</span></span></dt><dd class="dd-description">
This will factor polynomials and reduce rational expressions. This
is a little slower than <span style="font-family:monospace">normal</span> and <span style="font-family:monospace">ratnormal</span> and
different in that it will give the result in factored form. For
example, if you enter 
<blockquote class="quote"><span style="font-family:monospace">factor(x^2 + 3*x + 2)
</span></blockquote>
you will get
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(<span style="font-style:italic">x</span>&#XA0;+&#XA0;1)*(<span style="font-style:italic">x</span>&#XA0;+&#XA0;2)
</td></tr>
</table></dd><dt class="dt-description"><span style="font-weight:bold"><span style="font-family:monospace">simplify</span></span></dt><dd class="dd-description">
This command will try to reduce an expression to algebraically
independent variables, then it will apply <span style="font-family:monospace">normal</span>.
Simplifications requiring algebraic extensions (such as roots) may
require two calls to <span style="font-family:monospace">simplify</span> and possibly adding some
assumptions with <span style="font-family:monospace">assume</span>. </dd><dt class="dt-description"><span style="font-weight:bold"><span style="font-family:monospace">tsimplify</span></span></dt><dd class="dd-description">
Like <span style="font-family:monospace">simplify</span>, this will try to reduce an expression to
algebraically independent variables, but will not apply
<span style="font-family:monospace">normal</span> afterwards.
</dd></dl><p>The <span style="font-family:monospace">convert</span> command will rewrite expressions to different
formats; the first argument will be the expression and the second
argument will indicate the format to convert the expression to. For
example, you can convert <span style="font-style:italic">e</span><sup><span style="font-style:italic">i</span> &#X3B8;</sup> to sines and 
cosines<a id="hevea_default71"></a> with
</p><blockquote class="quote"><span style="font-family:monospace">convert(exp(i*theta),sincos)
</span></blockquote><p>
the result will be
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
cos(&#X3B8;)&#XA0;+&#XA0;<span style="font-style:italic">i</span>*sin(&#X3B8;)
</td></tr>
</table><p>
You can use <span style="font-family:monospace">convert</span> to find the partial fraction
decomposition of a rational expression with a second argument of
<span style="font-family:monospace">partfrac</span>;<a id="hevea_default72"></a> 
for example, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">convert((x-1)/(x^2 - x -2), partfrac)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">2</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>+1)*3</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>&#X2212;2)*3</td></tr>
</table></td></tr>
</table>
<!--TOC subsection id="sec18" Functions-->
<h3 id="sec18" class="subsection">3.4&#XA0;&#XA0;Functions</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Common functions</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">abs</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >absolute value</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sign</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >sign (-1,0,+1)</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">max</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >maximum</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">min</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >minimum</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">round</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >round to the nearest integer </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">floor</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >greatest integer less than or equal to</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">frac</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >fractional part</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ceil</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >least integer greater than or equal to</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">re</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >real part</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">im</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >imaginary part</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">abs</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >absolute value</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">arg</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >argument</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">conj</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >conjugate</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">coordinates</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the coordinates of a point</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">factorial</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >factorial</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">!</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >factorial</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sqrt</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >square root</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">exp</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >exponential</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">log</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >natural logarithm</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ln</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >natural logarithm</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">log10</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >logarithm base 10</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sin</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >sine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cos</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >cosine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tan</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >tangent</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >cotangent</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">asin</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >arcsine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">acos</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >arccosine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">atan</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >arctangent</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sinh</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >hyperbolic sine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cosh</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >hyperbolic cosine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tanh</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >hyperbolic tangent</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">asinh</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >inverse hyperbolic sine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">acosh</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >inverse hyperbolic cosine</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">atanh</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >inverse hyperbolic tangent</td></tr>
</table>
</div><p>
<a id="hevea_default73"></a>
<a id="hevea_default74"></a>
<a id="hevea_default75"></a>
<a id="hevea_default76"></a>
<a id="hevea_default77"></a>
<a id="hevea_default78"></a>
<a id="hevea_default79"></a>
<a id="hevea_default80"></a>
<a id="hevea_default81"></a>
<a id="hevea_default82"></a>
<a id="hevea_default83"></a>
<a id="hevea_default84"></a>
<a id="hevea_default85"></a>
<a id="hevea_default86"></a>
<a id="hevea_default87"></a>
<a id="hevea_default88"></a>
<a id="hevea_default89"></a>
<a id="hevea_default90"></a>
<a id="hevea_default91"></a>
<a id="hevea_default92"></a>
<a id="hevea_default93"></a>
<a id="hevea_default94"></a>
<a id="hevea_default95"></a>
<a id="hevea_default96"></a>
<a id="hevea_default97"></a>
<a id="hevea_default98"></a>
<a id="hevea_default99"></a>
<a id="hevea_default100"></a>
<a id="hevea_default101"></a>
<a id="hevea_default102"></a>
<a id="hevea_default103"></a>
<a id="hevea_default104"></a>
<a id="hevea_default105"></a>
<a id="hevea_default106"></a>
<a id="hevea_default107"></a>
<a id="hevea_default108"></a>
<a id="hevea_default109"></a>
<a id="hevea_default110"></a>
<a id="hevea_default111"></a>
<a id="hevea_default112"></a>
<a id="hevea_default113"></a>
<a id="hevea_default114"></a>
<a id="hevea_default115"></a>
<a id="hevea_default116"></a>
<a id="hevea_default117"></a>
<a id="hevea_default118"></a>
<a id="hevea_default119"></a>
<a id="hevea_default120"></a>
<a id="hevea_default121"></a>
<a id="hevea_default122"></a>
<a id="hevea_default123"></a>
<a id="hevea_default124"></a>
<a id="hevea_default125"></a>
<a id="hevea_default126"></a>
<a id="hevea_default127"></a>
<a id="hevea_default128"></a>
<a id="hevea_default129"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Create functions</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">:=</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >assign an expression to a function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">-&gt;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >define a function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">unapply</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >turn an expression into a function</td></tr>
</table>
</div><p>
<a id="hevea_default130"></a>
<a id="hevea_default131"></a></p><p><span style="font-family:monospace">Xcas</span> has many built in functions; you can get a complete list
with the help index. You can also define your own functions with the
assignment (<span style="font-family:monospace">:=</span>) operator.
To define a function <span style="font-style:italic">f</span> given by <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>) = <span style="font-style:italic">x</span>*exp(<span style="font-style:italic">x</span>), for example, you
can enter 
</p><blockquote class="quote"><span style="font-family:monospace">f(x) := x*exp(x)
</span></blockquote><p>
Note that in this case the name of the function is <span style="font-style:italic">f</span>; <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>) is the
value of the function evaluated at <span style="font-style:italic">x</span>. The function is a rule which
takes an input <span style="font-family:monospace">x</span> and returns <span style="font-family:monospace">x*exp(x)</span>. This rule
can be written without giving it a name as <span style="font-family:monospace">x -&gt; x*exp(x)</span>. In
fact, another way you can define the function <span style="font-style:italic">f</span> as above is
</p><blockquote class="quote"><span style="font-family:monospace">f := x -&gt;x*exp(x)
</span></blockquote><p>
In either case, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">f(2)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2*exp(2)
</td></tr>
</table><p>You can similarly define functions of more than one variable.
For example, to convert polar coordinates to rectangular coordinates,
you could define
</p><blockquote class="quote"><span style="font-family:monospace">p(r,theta) := (r*cos(theta), r*sin(theta))
</span></blockquote><p>
or equivalently
</p><blockquote class="quote"><span style="font-family:monospace">p := (r, theta) -&gt; (r*cos(theta),r*sin(theta))
</span></blockquote><p>The <span style="font-family:monospace">unapply</span> command will transform an expression into a
function. It takes as arguments an expression and a variable, it will
return the function defined by the expression. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">unapply(x*exp(x),x)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span>&#XA0;&#X2212;&gt;<span style="font-style:italic">x</span>*exp(<span style="font-style:italic">x</span>)
</td></tr>
</table><p>
The <span style="font-family:monospace">unapply</span> command will return the function written in terms
of built in functions; for example, for the function <span style="font-style:italic">f</span> defined
above, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">unapply(f(x),x)
</span></blockquote><p>
you will also get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span>&#XA0;&#X2212;&gt;<span style="font-style:italic">x</span>*exp(<span style="font-style:italic">x</span>)
</td></tr>
</table><p>You can define a function in terms of a function that you previously
defined, but it&#X2019;s probably better to define any new functions in
terms of built-in functions. For example, if you define
</p><blockquote class="quote"><span style="font-family:monospace">f(x) := exp(x)*sin(x)
</span></blockquote><p>
you can define a new function
</p><blockquote class="quote"><span style="font-family:monospace">g(x) := x*f(x)
</span></blockquote><p>
but it might be better to write
</p><blockquote class="quote"><span style="font-family:monospace">g(x) := x*exp(x)*sin(x)
</span></blockquote><p>
Perhaps a better alternative is to use <span style="font-family:monospace">unapply</span>; you can
define <span style="font-family:monospace">g</span> by
<span style="font-family:monospace">g := unapply(x*f(x),x)</span></p><p>In some cases, it will be necessary to use <span style="font-family:monospace">unapply</span> to define
a function. For example (see section <a href="#deriv">4.1</a>, &#X201C;Derivatives&#X201D;),
the <span style="font-family:monospace">diff</span> command will
find the derivative of an expression; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">diff(x*sin(x),x)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
sin(<span style="font-style:italic">x</span>)&#XA0;+&#XA0;<span style="font-style:italic">x</span>&#XA0;*&#XA0;cos(<span style="font-style:italic">x</span>)
</td></tr>
</table><p>
However, you cannot simply define a function
<span style="font-family:monospace">g(x) := diff(x*sin(x),x)</span>
if you tried to do this, then evaluating <span style="font-family:monospace">g(0)</span> for example
would give you <span style="font-family:monospace">diff(0*sin(0),0)</span>, which is not what you want.
Instead, you could define <span style="font-family:monospace">g</span> by
</p><blockquote class="quote"><span style="font-family:monospace">g := unapply(diff(x*sin(x),x)
</span></blockquote><p>Another case where you need to use <span style="font-family:monospace">unapply</span> to define a
function is when you have a function of two variables and you want to
use it to define a function of one variable, where the other variable
is a parameter. For example, consider the polar coordinate function
</p><blockquote class="quote"><span style="font-family:monospace">p(r,theta) := (r*cos(theta), r*sin(theta))
</span></blockquote><p>
If you want to use this to define <span style="font-family:monospace">C(r)</span> as a function of
&#X3B8; for any value of <span style="font-style:italic">r</span>, you cannot simply define it as
</p><blockquote class="quote"><span style="font-family:monospace">C(r) := p(r,theta)
</span></blockquote><p>
Doing this will define <span style="font-family:monospace">C(r)</span> as an expression involving
&#X3B8;, not a function of &#X3B8;. Entering
</p><blockquote class="quote"><span style="font-family:monospace">C(1)(pi/4)
</span></blockquote><p>
would be the same as
</p><blockquote class="quote"><span style="font-family:monospace">(cos(theta),sin(theta))(pi/4)
</span></blockquote><p>
which is not what you want. To define <span style="font-family:monospace">C(r)</span>, you
would have to use <span style="font-family:monospace">unapply</span>:
</p><blockquote class="quote"><span style="font-family:monospace">C(r) := unapply(p(r,theta),theta)
</span></blockquote><p>The necessity of using <span style="font-family:monospace">unapply</span> in these cases is because when
you define a function, the right hand side of the assignment is 
not evaluated. For example, if you try to define the squaring
function by
</p><blockquote class="quote"><span style="font-family:monospace">sq := x^2
</span></blockquote><blockquote class="quote"><span style="font-family:monospace">f(x) := sq
</span></blockquote><p>
it will not work; if you enter <span style="font-family:monospace">f(5)</span>, for example, it will
get the value <span style="font-family:monospace">sq</span>, which will then be replaced by its value.
You will end up getting <span style="font-family:monospace">x^2</span> and not <span style="font-family:monospace">5^2</span>. You
should either define the function <span style="font-family:monospace">f</span> by
</p><blockquote class="quote"><span style="font-family:monospace">f(x) := x^2
</span></blockquote><p>
or perhaps
</p><blockquote class="quote"><span style="font-family:monospace">f := unapply(sq,x)
</span></blockquote><p>Functions (not just expressions) can be added and multiplied. To
define a function which is the sine function times the exponential,
instead of defining <span style="font-family:monospace">f(x)</span> as the expression
<span style="font-family:monospace">sin(x)*exp(x)</span>, you could simply enter
</p><blockquote class="quote"><span style="font-family:monospace">f := sin*exp
</span></blockquote><p>
Functions can also be composed with the <span style="font-family:monospace">@</span> symbol. For example, if
you define functions <span style="font-family:monospace">f</span> and <span style="font-family:monospace">g</span> by
</p><blockquote class="quote"><span style="font-family:monospace">f(x) := x^2 + 1
</span></blockquote><blockquote class="quote"><span style="font-family:monospace">g(x) := sin(x)
</span></blockquote><p>
then 
</p><blockquote class="quote"><span style="font-family:monospace">f @ g
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span>&#XA0;&#X2212;&gt;(sin(<span style="font-style:italic">x</span>))<sup>2</sup>&#XA0;+&#XA0;1
</td></tr>
</table><p>
You can use the <span style="font-family:monospace">@</span> operator to compose a function with itself;
<span style="font-family:monospace">f@f(x)</span> is the same as <span style="font-family:monospace">f(f(x))</span>, but if you want to
compose a function with itself several times, you can use the
<span style="font-family:monospace">@@</span> operator. Entering <span style="font-family:monospace">f @@ </span><span style="font-style:italic">n</span> for a positive
integer <span style="font-style:italic">n</span> will give you the composition of <span style="font-style:italic">f</span> with itself <span style="font-style:italic">n</span>
times; for example, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">sin @@ 3
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span>&#XA0;&#X2212;&gt;&#XA0;sin(sin(sin(<span style="font-style:italic">x</span>)))
</td></tr>
</table>
<!--TOC subsection id="sec19" Lists, sequences and sets-->
<h3 id="sec19" class="subsection">3.5&#XA0;&#XA0;Lists, sequences and sets</h3><!--SEC END --><p>
<a id="lists"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Sequences and lists</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">(&#XA0;&#XA0;)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >sequence delimiters</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">[&#XA0;&#XA0;]</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >list delimiters</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">%{&#XA0;&#XA0;%}</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >set delimiters</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">NULL</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >empty sequence</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">E$(k=n..m)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >create a sequence</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">seq(E,k=n..m)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >create a sequence</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">[E$(k=n..m)]</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >create a list</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">makelist(f,k,n,m,p)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >create a list</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">append</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >append an element to a list</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">op(li)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a list to a sequence</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">nop(se)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a sequence to a list</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">nops(li)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the number of elements</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">size(li)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the number of elements</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">mid(li)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >extract a subsequence</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sum</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the sum of the elements</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">product</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the product of the elements</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cumSum</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the cumulative sums</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">apply(f,li)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >apply a function to the list elements</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">map(li,f)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >apply a function to the list elements</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">map(li,f,matrix)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >apply a function to the elements of a matrix</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">poly2symb</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a polynomial expression to a polynomial
list</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">symb2poly</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a polynomial list to a polynomial
expression</td></tr>
</table>
</div><p>
<a id="hevea_default132"></a>
<a id="hevea_default133"></a>
<a id="hevea_default134"></a>
<a id="hevea_default135"></a>
<a id="hevea_default136"></a>
<a id="hevea_default137"></a>
<a id="hevea_default138"></a>
<a id="hevea_default139"></a>
<a id="hevea_default140"></a>
<a id="hevea_default141"></a>
<a id="hevea_default142"></a>
<a id="hevea_default143"></a>
<a id="hevea_default144"></a>
<a id="hevea_default145"></a>
<a id="hevea_default146"></a>
<a id="hevea_default147"></a>
<a id="hevea_default148"></a>
<a id="hevea_default149"></a>
<a id="hevea_default150"></a></p><p><span style="font-family:monospace">Xcas</span> can combine objects in several different ways.
</p><dl class="description"><dt class="dt-description">
<span style="font-weight:bold">sequences</span></dt><dd class="dd-description"><a id="hevea_default151"></a>
A sequence is simply several items between parentheses, separated by
commas. For example, <span style="font-family:monospace">(1,2,x,4)</span> is a sequence.
(The parentheses can be omitted, but it&#X2019;s a good idea to use them.) 
Sequences are flat, meaning an element in a sequence cannot be
another sequence.
The empty sequence is denoted <span style="font-family:monospace">NULL</span>.
</dd><dt class="dt-description"><span style="font-weight:bold">lists</span></dt><dd class="dd-description"><a id="hevea_default152"></a>
A list consists of several items between square brackets,
separated by commas. For example, <span style="font-family:monospace">[1,2,x,4]</span> is a
list. A list can contain other lists as elements. Matrices, which
will be discussed later, are lists of lists. The empty list is
denoted <span style="font-family:monospace">[]</span>.
</dd><dt class="dt-description"><span style="font-weight:bold">sets</span></dt><dd class="dd-description"><a id="hevea_default153"></a>
A set consists of several items between <span style="font-family:monospace">%{</span> and
<span style="font-family:monospace">%}</span>, separated by commas. For example,
<span style="font-family:monospace">%{1,2,3%}</span> is a set. In a set, order doesn&#X2019;t matter and
each item only counts once. The sets <span style="font-family:monospace">%{1,2,3%}</span>
<span style="font-family:monospace">%{3,2,1%}</span> and <span style="font-family:monospace">%{1,2,2,3%}</span> are all the same
set.
</dd><dt class="dt-description"><span style="font-weight:bold">tables</span></dt><dd class="dd-description"><a id="hevea_default154"></a>
Tables are described later.
</dd></dl><p>
A sequence can be turned into a list or a set by putting it between
the appropriate delimiters. For example, if you define a sequence
</p><blockquote class="quote"><span style="font-family:monospace">se := (1,2,4,2)
</span></blockquote><p>
then if you enter
</p><blockquote class="quote"><span style="font-family:monospace">[se]
</span></blockquote><p>
you will get the list
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[1,2,4,2]
</td></tr>
</table><p>
You can turn a set or list into a sequence with the <span style="font-family:monospace">op</span>
command; if you define a set
</p><blockquote class="quote"><span style="font-family:monospace">st := %{1,2,3%}
</span></blockquote><p>
and then enter
</p><blockquote class="quote"><span style="font-family:monospace">op(st)
</span></blockquote><p>
you will get the sequence
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(1,2,3)
</td></tr>
</table><p>
You can find the number of elements in a sequence, list or set with
the <span style="font-family:monospace">size</span> command; with <span style="font-family:monospace">st</span> as above,
</p><blockquote class="quote"><span style="font-family:monospace">size(st)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
3
</td></tr>
</table><p>Sequences can be built using one of the iteration commands
<span style="font-family:monospace">seq</span> or <span style="font-family:monospace">$</span>. The <span style="font-family:monospace">seq</span> command takes an
expression as the first argument, the second argument will be a
variable followed by a range in the form
<span style="font-style:italic">variable</span><span style="font-family:monospace">=</span><span style="font-style:italic">beginning
value</span><span style="font-family:monospace">..</span><span style="font-style:italic">ending value</span>. The resulting sequence will be
the values of the expression with the variable replaced by the
sequence of values. For example,
</p><blockquote class="quote"><span style="font-family:monospace">seq(k^2,k=-2..2)
</span></blockquote><p>
will result in the sequence
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(4,1,0,1,4)
</td></tr>
</table><p>
The <span style="font-family:monospace">$</span> operator is an infix version of <span style="font-family:monospace">seq</span>. If you
enter
</p><blockquote class="quote"><span style="font-family:monospace">k^2$k=-2..2
</span></blockquote><p>
you will get, as above,
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(4,1,0,1,4)
</td></tr>
</table><p>A list can be built by putting a sequence in brackets; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">[k^3,k=1..3]
</span></blockquote><p>
you will get the list
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[1,8,27]
</td></tr>
</table><p>
You can also create a list with the <span style="font-family:monospace">makelist</span> command. It
takes three arguments; a function (not an expression), an initial
value for the variable and an ending value for the variable. If you
enter
</p><blockquote class="quote"><span style="font-family:monospace">makelist(x -&gt; x^2,-2,2)
</span></blockquote><p>
you will get the list
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[4,1,0,1,4]
</td></tr>
</table><p>
There is an optional fourth argument, which will be the step size.</p><p>You can add an element to the end of a list with the <span style="font-family:monospace">append</span>
command. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">append([1,5],3)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[1,5,3]
</td></tr>
</table><p>The elements of sequences and lists are indexed, beginning with the
index 0. You can get an element by following the sequence or
list with the index number in square brackets; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">ls := [A,B,C,D,E,F]
</span></blockquote><p>
then
</p><blockquote class="quote"><span style="font-family:monospace">ls[1]
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">B</span>
</td></tr>
</table><p>
You can get a subsequence<a id="hevea_default155"></a> (or sublist<a id="hevea_default156"></a>) 
by putting an interval (a
beginning value and an ending values separated by two dots) in brackets.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">ls[2..4]
</span></blockquote><p>
you will get 
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[<span style="font-style:italic">C</span>,<span style="font-style:italic">D</span>,<span style="font-style:italic">E</span>]
</td></tr>
</table><p>The <span style="font-family:monospace">mid</span><a id="hevea_default157"></a><a id="hevea_default158"></a> command is another
way to get a subsequence or sublist. 
Given a sequence or list, a beginning index and a length, then
<span style="font-family:monospace">mid</span> will return the subsequence of the sequence beginning at
the given index of the given length. With <span style="font-family:monospace">ls</span> as above, if
you enter
</p><blockquote class="quote"><span style="font-family:monospace">mid(ls,2,3)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[<span style="font-style:italic">C</span>,<span style="font-style:italic">D</span>,<span style="font-style:italic">E</span>]
</td></tr>
</table><p>
If the length is left off, then the subsequence will go to the end of
the given sequence; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">mid(ls,2)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[<span style="font-style:italic">C</span>,<span style="font-style:italic">D</span>,<span style="font-style:italic">E</span>,<span style="font-style:italic">F</span>]
</td></tr>
</table><p>You can change the element in a particular position with the
<span style="font-family:monospace">:=</span> operator; for example, to change the second element in
<span style="font-family:monospace">ls</span>, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">ls[1] := 7
</span></blockquote><p>
The value of <span style="font-family:monospace">ls</span> will then be
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[<span style="font-style:italic">A</span>,7,<span style="font-style:italic">C</span>,<span style="font-style:italic">D</span>,<span style="font-style:italic">E</span>,<span style="font-style:italic">F</span>]
</td></tr>
</table><p>If a variable <span style="font-style:italic">var</span> is not a list or sequence and you assign a
value to <span style="font-style:italic">var</span><span style="font-family:monospace">[</span><span style="font-style:italic">n</span><span style="font-family:monospace">]</span>, then <span style="font-style:italic">var</span> becomes a
table. A table is like a list, but the indices don&#X2019;t have to be
integers. If you define
</p><blockquote class="quote"><span style="font-family:monospace">newls := []
</span></blockquote><p>
and then set
</p><blockquote class="quote"><span style="font-family:monospace">newls[2] := 5
</span></blockquote><p>
then since <span style="font-family:monospace">newls</span> was previous a list, it will now be equal to
the list
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[0,0,5]
</td></tr>
</table><p>
If <span style="font-family:monospace">nols</span> is an undefined variable and you set
</p><blockquote class="quote"><span style="font-family:monospace">nols[2] := 5
</span></blockquote><p>
then <span style="font-family:monospace">nols</span> will be a table,<a id="hevea_default159"></a>
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-family:monospace">table</span>(2=5)
</td></tr>
</table><p>When changing an element of a list (or sequence or table) using
<span style="font-family:monospace">:=</span>, the entire list is copied. This can be inefficient. To
save copy time and modify the list element in place, you can use
<span style="font-family:monospace">=&lt;</span>. If you have
</p><blockquote class="quote"><span style="font-family:monospace">ls := [a,b,c]
</span></blockquote><p>
and then enter
</p><blockquote class="quote"><span style="font-family:monospace">ls[2] =&lt; 3
</span></blockquote><p>
then <span style="font-family:monospace">ls</span> will be equal to
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[<span style="font-style:italic">a</span>,<span style="font-style:italic">b</span>,3]
</td></tr>
</table><p>Polynomials are typically given by expressions, but they can also be
given by a list of the coefficients in decreasing order, delimited
with <span style="font-family:monospace">poly1[</span> and <span style="font-family:monospace">]</span>. The <span style="font-family:monospace">symb2poly</span> will
transform a polynomial written as an expression to the list form of
the polynomial. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">symb2poly(2*x^3 - 4*x + 1)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
poly1[2,0,&#X2212;4,1]
</td></tr>
</table><p>
The <span style="font-family:monospace">poly2symb</span> will transform in the other direction; if you
enter
</p><blockquote class="quote"><span style="font-family:monospace">poly2symb(poly1[2,0,-4,1])
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2*<span style="font-style:italic">x</span><sup>3</sup>&#XA0;&#X2212;&#XA0;4*<span style="font-style:italic">x</span>&#XA0;+&#XA0;1
</td></tr>
</table><p>
There is also a way to represent a multivariable polynomial with
lists; see the manual for more information.</p>
<!--TOC subsection id="sec20" Characters and strings-->
<h3 id="sec20" class="subsection">3.6&#XA0;&#XA0;Characters and strings</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">String commands</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">asc</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a string to a list of ASCII codes </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">char</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a list of ASCII codes to a string</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">size</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the number of characters </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">concat</span> or <span style="font-family:monospace">+</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >concatenation </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">mid</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >substring</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">head</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >first character </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tail</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the string without the first character</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">string</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a number or expression to a string </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">expr</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >convert a string to a number or expression </td></tr>
</table>
</div><p>
<a id="hevea_default160"></a>
<a id="hevea_default161"></a>
<a id="hevea_default162"></a>
<a id="hevea_default163"></a>
<a id="hevea_default164"></a>
<a id="hevea_default165"></a>
<a id="hevea_default166"></a>
<a id="hevea_default167"></a>
<a id="hevea_default168"></a></p><p>A string is simply text enclosed within quotation marks.
You can find out how many characters are in a string with the
<span style="font-family:monospace">size</span> command; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">size("this string")
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
11
</td></tr>
</table><p>A character is simply a string with length 1.<a id="hevea_default169"></a> 
The <span style="font-family:monospace">char</span>
command will take an ASCII code (or a list of ASCII codes) and return
the character or string determined by the codes. For example, the
letter &#X201C;a&#X201D; has ASCII code 65, so
</p><blockquote class="quote"><span style="font-family:monospace">char(65)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">A</span>
</td></tr>
</table><p>
The <span style="font-family:monospace">asc</span> command will turn a string into the list of ASCII
codes; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">asc("A")
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[65]
</td></tr>
</table><p>The characters in a string are indexed starting with <span style="font-family:monospace">0</span>.
To get the first character, for example, you can enter a string, or
the name of a string, followed by <span style="font-family:monospace">[0]</span>. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">str := "abcde"
</span></blockquote><blockquote class="quote"><span style="font-family:monospace">str[0]
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">a</span>
</td></tr>
</table><p>
You can choose a substring from a string by putting the beginning and
ending indices in the brackets, separated by two periods <span style="font-family:monospace">..</span>.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">str[1..3]
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">bcd</span>
</td></tr>
</table><p>An alternate way of getting the first character from a string is with
the <span style="font-family:monospace">head</span> command. With <span style="font-family:monospace">str</span> as above, 
</p><blockquote class="quote"><span style="font-family:monospace">head(str)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">a</span>
</td></tr>
</table><p>
The <span style="font-family:monospace">tail</span> command will produce the remaining characters;
</p><blockquote class="quote"><span style="font-family:monospace">tail(str)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">bcde</span>
</td></tr>
</table><p>Strings can be combined with the <span style="font-family:monospace">concat</span> command or the infix
<span style="font-family:monospace">+</span> operator. Both 
</p><blockquote class="quote"><span style="font-family:monospace">concat("abc","def")
</span></blockquote><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">"abc" + "def"
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">abcdef</span>
</td></tr>
</table><p>If a string represents a number, then the <span style="font-family:monospace">expr</span> command will
convert the string to the number. For example,
</p><blockquote class="quote"><span style="font-family:monospace">expr("123")
</span></blockquote><p>
will return the number 123. More generally, <span style="font-family:monospace">expr</span> will
convert a string representing an expression or command into the
corresponding expression or command. The <span style="font-family:monospace">string</span> command
works in the opposite direction; it will take an expression and
convert it to a string.</p>
<!--TOC subsection id="sec21" Calculation time and memory space-->
<h3 id="sec21" class="subsection">3.7&#XA0;&#XA0;Calculation time and memory space</h3><!--SEC END --><p>One major issue with symbolic calculations is the complexity of the
intermediate calculations. This complexity takes the form of the
amount of time required for the calculations and the amount of
computer memory needed. The algorithms used by <span style="font-family:monospace">Xcas</span> are
efficient, but not necessarily optimal. The <span style="font-family:monospace">time</span> command
will tell you how long a calculation takes. For very quick
calculations, <span style="font-family:monospace">Xcas</span> will execute it several times and return
the average for a more accurate result. The amount of memory used by
<span style="font-family:monospace">Xcas</span> is shown in the status line of the Unix version of
<span style="font-family:monospace">Xcas</span>. </p><p>If a command that you are timing takes more than a few seconds, you
could have made an input error and you may have to interrupt the
command (with the red <span style="font-family:monospace">STOP</span> button on the status line, for
example). It is a good idea to make a backup of your session beforehand.</p>
<!--TOC section id="sec22" Analysis with <span style="font-family:monospace">Xcas</span>-->
<h2 id="sec22" class="section">4&#XA0;&#XA0;Analysis with <span style="font-family:monospace">Xcas</span></h2><!--SEC END -->
<!--TOC subsection id="sec23" Derivatives-->
<h3 id="sec23" class="subsection">4.1&#XA0;&#XA0;Derivatives</h3><!--SEC END --><p>
<a id="deriv"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Derivatives</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">diff(ex,t)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the derivative of an expression with respect to t</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">function_diff(f)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the derivative of a function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">diff(ex,x$n,y$m)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >partial derivatives</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">grad</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >gradient</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">divergence</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >divergence</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">curl</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >curl</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">laplacian</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >laplacian</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">hessian</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >hessian matrix</td></tr>
</table>
</div><p>
<a id="hevea_default170"></a>
<a id="hevea_default171"></a>
<a id="hevea_default172"></a>
<a id="hevea_default173"></a>
<a id="hevea_default174"></a>
<a id="hevea_default175"></a>
<a id="hevea_default176"></a>
<a id="hevea_default177"></a>
<a id="hevea_default178"></a>
<a id="hevea_default179"></a></p><p>The <span style="font-family:monospace">diff</span> function will find the derivative of an expression
and returns the derivative as an expression. If you have a function
<span style="font-style:italic">f</span>, you can find the derivative by entering
</p><blockquote class="quote"><span style="font-family:monospace">diff(f(x),x)
</span></blockquote><p>
Note that the result will itself be an expression; do not define the
deritivave function by <span style="font-family:monospace">fprime(x) := diff(f(x),x)</span>. If you
want to define the derivative as a function, you can use
<span style="font-family:monospace">unapply</span>:<a id="hevea_default180"></a>
</p><blockquote class="quote"><span style="font-family:monospace">fprime := unapply(diff(f(x),x),x)
</span></blockquote><p>
Alternatively, you can use <span style="font-family:monospace">function_diff</span>, which takes a
function (not an expression) as input and returns the derivative
function;
</p><blockquote class="quote"><span style="font-family:monospace">fprime := function_diff(f)
</span></blockquote><p>The <span style="font-family:monospace">diff</span> function can take a sequence of variables as the
second argument, and so can calculate successive partial derivatives.
Given
</p><blockquote class="quote"><span style="font-family:monospace">E := sin(x*y)
</span></blockquote><p>
then
</p><blockquote class="quote"><span style="font-family:monospace">diff(E,x)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">y</span>*cos(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>)
</td></tr>
</table><blockquote class="quote"><span style="font-family:monospace">diff(E,y)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span>*cos(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>)
</td></tr>
</table><blockquote class="quote"><span style="font-family:monospace">diff(E,x,y)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X2212;<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>*sin(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>)&#XA0;+&#XA0;cos(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>)
</td></tr>
</table><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">diff(E,x $ 2)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X2212;<span style="font-style:italic">y</span><sup>2</sup>*sin(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>)
</td></tr>
</table><p>If the second argument to <span style="font-family:monospace">diff</span> is a list, then a list of
derivatives is returned. For example, to find the gradient of
<span style="font-family:monospace">E</span>, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">diff(E,[x,y])
</span></blockquote><p>
and get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[<span style="font-style:italic">y</span>*cos(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>),<span style="font-style:italic">x</span>*cos(<span style="font-style:italic">x</span>*<span style="font-style:italic">y</span>)]
</td></tr>
</table><p>
There is also a special <span style="font-family:monospace">grad</span> command for this, as well as
commands for other types of special derivatives.</p>
<!--TOC subsection id="sec24" Limits and series-->
<h3 id="sec24" class="subsection">4.2&#XA0;&#XA0;Limits and series</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Limits and series</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">limit</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the limit of an expression</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">taylor</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Taylor series</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">series</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Taylor series</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">order_size</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >used in the remainder term of a series expansion</td></tr>
</table>
</div><p>
<a id="hevea_default181"></a>
<a id="hevea_default182"></a>
<a id="hevea_default183"></a>
<a id="hevea_default184"></a>
<a id="hevea_default185"></a></p><p>The <span style="font-family:monospace">limit</span> function will take an expression, a variable and a
point and return the limit at the point. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">limit(sin(x)/x,x,0)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1
</td></tr>
</table><p>
<span style="font-family:monospace">Xcas</span> can also find limits at plus and minus infinity;
</p><blockquote class="quote"><span style="font-family:monospace">limit(sin(x)/x,x,+infinity)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
0
</td></tr>
</table><p>
as well as limits of infinity;
</p><blockquote class="quote"><span style="font-family:monospace">limit(1/x,x,0)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X221E;
</td></tr>
</table><p>
which recall is unsigned infinity.
An optional fourth argument can be used to find one-sided limits; if
the fourth argument is <span style="font-family:monospace">1</span> it will be a right-handed limit and
if the argument is <span style="font-family:monospace">-1</span> it will be a left-handed limit.
Entering
</p><blockquote class="quote"><span style="font-family:monospace">limit(1/x,x,0,-1)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X2212;&#X221E;
</td></tr>
</table><p>Given an expression and a variable, the <span style="font-family:monospace">taylor</span> function will
find the Taylor series of the expression. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">taylor(sin(x)/x,x)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">6</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>4</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">120</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;<span style="font-style:italic">x</span><sup>6</sup>*<span style="font-family:monospace">order_size</span>(<span style="font-style:italic">x</span>)
</td></tr>
</table><p>
The <span style="font-family:monospace">series</span> function works the same as the <span style="font-family:monospace">taylor</span>
function.</p><p>By default, <span style="font-family:monospace">taylor</span> will find the terms up to the fifth
degree. The <span style="font-family:monospace">order_size(x)</span> represents a factor for which 
for all <span style="font-style:italic">a</span>&gt;0, the term <span style="font-style:italic">x</span><sup><span style="font-style:italic">a</span></sup><span style="font-family:monospace">order_size</span>(<span style="font-style:italic">x</span>) will approach 0
as <span style="font-style:italic">x</span> approaches 0. </p><p>The series returned by <span style="font-family:monospace">taylor</span> will also
be centered about 0 by default; if you want to center it around the number
<span style="font-family:monospace">a</span>, you can replace <span style="font-family:monospace">x</span> by <span style="font-family:monospace">x=a</span>;
</p><blockquote class="quote"><span style="font-family:monospace">taylor(exp(x),x=1)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
exp(1)+exp(1)*(<span style="font-style:italic">x</span>&#X2212;1)+exp(1)*(<span style="font-style:italic">x</span>&#X2212;1)<sup>2</sup>/2+&#XA0;exp(1)*(<span style="font-style:italic">x</span>&#X2212;1)<sup>3</sup>/6+
</td></tr>
</table><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
exp(1)*(<span style="font-style:italic">x</span>&#X2212;1)<sup>4</sup>/24+exp(1)*(<span style="font-style:italic">x</span>&#X2212;1)<sup>5</sup>/120+(<span style="font-style:italic">x</span>&#X2212;1)<sup>6</sup>*<span style="font-family:monospace">order_size</span>(<span style="font-style:italic">x</span>&#X2212;1)
</td></tr>
</table><p>
You can also give the center of the series with a third argument.
To find the terms to a different you can add an extra argument
giving the order;
</p><blockquote class="quote"><span style="font-family:monospace">taylor(sin(x)/x,x=0,3)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">6</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;<span style="font-style:italic">x</span><sup>4</sup>*<span style="font-family:monospace">order_size</span>(<span style="font-style:italic">x</span>)
</td></tr>
</table><p>
Note that in this case you must explicitly give the center of the
series, even if it is 0.</p><p>To find the Taylor polynomial, you can add an extra argument of
<span style="font-family:monospace">polynom</span>;
</p><blockquote class="quote"><span style="font-family:monospace">taylor(sin(x)/x,x,polynom)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">6</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>4</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">120</td></tr>
</table></td></tr>
</table>
<!--TOC subsection id="sec25" Antiderivatives and integrals-->
<h3 id="sec25" class="subsection">4.3&#XA0;&#XA0;Antiderivatives and integrals</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Integrals</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">int</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >antiderivatives and exact integrals</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">romberg</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximation of integrals</td></tr>
</table>
</div><p>
<a id="hevea_default186"></a>
<a id="hevea_default187"></a>
<a id="hevea_default188"></a>
<a id="hevea_default189"></a></p><p>The <span style="font-family:monospace">int</span> function will find an antiderivative of an
expression. By default, it will assume that the variable is <span style="font-style:italic">x</span>, to
use another variable you can give it as an argument.
</p><blockquote class="quote"><span style="font-family:monospace">int(x*sin(x))
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
sin(<span style="font-style:italic">x</span>)&#XA0;&#X2212;&#XA0;<span style="font-style:italic">x</span>*cos(<span style="font-style:italic">x</span>)
</td></tr>
</table><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">int(t*sin(t),t)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
sin(<span style="font-style:italic">t</span>)&#XA0;&#X2212;&#XA0;<span style="font-style:italic">t</span>*cos(<span style="font-style:italic">t</span>)
</td></tr>
</table><p>To compute a definite integral, you can give the limits of integration
as arguments after the variable; to integrate <span style="font-style:italic">x</span>*sin(<span style="font-style:italic">x</span>) from <span style="font-style:italic">x</span>=0 to
<span style="font-style:italic">x</span>=&#X3C0;, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">int(x*sin(x),x,0,pi)
</span></blockquote><p>
and get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X3C0;
</td></tr>
</table><p>
The limits of integration are allowed to be expressions; this can be
useful when computing a multiple integral over a non-rectangular
region. For example, you can integrate <span style="font-style:italic">x</span> <span style="font-style:italic">y</span> over the triangle 0 &#X2264;
<span style="font-style:italic">x</span> &#X2264; 1, 0 &#X2264; <span style="font-style:italic">y</span> &#X2264; <span style="font-style:italic">x</span> with
</p><blockquote class="quote"><span style="font-family:monospace">int(int(x*y,y,0,x),x,0,1)
</span></blockquote><p>
resulting in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">8</td></tr>
</table></td></tr>
</table><p>The <span style="font-family:monospace">romberg</span> function will approximate the value of a definite
integral, for cases when the exact value can&#X2019;t be computed or you
don&#X2019;t want to compute it. For example,
</p><blockquote class="quote"><span style="font-family:monospace">romberg(exp(-x^2),x,0,10)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
0.886226925452
</td></tr>
</table>
<!--TOC subsection id="sec26" Solving equations-->
<h3 id="sec26" class="subsection">4.4&#XA0;&#XA0;Solving equations</h3><!--SEC END --><p>
<a id="solve"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Solving equations</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">solve(eq,x)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >exact solutions of an equation</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">solve([eq1,eq2],[x,y])</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >exact solutions of a system of equations</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">fsolve(eq,x)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximate solution of an equation</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">fsolve([eq1,eq2],[x,y])</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximate solution of a system of equations</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">linsolve</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >solve a linear system</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">proot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximate roots of a polynomial</td></tr>
</table>
</div><p>
<a id="hevea_default190"></a>
<a id="hevea_default191"></a>
<a id="hevea_default192"></a>
<a id="hevea_default193"></a></p><p>Solving equations is important, but it is often impossible to find
exact solutions. <span style="font-family:monospace">Xcas</span> has the ability to find exact
solutions in some cases and to approximate solutions.</p><p>The <span style="font-family:monospace">solve</span> function will attempt to find the exact solution of
an equation that you give it. If you enter an expression that isn&#X2019;t
an equation, it will try to solve for the expression equal to zero.
By default, the variable will be <span style="font-style:italic">x</span>, but you can give a different
variable as a second argument. If you enter 
</p><blockquote class="quote"><span style="font-family:monospace">solve(x^3 -2*x^2 + 1=0, x)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell">&#X23A1;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A3;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X2212;(</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td></tr>
</table></td><td class="dcell">)+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">,1,</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td></tr>
</table></td><td class="dcell">+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">&#X23A4;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A6;</td></tr>
</table><p>
By default, <span style="font-family:monospace">solve</span> will only try to find real solutions; if
you enter
</p><blockquote class="quote"><span style="font-family:monospace">solve(x^3+1=0,x)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[&#X2212;1]
</td></tr>
</table><p>
You can configure <span style="font-family:monospace">Xcas</span> to find complex solutions (see
section <a href="#config">2.3</a>, &#X201C;Configuration&#X201D;). If you do that,
then entering
</p><blockquote class="quote"><span style="font-family:monospace">solve(x^3+1=0,x)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell">&#X23A1;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A3;</td><td class="dcell">&#X2212;1,</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X2212;</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >3</td></tr>
</table></td><td class="dcell">*<span style="font-style:italic">i</span>+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">,</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >3</td></tr>
</table></td><td class="dcell">*<span style="font-style:italic">i</span>+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">&#X23A4;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A6;</td></tr>
</table><p>For linear and quadratic functions, <span style="font-family:monospace">solve</span> will always return
the exact solution. For higher degree polynomials, <span style="font-family:monospace">solve</span>
will try some approaches, but may return intermediate results or
approximate solutions. (It doesn&#X2019;t use the Cardan and Ferrari
formulas for polynomials of degrees 3 and 4, since the solutions would
then not be easily managable.)</p><p>For trigonometric equations, the primary solutions are returned. For
example,
</p><blockquote class="quote"><span style="font-family:monospace">solve(cos(x) + sin(x) = 0, x)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell">&#X23A1;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A3;</td><td class="dcell">&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">&#X3C0;</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">4</td></tr>
</table></td><td class="dcell">,</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">3*&#X3C0;</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">4</td></tr>
</table></td><td class="dcell">&#X23A4;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A6;</td></tr>
</table><p>
You can configure <span style="font-family:monospace">Xcas</span> to find all solutions (see section
<a href="#config">2.3</a>, &#X201C;Configuration&#X201D;). If you do that, then
</p><blockquote class="quote"><span style="font-family:monospace">solve(cos(x) + sin(x) = 0, x)
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell">&#X23A1;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A3;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">4*<span style="font-style:italic">n</span><sub>0</sub>*&#X3C0;&#X2212;&#X3C0;</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">4</td></tr>
</table></td><td class="dcell">&#X23A4;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A6;</td></tr>
</table><p>
where <span style="font-style:italic">n</span><sub>0</sub> represents an arbitrary integer.</p><p>The <span style="font-family:monospace">solve</span> function can also handle systems of equations.
For this, use a list of equations for the first argument and a list of
variables for the second. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">solve([x^2 + y - 2, x + y^2 - 2],[x,y])
</span></blockquote><p>
you will get all four solutions as a matrix; each row represents one
solution.
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell">&#X23A1;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A2;<br>
&#X23A3;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1,</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;2,</td><td style="text-align:center;white-space:nowrap" >&#X2212;2</td></tr>
<tr><td style="text-align:center;white-space:nowrap" ><table class="display"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td></tr>
</table></td><td class="dcell">+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">,</td></tr>
</table></td><td style="text-align:center;white-space:nowrap" ><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X2212;</td><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td></tr>
</table></td><td class="dcell">+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">2</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">&nbsp;</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;2</td></tr>
</table></td></tr>
<tr><td style="text-align:center;white-space:nowrap" ><table class="display"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X2212;(</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td></tr>
</table></td><td class="dcell">)+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">,</td></tr>
</table></td><td style="text-align:center;white-space:nowrap" ><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X2212;</td><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X2212;(</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td></tr>
</table></td><td class="dcell">)+1</td></tr>
</table></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">2</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">&nbsp;</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;2
</td></tr>
</table></td></tr>
</table></td><td class="dcell">&#X23A4;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A5;<br>
&#X23A6;</td></tr>
</table><p>To approximate a solution to an equation or system of equations,
<span style="font-family:monospace">Xcas</span> provides the <span style="font-family:monospace">fsolve</span> command. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">fsolve(x^3 -3*x + 1,x)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[&#X2212;1.87938524157,0.347296355334,1.53208888624]
</td></tr>
</table><p>
Algorithms for approximating solutions of equations 
typically involve starting with a given point and finding a sequence
which converges to a solution. The <span style="font-family:monospace">fsolve</span> command can take
a starting point, if you enter
</p><blockquote class="quote"><span style="font-family:monospace">fsolve(x^3 -3*x + 1,x,1)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
0.347296355334
</td></tr>
</table>
<!--TOC subsection id="sec27" Differential equations-->
<h3 id="sec27" class="subsection">4.5&#XA0;&#XA0;Differential equations</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Commands for differential equations</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">desolve</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >exact solution</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">odesolve</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximate solution</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotode</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >graph of solution</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotfield</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >vector field</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">interactive_plotode</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >clickable interface</td></tr>
</table>
</div><p>
<a id="hevea_default194"></a>
<a id="hevea_default195"></a>
<a id="hevea_default196"></a>
<a id="hevea_default197"></a>
<a id="hevea_default198"></a></p><p>The <span style="font-family:monospace">desolve</span> command is used to try to find exact solutions of
differential equations. The first argument is the differential
equation itself, the second argument is the function. The derivative
of an unknown function <span style="font-style:italic">y</span> is denoted <span style="font-family:monospace">diff(y)</span>, which can be
abbreviated <span style="font-family:monospace">y&#X2019;</span>. The second derivative will be
<span style="font-family:monospace">diff(diff(y))</span> or <span style="font-family:monospace">y&#X2019;&#X2019;</span>, etc.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">desolve(x^2*y&#X2019; = y,y)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">c</span><sub>0</sub>&#XA0;*&#XA0;exp(&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span></td></tr>
</table></td><td class="dcell">)
</td></tr>
</table><p>
where <span style="font-style:italic">c</span><sub>0</sub> is an arbitrary constant. By default the variable is <span style="font-style:italic">x</span>,
if you want to use a different variable, put it in the function in the
second argument;
</p><blockquote class="quote"><span style="font-family:monospace">desolve(t^2*y&#X2019; = y,y(t))
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">c</span><sub>0</sub>&#XA0;*&#XA0;exp(&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">t</span></td></tr>
</table></td><td class="dcell">)
</td></tr>
</table><p>If you want to solve a differential equation with initial conditions,
the first argument should be a list with the differential equation and
the conditions. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">desolve([y&#X2019;&#X2019; + 2*y&#X2019; + y = 0, y(0) = 1, y&#X2019;(0) = 2],y)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
exp(&#X2212;<span style="font-style:italic">x</span>)*(3*<span style="font-style:italic">x</span>+1)
</td></tr>
</table><p>To solve a differential equation numerically, you can use the
<span style="font-family:monospace">odesolve</span> command. This will allow you to solve the equation
<span style="font-style:italic">y</span>&#X2032;=<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>) where the graph passes through a point (<span style="font-style:italic">x</span><sub>0</sub>,<span style="font-style:italic">y</span><sub>0</sub>). The
command
</p><blockquote class="quote"><span style="font-family:monospace">odesolve(f(x,y),[x,y],[x_0,y_0],a)
</span></blockquote><p>
will find <span style="font-style:italic">y</span>(<span style="font-style:italic">a</span>) in this case. For example, to calculate <span style="font-style:italic">y</span>(2) where
<span style="font-style:italic">y</span>(<span style="font-style:italic">x</span>) is the solution of <span style="font-style:italic">y</span>&#X2032;(<span style="font-style:italic">x</span>) =sin(<span style="font-style:italic">xy</span>) with <span style="font-style:italic">y</span>(0)=1, you can
enter
</p><blockquote class="quote"><span style="font-family:monospace">odesolve(sin(x*y),[x,y],[0,1],2)
</span></blockquote><p>
The result will be 
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[1.82241255674]
</td></tr>
</table><p>
The <span style="font-family:monospace">plotode</span> command will plot the graph of the solution; if
you enter
</p><blockquote class="quote"><span style="font-family:monospace">plotode(sin(x*y),[x,y],[0,1])
</span></blockquote><p>
you will get
</p><div class="center">
<img src="tutoriel006.png">
</div><p>
The <span style="font-family:monospace">plotfield</span> command will plot the entire vector field;
</p><blockquote class="quote"><span style="font-family:monospace">plotfield(sin(x*y),[x,y])
</span></blockquote><p>
will result in
</p><div class="center">
<img src="tutoriel007.png">
</div><p>
If you use the <span style="font-family:monospace">interactive_odeplot</span> command, you will get the
vector field and you will be able to click on a point to find the
graph of the solution passing through the point.</p>
<!--TOC section id="sec28" Algebra with <span style="font-family:monospace">Xcas</span>-->
<h2 id="sec28" class="section">5&#XA0;&#XA0;Algebra with <span style="font-family:monospace">Xcas</span></h2><!--SEC END -->
<!--TOC subsection id="sec29" Integer arithmetic-->
<h3 id="sec29" class="subsection">5.1&#XA0;&#XA0;Integer arithmetic</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Integers</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">irem</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >remainder</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">iquo</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >quotient</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">iquorem</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >quotient and remainder</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ifactor</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >prime factorization</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ifactors</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >list of prime factors</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">idivis</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >list of divisors</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">gcd</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >greatest common divisor</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">lcm</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >least common multiple</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">iegcd</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Bezout&#X2019;s identity</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">isprime</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >primality test</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">nextprime</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >next prime number</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">previousprime</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >previous prime number</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">a%p</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-style:italic">a</span> modulo <span style="font-style:italic">p</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">powmod(a,n,p)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-style:italic">a</span><sup><span style="font-style:italic">n</span></sup> modulo <span style="font-style:italic">p</span></td></tr>
</table>
</div><p>
<a id="hevea_default199"></a>
<a id="hevea_default200"></a>
<a id="hevea_default201"></a>
<a id="hevea_default202"></a>
<a id="hevea_default203"></a>
<a id="hevea_default204"></a>
<a id="hevea_default205"></a>
<a id="hevea_default206"></a>
<a id="hevea_default207"></a>
<a id="hevea_default208"></a>
<a id="hevea_default209"></a>
<a id="hevea_default210"></a>
<a id="hevea_default211"></a>
<a id="hevea_default212"></a>
<a id="hevea_default213"></a>
<a id="hevea_default214"></a>
<a id="hevea_default215"></a>
<a id="hevea_default216"></a></p><p><span style="font-family:monospace">Xcas</span> has the usual number theoretic functions. The
<span style="font-family:monospace">iquo</span> command will find the integer quotient of two integers
and <span style="font-family:monospace">irem</span> will find the remainder. The <span style="font-family:monospace">iquorem</span>
command will return a list of both the quotient and remainder; if you
enter
</p><blockquote class="quote"><span style="font-family:monospace">iquorem(30,7)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[4,2]
</td></tr>
</table><p>
since 30 divided by 7 is 4 with a remainder of 2.</p><p>The <span style="font-family:monospace">gcd</span> and <span style="font-family:monospace">lcm</span> commands will find the greatest
common divisor and least common multiple of two integers. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">gcd(72,120)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
24
</td></tr>
</table><p>
The greatest common divisor <span style="font-style:italic">d</span> of two integers <span style="font-style:italic">a</span> and <span style="font-style:italic">b</span> can always be
written in the form <span style="font-style:italic">a</span>*<span style="font-style:italic">u</span> + <span style="font-style:italic">b</span>*<span style="font-style:italic">v</span> = <span style="font-style:italic">d</span> for integers <span style="font-style:italic">u</span> and <span style="font-style:italic">v</span>. (This
is known as B&#XE9;zout&#X2019;s Identity.) The <span style="font-family:monospace">iegcd</span> will
return the coefficients <span style="font-style:italic">u</span> and <span style="font-style:italic">v</span> as well as the greatest commond
divisor. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">iegcd(72,120)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[2,&#X2212;1,24]
</td></tr>
</table><p>
since
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">72&#XB7;&#XA0;2&#XA0;+&#XA0;120&#XB7;(&#X2212;1)&#XA0;=&#XA0;24</td></tr>
</table><p>The <span style="font-family:monospace">ifactor</span> command will give the prime factorization of an
integer; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">ifactor(250)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2*5<sup>3</sup>
</td></tr>
</table><p>
You can use <span style="font-family:monospace">ifactors</span> to get a list of the prime factors of an
integer, where in the list each factor is followed by its multiplicity.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">ifactors(250)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[2,1,5,3]
</td></tr>
</table><p>
since 250 has a prime factor of 2 (it has 1 factor of 2) and a
prime factor of 5 (it has 3 factors of 5).
The <span style="font-family:monospace">idivis</span> command will return a complete list of factors;
</p><blockquote class="quote"><span style="font-family:monospace">idivis(250)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[1,2,5,10,25,50,125,250]
</td></tr>
</table><p>The subject of primes is a difficult one, and you should see the
manual for a discussion of how <span style="font-family:monospace">Xcas</span> checks for primes. But
the command <span style="font-family:monospace">isprime</span> will return <span style="font-family:monospace">true</span> or <span style="font-family:monospace">false</span>
depending on whether or not you enter a prime. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">isprime(37)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">true</span>
</td></tr>
</table><p>
since 37 is a prime number. The commands <span style="font-family:monospace">nextprime</span> and
<span style="font-family:monospace">previousprime</span> will find the first prime after (or before) the
number that you give it; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">nextprime(37)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
41
</td></tr>
</table><p>
since the first prime after 37 is 41.</p><p>Integers modulo <span style="font-style:italic">p</span> are defined by putting <span style="font-family:monospace">% p</span> after them.
Once an integer modulo <span style="font-style:italic">p</span> is defined, then any calculations done with
it are done in &#X2124;/<span style="font-style:italic">p</span>&#X2124;. For example, if you define
</p><blockquote class="quote"><span style="font-family:monospace">a := 3 % 5
</span></blockquote><p>
then
</p><blockquote class="quote"><span style="font-family:monospace">a*2
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
1&#XA0;%&#XA0;5
</td></tr>
</table><p>
(since 6 mod 5 is reduced to 1 mod 5); 
</p><blockquote class="quote"><span style="font-family:monospace">1/a
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
2&#XA0;%&#XA0;5
</td></tr>
</table><p>
etc. The <span style="font-family:monospace">powermod</span> or <span style="font-family:monospace">powmod</span> functions can be used
to efficiently calculate powers modulo a number.</p>
<!--TOC subsection id="sec30" Polynomials and rational functions-->
<h3 id="sec30" class="subsection">5.2&#XA0;&#XA0;Polynomials and rational functions</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Polynomials</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">normal</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >normal form (expanded and reduced)</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">expand</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >expanded form</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ptayl</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Taylor form</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">peval</span> or <span style="font-family:monospace">horner</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >evaluation using Horner&#X2019;s method</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">canonical_form</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >canonical form for a trinomial</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">coeff</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >list of coefficients</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">poly2symb</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >transform an algebraic polynomial to list form</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">symb2poly</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >transform the list form of a polynomial to
algebraic form</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">pcoeff</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >return the polynomial (list form) given a list of zeroes</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">degree</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >degree</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">lcoeff</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the coefficient of the leading term</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">valuation</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the lowest degree of the terms</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tcoeff</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the coefficient of the term with the lowest degree</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">factor</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >prime factorization</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">factors</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >list of prime factors</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">divis</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >list of divisors</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">froot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >roots with multiplicities</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">proot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >approximate values of the roots</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sturmab</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the number of roots in an interval</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">getNum</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the numerator of a rational function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">getDenom</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >the denominator of a rational function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">propfrac</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >writes a rational expression as a whole part and a
proper rational part</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">partfrac</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >partial fraction decomposition</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">quo</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >quotient</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">rem</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >remainder</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">gcd</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >greatest common divisor</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">lcm</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >least common multiple</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">egcd</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Bezout&#X2019;s identity
</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">divpc</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Taylor polynomial for a rational expression</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">randpoly</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >random polynomial</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cyclotomic</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >cyclotomic polynomial</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">lagrange</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Lagrange polynomials</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">hermite</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Hermite polynomials</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">laguerre</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Laguerre polynomials</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tchebyshev1</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Tchebyshev polynomials</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tchebyshev2</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Tchebyshev polynomials</td></tr>
</table>
</div><p>
<a id="hevea_default217"></a>
<a id="hevea_default218"></a>
<a id="hevea_default219"></a>
<a id="hevea_default220"></a>
<a id="hevea_default221"></a>
<a id="hevea_default222"></a>
<a id="hevea_default223"></a>
<a id="hevea_default224"></a>
<a id="hevea_default225"></a>
<a id="hevea_default226"></a>
<a id="hevea_default227"></a>
<a id="hevea_default228"></a>
<a id="hevea_default229"></a>
<a id="hevea_default230"></a>
<a id="hevea_default231"></a>
<a id="hevea_default232"></a>
<a id="hevea_default233"></a>
<a id="hevea_default234"></a>
<a id="hevea_default235"></a>
<a id="hevea_default236"></a>
<a id="hevea_default237"></a>
<a id="hevea_default238"></a>
<a id="hevea_default239"></a>
<a id="hevea_default240"></a>
<a id="hevea_default241"></a>
<a id="hevea_default242"></a>
<a id="hevea_default243"></a>
<a id="hevea_default244"></a>
<a id="hevea_default245"></a>
<a id="hevea_default246"></a>
<a id="hevea_default247"></a>
<a id="hevea_default248"></a>
<a id="hevea_default249"></a>
<a id="hevea_default250"></a>
<a id="hevea_default251"></a>
<a id="hevea_default252"></a>
<a id="hevea_default253"></a>
<a id="hevea_default254"></a>
<a id="hevea_default255"></a>
<a id="hevea_default256"></a> 
<a id="hevea_default257"></a>
<a id="hevea_default258"></a>
<a id="hevea_default259"></a>
<a id="hevea_default260"></a>
<a id="hevea_default261"></a>
<a id="hevea_default262"></a></p><p>Various polynomial operations are available in the <span style="font-family:monospace">Polynomials</span>
submenu of the <span style="font-family:monospace">Cmds</span> menu.</p><p>The <span style="font-family:monospace">expand</span> and <span style="font-family:monospace">normal</span> operators will distribute
multiplication across addition, and so expand a polynomial completely
out. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">expand((x+1)*(x+2)^2)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<span style="font-style:italic">x</span><sup>3</sup>+5*<span style="font-style:italic">x</span><sup>2</sup>+8*<span style="font-style:italic">x</span>+4
</td></tr>
</table><p>
Additionally, <span style="font-family:monospace">normal</span> will reduce a rational expression to
lowest terms; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">normal((x-1)^2/(x^2-1))
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>&#X2212;1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>+1</td></tr>
</table></td></tr>
</table><p>The <span style="font-family:monospace">factor</span> operator will factor a polynomial. 
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">factor(x^3+6*x^2+3*x-10
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(<span style="font-style:italic">x</span>&#X2212;1)*(<span style="font-style:italic">x</span>+2)*(<span style="font-style:italic">x</span>+5)
</td></tr>
</table><p>
The result often depends on the number field being used. For example, over the
rational numbers the polynomial <span style="font-style:italic">x</span><sup>4</sup> &#X2212; 1 factors as 
(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)(<span style="font-style:italic">x</span><sup>2</sup> + 1), while over the complex numbers it factors as 
(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)(<span style="font-style:italic">x</span>&#X2212;<span style="font-style:italic">i</span>)(<span style="font-style:italic">x</span>+<span style="font-style:italic">i</span>). If the coefficients of a polynomial are exact
fractions, then the factoring will be over the rationals. To factor
over the complex numbers, you can configure <span style="font-family:monospace">Xcas</span> to do
complex factorization (see section <a href="#config">2.3</a>, &#X201C;Configuration&#X201D;)
or use the <span style="font-family:monospace">cfactor</span> command.
If the coefficients are in &#X2124;/<span style="font-style:italic">p</span>&#X2124; then the polynomial will be
factored over &#X2124;/<span style="font-style:italic">p</span>&#X2124;.</p>
<!--TOC subsection id="sec31" Trigonometry-->
<h3 id="sec31" class="subsection">5.3&#XA0;&#XA0;Trigonometry</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Trigonom&#XE9;trie</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tlin</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >linearize</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tcollect</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >linearize and regroup</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">texpand</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >expand</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">trig2exp</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >trigonometric to exponential</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">exp2trig</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >exponential to trigonometric</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">hyp2exp</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >hyperbolic to exponential</td></tr>
</table>
</div><p>
<a id="hevea_default263"></a>
<a id="hevea_default264"></a>
<a id="hevea_default265"></a>
<a id="hevea_default266"></a>
<a id="hevea_default267"></a>
<a id="hevea_default268"></a></p><p><span style="font-family:monospace">Xcas</span> has the usual trigonometic functions, both circular and
hyperbolic, as well as their inverses. It also has commands for
manipulating trigonometric expressions; these are in the
<span style="font-family:monospace">Trigo</span> submenus of the <span style="font-family:monospace">Expression</span> menu.</p><p>One example is the <span style="font-family:monospace">tlin</span> command will write products and powers of sines and
cosines as linear combinations of sin(<span style="font-style:italic">n</span> <span style="font-style:italic">x</span>)s and cos(<span style="font-style:italic">n</span> <span style="font-style:italic">x</span>)s. If
you enter
</p><blockquote class="quote"><span style="font-family:monospace">tlin(2*sin(x)^2*cos(3*x))
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">cos(<span style="font-style:italic">x</span>)</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">&#XA0;+&#XA0;cos(3*<span style="font-style:italic">x</span>)&#XA0;&#X2212;&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">cos(5*<span style="font-style:italic">x</span>)</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td></tr>
</table><p>The <span style="font-family:monospace">texpand</span> command will take expressions involving 
sin(<span style="font-style:italic">n</span> <span style="font-style:italic">x</span>) and cos(<span style="font-style:italic">n</span> <span style="font-style:italic">x</span>) and write them in terms of powers if
sin(<span style="font-style:italic">x</span>) and cos(<span style="font-style:italic">x</span>). If you enter
</p><blockquote class="quote"><span style="font-family:monospace">texpand(sin(2*x)^2*cos(3*x))
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
16*cos(<span style="font-style:italic">x</span>)<sup>5</sup>*sin(<span style="font-style:italic">x</span>)<sup>2</sup>&#X2212;12*cos(<span style="font-style:italic">x</span>)<sup>3</sup>*sin(<span style="font-style:italic">x</span>)<sup>2</sup>
</td></tr>
</table>
<!--TOC subsection id="sec32" Vectors and matrices-->
<h3 id="sec32" class="subsection">5.4&#XA0;&#XA0;Vectors and matrices</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Vectors and matrices</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">v*w</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >scalar product</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cross(v,w)</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >cross product</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">A*B</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >matrix product</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">A.*B</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >term by term product</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">1/A</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >inverse</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tran</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >transpose</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">rank</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >rank</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">det</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >determinant</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ker</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >basis for the kernel</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">image</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >base for the image</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">idn</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >identity matrix</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">ranm</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >matrix with random coefficients</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">makematrix</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >make a matrix from a function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">matrix</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >make a matrix from a function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">blockmatrix</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >combine matrices</td></tr>
</table>
</div><p>
<a id="hevea_default269"></a>
<a id="hevea_default270"></a>
<a id="hevea_default271"></a>
<a id="hevea_default272"></a>
<a id="hevea_default273"></a>
<a id="hevea_default274"></a>
<a id="hevea_default275"></a>
<a id="hevea_default276"></a>
<a id="hevea_default277"></a>
<a id="hevea_default278"></a>
<a id="hevea_default279"></a>
<a id="hevea_default280"></a>
<a id="hevea_default281"></a>
<a id="hevea_default282"></a>
<a id="hevea_default283"></a>
<a id="hevea_default284"></a>
<a id="hevea_default285"></a>
<a id="hevea_default286"></a>
<a id="hevea_default287"></a></p><p>A vector is a list of numbers, such as <span style="font-family:monospace">[2,3,5]</span>, and a matrix
is a list of vectors all of the same length, such as
<span style="font-family:monospace">[[1,2,3],[4,5,6]]</span>.</p><p>The usual matrix operations (addition, scalar multiplication, matrix
multiplication) are done with the usual operators <span style="font-family:monospace">+</span> and
<span style="font-family:monospace">*</span>. If you define
</p><blockquote class="quote"><span style="font-family:monospace">A := [[1,2,3],[4,5,6],[7,8,9]]
</span></blockquote><blockquote class="quote"><span style="font-family:monospace">B := [[1,1,1],[2,2,2]]
</span></blockquote><p>
then
</p><blockquote class="quote"><span style="font-family:monospace">3*A
</span></blockquote><p>
will give you
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >3</td><td style="text-align:center;white-space:nowrap" >6</td><td style="text-align:center;white-space:nowrap" >9</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >12</td><td style="text-align:center;white-space:nowrap" >15</td><td style="text-align:center;white-space:nowrap" >18</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >21</td><td style="text-align:center;white-space:nowrap" >24</td><td style="text-align:center;white-space:nowrap" >27
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">B*A
</span></blockquote><p>
will give you
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >12</td><td style="text-align:center;white-space:nowrap" >15</td><td style="text-align:center;white-space:nowrap" >18</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >24</td><td style="text-align:center;white-space:nowrap" >30</td><td style="text-align:center;white-space:nowrap" >36
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>
A vector can be regarded as a matrix with one row, except that if a matrix
is multiplied on the right by a vector, the vector will be regarded as
a column. In particular, if <span style="font-family:monospace">v</span> and <span style="font-family:monospace">w</span> are vectors of
the same length, then <span style="font-family:monospace">v*w</span> will return the scalar product.</p><p>The <span style="font-family:monospace">idn</span> command will create an identity matrix;
</p><blockquote class="quote"><span style="font-family:monospace">idn(2)
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >0</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >1
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>
You can also use <span style="font-family:monospace">makemat</span> or <span style="font-family:monospace">matrix</span> commands to build
a matrix. They both require a real-valued function of two variables,
the number of rows and the number of columns. The indices start at 0,
and with the <span style="font-family:monospace">makemat</span> the function comes first, with
<span style="font-family:monospace">matrix</span> the function comes last. Both
</p><blockquote class="quote"><span style="font-family:monospace">makemat((j,k)-&gt;j+k,3,2)
</span></blockquote><p>
and
</p><blockquote class="quote"><span style="font-family:monospace">matrix(3,2,(j,k)-&gt;j+k)
</span></blockquote><p>
produce
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >2</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >3
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>Several matrices can be combined into a larger matrix with the
<span style="font-family:monospace">blockmatrix</span> command. To arrange <span style="font-style:italic">m</span> * <span style="font-style:italic">n</span> matrices
into <span style="font-style:italic">m</span> rows and <span style="font-style:italic">n</span> columns, you give <span style="font-family:monospace">blockmatrix</span> the
values <span style="font-style:italic">m</span>, <span style="font-style:italic">n</span> and a list of the matrices. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">A := [[1,2,3],[4,5,6]]
</span></blockquote><blockquote class="quote"><span style="font-family:monospace">B := [[1,2],[2,3]]
</span></blockquote><p>
then
</p><blockquote class="quote"><span style="font-family:monospace">blockmatrix(2,2,[A,B,B,A])
</span></blockquote><p>
will give you
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >3</td><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >2</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >4</td><td style="text-align:center;white-space:nowrap" >5</td><td style="text-align:center;white-space:nowrap" >6</td><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >3</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >3</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >3</td><td style="text-align:center;white-space:nowrap" >4</td><td style="text-align:center;white-space:nowrap" >5</td><td style="text-align:center;white-space:nowrap" >5
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>You can get the elements from a matrix by following the matrix with
the indices in brackets, separated by commas. For <span style="font-family:monospace">A</span> as above,
</p><blockquote class="quote"><span style="font-family:monospace">A[1,2]
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
6
</td></tr>
</table><p>
You can extract a submatrix<a id="hevea_default288"></a> by using intervals of indices (the
beginning and end index separated by two periods);
</p><blockquote class="quote"><span style="font-family:monospace">A[0..1,1..2]
</span></blockquote><p>
returns
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >2</td><td style="text-align:center;white-space:nowrap" >3</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >5</td><td style="text-align:center;white-space:nowrap" >6
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>Note that if you change one value of a matrix in <span style="font-family:monospace">Xcas</span>, the
entire matrix will be copied. If a program modifies parts of a large
matrix one element at a time, this time can add up.</p>
<!--TOC subsection id="sec33" Linear systems-->
<h3 id="sec33" class="subsection">5.5&#XA0;&#XA0;Linear systems</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Linear systems</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">linsolve</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >solution of a linear system</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">simult</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >solutions of many linear systems</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">rref</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >Gauss-Jordan reduction</td></tr>
</table>
</div><p>
<a id="hevea_default289"></a>
<a id="hevea_default290"></a>
<a id="hevea_default291"></a>
<a id="hevea_default292"></a></p><p>The <span style="font-family:monospace">linsolve</span> command will solve a system of linear equations;
its syntax is the same as that of <span style="font-family:monospace">solve</span> (see section
<a href="#solve">4.4</a>, &#X201C;Solving equations&#X201D;).
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">linsolve([2*x + 3*y = 4, 5*x + 4*y = 3],[x,y])
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[&#X2212;1,2]
</td></tr>
</table><p>The <span style="font-family:monospace">simult</span> command can also solve a system of linear
equations; more generally, it can solve several systems with the same
coefficient matrix. To solve the systems
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">A</span><span style="font-weight:bold"><span style="font-style:italic">x</span></span>&#XA0;=&#XA0;<span style="font-weight:bold"><span style="font-style:italic">b</span></span><sub>1</sub>,&#X2026;,<span style="font-style:italic">A</span><span style="font-weight:bold"><span style="font-style:italic">x</span></span>=<span style="font-weight:bold"><span style="font-style:italic">b</span></span><sub><span style="font-style:italic">k</span></sub></td></tr>
</table><p>
you can enter
</p><blockquote class="quote"><span style="font-family:monospace">simult(A,B)
</span></blockquote><p>
where
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">B</span>&#XA0;=&#XA0;</td><td class="dcell">&#X239B;<br>
&#X239D;</td><td class="dcell"><span style="font-weight:bold"><span style="font-style:italic">b</span></span><sub>1</sub>&#XA0;&#X22EF;&#XA0;<span style="font-weight:bold"><span style="font-style:italic">b</span></span><sub><span style="font-style:italic">k</span></sub></td><td class="dcell">&#X239E;<br>
&#X23A0;</td></tr>
</table><p>
The result will be a matrix whose <span style="font-style:italic">j</span>th column is the solution of
<span style="font-style:italic">A</span><span style="font-weight:bold"><span style="font-style:italic">x</span></span>=<span style="font-weight:bold"><span style="font-style:italic">b</span></span><sub><span style="font-style:italic">j</span></sub>.
For example, if you want to solve the systems
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23AA;<br>
&#X23A8;<br>
&#X23AA;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" >&#XA0;<span style="font-style:italic">x</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span></td><td style="text-align:left;white-space:nowrap" >&#X2212;</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span></td><td style="text-align:left;white-space:nowrap" >=</td><td style="text-align:right;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:left;white-space:nowrap" >&#XA0;<span style="font-style:italic">x</span></td><td style="text-align:left;white-space:nowrap" >&#X2212;</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span></td><td style="text-align:left;white-space:nowrap" >=</td><td style="text-align:right;white-space:nowrap" >1&#XA0;</td></tr>
<tr><td style="text-align:left;white-space:nowrap" >&#XA0;&#X2212;<span style="font-style:italic">x</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span></td><td style="text-align:left;white-space:nowrap" >=</td><td style="text-align:right;white-space:nowrap" >&#X2212;2&#XA0;
</td></tr>
</table></td></tr>
</table><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23AA;<br>
&#X23A8;<br>
&#X23AA;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" >&#XA0;<span style="font-style:italic">x</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span></td><td style="text-align:left;white-space:nowrap" >&#X2212;</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span></td><td style="text-align:left;white-space:nowrap" >=</td><td style="text-align:right;white-space:nowrap" >&#X2212;2</td></tr>
<tr><td style="text-align:left;white-space:nowrap" >&#XA0;<span style="font-style:italic">x</span></td><td style="text-align:left;white-space:nowrap" >&#X2212;</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span></td><td style="text-align:left;white-space:nowrap" >=</td><td style="text-align:right;white-space:nowrap" >1&#XA0;</td></tr>
<tr><td style="text-align:left;white-space:nowrap" >&#XA0;&#X2212;<span style="font-style:italic">x</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span></td><td style="text-align:left;white-space:nowrap" >+</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span></td><td style="text-align:left;white-space:nowrap" >=</td><td style="text-align:right;white-space:nowrap" >1&#XA0;
</td></tr>
</table></td></tr>
</table><p>
which both have the same matrix of coefficients
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >&#XA0;&#XA0;1</td><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >&#X2212;1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#XA0;&#XA0;1</td><td style="text-align:center;white-space:nowrap" >&#X2212;1</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#XA0;&#XA0;&#X2212;1</td><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >1
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>
you can create the matrix which has one column for each system
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >&#XA0;&#XA0;1</td><td style="text-align:center;white-space:nowrap" >&#X2212;2</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#XA0;&#XA0;1</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#XA0;&#XA0;&#X2212;2</td><td style="text-align:center;white-space:nowrap" >1
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">simult([[1,1,-1],[1,-1,1],[-1,1,1]],[[1,-2],[1,1],[-2,1]])
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >&#X2212;1/2</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;1/2</td><td style="text-align:center;white-space:nowrap" >&#X2212;1/2</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;1/2</td><td style="text-align:center;white-space:nowrap" >1
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>
The solution to the first system is the first column,
<span style="font-style:italic">x</span>=1,<span style="font-style:italic">y</span>=&#X2212;1/2,<span style="font-style:italic">z</span>=&#X2212;1/2, and the solution to the second system is the
second column, <span style="font-style:italic">x</span>=&#X2212;1/2,<span style="font-style:italic">y</span>=&#X2212;1/2,<span style="font-style:italic">z</span>=1.</p><p>When there are no solutions, <span style="font-family:monospace">linsolve</span> will return the empty
list while <span style="font-family:monospace">simult</span> will return an error. When there are
infinitely many solutions, <span style="font-family:monospace">linsolve</span> will return formulas for
all solutions while <span style="font-family:monospace">simult</span> will return one solution.</p>
<!--TOC subsection id="sec34" Matrix reduction-->
<h3 id="sec34" class="subsection">5.6&#XA0;&#XA0;Matrix reduction</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Matrix reduction</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">jordan</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >diagonalization or Jordan reduction</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">pcar</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >characteristic polynomial (list form)</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">pmin</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >minimal polynomial (list form)</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">eigenvals</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >eigenvalues</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">eigenvects</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >eigenvectors</td></tr>
</table>
</div><p>
<a id="hevea_default293"></a>
<a id="hevea_default294"></a>
<a id="hevea_default295"></a>
<a id="hevea_default296"></a>
<a id="hevea_default297"></a>
<a id="hevea_default298"></a>
<a id="hevea_default299"></a>
<a id="hevea_default300"></a>
<a id="hevea_default301"></a>
<a id="hevea_default302"></a>
<a id="hevea_default303"></a></p><p>The <span style="font-family:monospace">jordan</span> command will take a matrix <span style="font-style:italic">A</span> and returns a
transition matrix <span style="font-style:italic">P</span> and a matrix <span style="font-style:italic">J</span> in Jordan canonical form, so
that <span style="font-style:italic">P</span><sup>&#X2212;1</sup> <span style="font-style:italic">A</span> <span style="font-style:italic">P</span> = <span style="font-style:italic">J</span>. In particular, if <span style="font-style:italic">A</span> is diagonalizable, then
<span style="font-style:italic">J</span> will be diagonal with the eigenvalues of <span style="font-style:italic">A</span> on the diagonal and
the columns of <span style="font-style:italic">P</span> will be the corresponding eigenvectors.
If you enter
</p><blockquote class="quote"><span style="font-family:monospace">jordan([[4,1],[-8,-5]])
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;1</td><td style="text-align:center;white-space:nowrap" >&#X2212;8&#XA0;</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td><td class="dcell">,
</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >3</td><td style="text-align:center;white-space:nowrap" >0</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >&#X2212;4&#XA0;</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table><p>
This means that 3 and &#X2212;4 (the diagonal elements of the second
matrix) are the eigenvalues of 
(</p><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >4</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;8</td><td style="text-align:center;white-space:nowrap" >&#X2212;5</td></tr>
</table><p>) and the corresponding
eigenvectors are (</p><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;1</td></tr>
</table><p>) and
(</p><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;8</td></tr>
</table><p>) (the columns of the first matrix).
For diagonalizable matrices you can also get this information with the
<span style="font-family:monospace">eigenvals</span> and <span style="font-family:monospace">eigenvects</span> commands;
</p><blockquote class="quote"><span style="font-family:monospace">eigenvals([[4,1],[-8,-5]])
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
(3,&#X2212;4)
</td></tr>
</table><p>
and 
</p><blockquote class="quote"><span style="font-family:monospace">eigenvects([[4,1],[-8,-5]])
</span></blockquote><p>
will return
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;1</td><td style="text-align:center;white-space:nowrap" >&#X2212;8&#XA0;</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table><p>For matrices with exact and symbolic values, the only eigenvalues used
are those computable with <span style="font-family:monospace">solve</span>; for matrices with floating
point numbers, a numerical algorithm is used to find the eigenvalues.
This algorithm may fail in some cases where there are very close
eigenvalues or eigenvalues with multiplicity greater than one.</p><p>If a function is defined by a polynomial, you can evaluate it with an
argument of a square matrix. If a function is given by a series, the
Jordan form of the matrix can be used to define the value of the
function at a matrix. For example, you can find the exponential of a
square matrix;
</p><blockquote class="quote"><span style="font-family:monospace">exp([[0,-1],[1,2]])
</span></blockquote><p>
will result in
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">

</td><td class="dcell"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >&#X2212;exp(1)</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >exp(1)</td><td style="text-align:center;white-space:nowrap" >2*exp(1)
</td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X23A0;</td></tr>
</table></td></tr>
</table>
<!--TOC section id="sec35" Graphs-->
<h2 id="sec35" class="section">6&#XA0;&#XA0;Graphs</h2><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Plotting graphs</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >graph an expression of one variable</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotfunc</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >graph an expression of one or two variables</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">tangent</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >tangent to a curve</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotparam</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >parametric curve</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotpolar</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >polar plotting</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotimplicit</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >implicit curve</td></tr>
</table>
</div><p>
<a id="hevea_default304"></a>
<a id="hevea_default305"></a>
<a id="hevea_default306"></a>
<a id="hevea_default307"></a>
<a id="hevea_default308"></a>
<a id="hevea_default309"></a>
<a id="hevea_default310"></a>
<a id="hevea_default311"></a>
<a id="hevea_default312"></a></p><p>The <span style="font-family:monospace">Graphic</span> menu has entries for several graphing commands;
if you choose one you will be given a template you can fill out to
produce a graphic. The appropriate command will be placed on the
command line. If you want several graphs in the same window, you can
put the commands on the same command line separated by semicolons.</p><p>Once you have created a graphic window, there will be a panel to the
right with buttons allowing you to control the image. The default
parameters for graphs, such as the size of the graphs, are
configurable (see section <a href="#config">2.3</a>, &#X201C;Configuration&#X201D;).</p><p>As well as being displayed in the <span style="font-family:monospace">Xcas</span> window, the two
dimensional graphics also appear in the DispG (Display Graphics)
window. You can bring that window up with the
<span style="font-family:monospace">Cfg</span>&#X25B8;<span style="font-family:monospace">Show</span>&#X25B8;<span style="font-family:monospace">DispG</span> menu item.
This window will contain all two dimensional graphs; they can be
cleared with the <span style="font-family:monospace">ClrGraph</span> command. </p>
<!--TOC subsection id="sec36" Curves-->
<h3 id="sec36" class="subsection">6.1&#XA0;&#XA0;Curves</h3><!--SEC END --><p>The simplest way to draw graphs is with the templates from the
<span style="font-family:monospace">Graphic</span> menu, but there are command line equivalents. </p><p>The command line instruction for graphing a function is the
<span style="font-family:monospace">plot</span> command. It takes an expression (or list of
expressions) followed by the variable. To use a domain different than
the default, you can indicate the range of the variable by setting it
equal to an interval. If you are plotting several curves, you can
distinguish them by giving them different colors; you can do this with
a third argument <span style="font-family:monospace">color=</span> followed by a list of colors.
If you plot
</p><blockquote class="quote"><span style="font-family:monospace">plot([x^2,x^3],x=-1..1,color=[red,blue])
</span></blockquote><p>
you will get
</p><div class="center">
<img src="tutoriel008.png">
</div><p>You can draw parameterized curves with the <span style="font-family:monospace">plotparam</span> command.
The coordinates of the curve must be given as a single complex
expression; the <span style="font-style:italic">x</span> coordinate will be the real part of the expression
and the <span style="font-style:italic">y</span> coordinate will be the imaginary part. For example, if
you enter
</p><blockquote class="quote"><span style="font-family:monospace">plotparam(sin(t) + i*cos(t),t)
</span></blockquote><p>
you will get the circle
</p><div class="center">
<img src="tutoriel009.png">
</div><p>
(Since the <span style="font-style:italic">x</span>- and <span style="font-style:italic">y</span>-axes are scaled differently, the circle
looks elliptical.)</p><p>You can draw a curve using polar coordinates with the
<span style="font-family:monospace">plotpolar</span> command. This takes the form
<span style="font-family:monospace">plotpolar(f(theta),theta,theta-min,theta-max)</span>.</p><p>You can draw an implicitly defined curve with the
<span style="font-family:monospace">plotimplicit</span> command; the command
<span style="font-family:monospace">plotimplicit(</span><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>)<span style="font-family:monospace">,</span><span style="font-style:italic">x</span><span style="font-family:monospace">,</span><span style="font-style:italic">y</span><span style="font-family:monospace">)</span> will draw the curve
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>)=0. For example, the command
</p><blockquote class="quote"><span style="font-family:monospace">plotimplicit(x^2 + y^2 = 1,x,y)
</span></blockquote><p>
will draw a circle.</p><p>The <span style="font-family:monospace">tangent</span> command will draw the tangent line to a curve, if
you tell it the curve and the point. To draw the tangent line to the
graph <span style="font-style:italic">y</span>=<span style="font-style:italic">x</span><sup>2</sup> at <span style="font-style:italic">x</span>=1, for example, you can enter
</p><blockquote class="quote"><span style="font-family:monospace">tangent(plotfunc(x^2,x),1)
</span></blockquote><p>
You will get
</p><div class="center">
<img src="tutoriel010.png">
</div>
<!--TOC subsection id="sec37" Plane geometry-->
<h3 id="sec37" class="subsection">6.2&#XA0;&#XA0;Plane geometry</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">2D graphical objects</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">legend</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >place text starting from a given point</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">point</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >determine a point given a complex number or two
coordinates</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">segment</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >segment determined by 2 points</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">circle</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >circle determined by a point and radius</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">inter</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >find the intersection of curves</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">equation</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >return the cartesian equation of a curve</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">parameq</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >return the parametric equation of a curve</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">polygonplot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >draw a polygonal line</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">scatterplot</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >draw a cloud of dots</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">polygon</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >draw a closed polygon</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">open_polygon</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >draw an open polygon</td></tr>
</table>
</div><p>
<a id="hevea_default313"></a>
<a id="hevea_default314"></a>
<a id="hevea_default315"></a>
<a id="hevea_default316"></a>
<a id="hevea_default317"></a>
<a id="hevea_default318"></a>
<a id="hevea_default319"></a>
<a id="hevea_default320"></a>
<a id="hevea_default321"></a>
<a id="hevea_default322"></a>
<a id="hevea_default323"></a>
<a id="hevea_default324"></a>
<a id="hevea_default325"></a>
<a id="hevea_default326"></a>
<a id="hevea_default327"></a>
<a id="hevea_default328"></a>
<a id="hevea_default329"></a></p><p>Among its other capabilities, <span style="font-family:monospace">Xcas</span> works with plane geometry.
The <span style="font-family:monospace">Geo</span>&#X25B8;<span style="font-family:monospace">New figure 2D</span> menu item or the
<span style="font-family:monospace">Alt+g</span> key will bring up the screen for plane geometry.</p><p>A point on the geometry screen can be specified with the
<span style="font-family:monospace">point</span> command, which can take either an ordered pair or real
numbers or a complex number as argument. The <span style="font-family:monospace">Geo</span> menu
contains many commands for drawing geometric objects, such as
<span style="font-family:monospace">circle</span> (which takes a point and a radius as arguments) and
<span style="font-family:monospace">polygon</span> (which takes a sequence of points as arguments).</p><p>Some functions, such as <span style="font-family:monospace">polygonplot</span> and <span style="font-family:monospace">scatterplot</span>,
take lists of <span style="font-style:italic">x</span>-coordinates and <span style="font-style:italic">y</span>-coordinates as arguments. For
example,
</p><blockquote class="quote"><span style="font-family:monospace">polygonplot([0,2,0],[0,0,2])
</span></blockquote><p>
and 
</p><blockquote class="quote"><span style="font-family:monospace">open_polygon(point(0,0),point(2,0),point(0,2))
</span></blockquote><p>
will both draw the same segments.</p><p>The <span style="font-family:monospace">legend</span> can be used to place text on the screen; one
simple way of using it is to give it a point and text as arguments.</p>
<!--TOC subsection id="sec38" 3D graphical objects-->
<h3 id="sec38" class="subsection">6.3&#XA0;&#XA0;3D graphical objects</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">3D graphical objects</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotfunc</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >graph of a function</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plotparam</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >parametric surface</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">point</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >point</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">plane</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >plane</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">sphere</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >sphere with a center and radius</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">cone</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >cone with a center, axis and opening angle</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">inter</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >intersection </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">polygon</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >polygon </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">open_polygon</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >open polygon</td></tr>
</table>
</div><p>
<a id="hevea_default330"></a>
<a id="hevea_default331"></a>
<a id="hevea_default332"></a>
<a id="hevea_default333"></a>
<a id="hevea_default334"></a>
<a id="hevea_default335"></a>
<a id="hevea_default336"></a>
<a id="hevea_default337"></a>
<a id="hevea_default338"></a>
<a id="hevea_default339"></a>
<a id="hevea_default340"></a>
<a id="hevea_default341"></a></p><p><span style="font-family:monospace">Xcas</span> can also handle three-dimensions graphically, either by
drawing curves and graphs in three-dimensions or by drawing
three-dimensional geometric objects. A three-dimensional screen can
be brought up with the <span style="font-family:monospace">Geo</span>&#X25B8;<span style="font-family:monospace">New figure 3D</span>
menu item or the <span style="font-family:monospace">Alt+h</span> key.
There will controls for the view window to the right of the screen.
You can rotate the visualization cube by using the mouse outside of
the cube or by clicking in the cube and using the <span style="font-family:monospace">x</span>,
<span style="font-family:monospace">y</span> and <span style="font-family:monospace">z</span> keys to rotate and the <span style="font-family:monospace">+</span> and
<span style="font-family:monospace">-</span> keys for zooming.</p><p>You can draw a graph <span style="font-style:italic">z</span> = <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>) with the <span style="font-family:monospace">plotfunc</span> command,
which takes an expression and a list of two variables. Like graphs of
functions of one variable, you can use a domain different than the
default by giving the variables their own intervals. The command
</p><blockquote class="quote"><span style="font-family:monospace">plotfunc(y^2 - x^2,[x=-1..1,y=-1..1])
</span></blockquote><p>
will give you the graph
</p><div class="center">
<img src="tutoriel011.png">
</div><p>The <span style="font-family:monospace">plotparam</span> command can be used to draw a parameterized
curves and surfaces in three-dimensions. If the first argument is a
list of three expressions involving two variables and the next two
arguments are the variables (with optional intervals), then
<span style="font-family:monospace">plotparam</span> will plot the surface. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">plotparam([u,u+v,v],u,v)
</span></blockquote><p>
you will get
</p><div class="center">
<img src="tutoriel012.png">
</div><p>
If the first argument is a list of three expressions involving one
variable and the next argument is the variable, then
<span style="font-family:monospace">plotparam</span> will plot the curve. If you enter
</p><blockquote class="quote"><span style="font-family:monospace">plotparam([cos(t),sin(t),t],t)
</span></blockquote><p>
you will get
</p><div class="center">
<img src="tutoriel013.png">
</div><p>A point in three-dimensions is given with the <span style="font-family:monospace">point</span> command
with three arguments. Commands like <span style="font-family:monospace">polygon</span> and
<span style="font-family:monospace">open_polygon</span> work in three-dimensions as well as two, as
well as additional commands such as <span style="font-family:monospace">sphere</span>. A plane can be
drawn with the <span style="font-family:monospace">plane</span> command, which can be given either three
points, a line and two points, or an equation of the form <span style="font-family:monospace">a*x
+ b*y + c*z = d</span>.</p>
<!--TOC section id="sec39" Programming-->
<h2 id="sec39" class="section">7&#XA0;&#XA0;Programming</h2><!--SEC END -->
<!--TOC subsection id="sec40" The language-->
<h3 id="sec40" class="subsection">7.1&#XA0;&#XA0;The language</h3><!--SEC END --><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Instructions for </span><span style="font-weight:bold"><span style="font-family:monospace">Xcas</span></span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">a:=2;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >assignment </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">input("a=",a);</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >input expression </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">textinput("a=",a);</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >string input </td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">print("a=",a);</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >output</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">return(a);</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >return value</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">break;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >break out of loop</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">continue;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >go to the next iteration</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">if (&lt;condition&gt;) </span><span style="font-family:monospace">&lt;inst&gt;</span><span style="font-family:monospace">;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >if&#X2026;then</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">if (&lt;condition&gt;) </span><span style="font-family:monospace">&lt;inst1&gt;</span><span style="font-family:monospace"> else </span><span style="font-family:monospace">&lt;inst2&gt;</span><span style="font-family:monospace">;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >	 if&#X2026;then &#X2026;else</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">for (j:= a;j&lt;=b;j++) </span><span style="font-family:monospace">&lt;inst&gt;</span><span style="font-family:monospace">;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >for loop</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">for (j:= a;j&lt;=b;j:=j+p) </span><span style="font-family:monospace">&lt;inst&gt;</span><span style="font-family:monospace">;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >for loop</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">repeat &lt;inst&gt; until &lt;condition&gt;;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >repeat loop</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">while (&lt;condition&gt;) </span><span style="font-family:monospace">&lt;inst&gt;</span><span style="font-family:monospace">;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >while loop</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">do &lt;inst1&gt; if (&lt;condition&gt;) break;&lt;inst2&gt; od;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >do loop</td></tr>
</table>
</div><p>
<a id="hevea_default342"></a>
<a id="hevea_default343"></a>
<a id="hevea_default344"></a>
<a id="hevea_default345"></a></p><div class="center">
<table border=1  style="border-spacing:0;" class="cellpadding1"><tr><td style="text-align:center;border:solid 1px;white-space:nowrap"  colspan=2><span style="font-weight:bold">Boolean operators</span></td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">==</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >test for equality</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">!=</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >test for inequality</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">&lt;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >test for strictly less than</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">&gt;</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >test for strictly greater than</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">&lt;=</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >tes for less than or equal</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">&gt;=</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >test for greater than or equal to</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">&amp;&amp;</span>, <span style="font-family:monospace">and</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >infixed &#X201C;and&#X201D;</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">||</span>, <span style="font-family:monospace">or</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >infixed &#X201C;or&#X201D;</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">true</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >boolean true (same as 1)</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">false</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >boolean false (same as 0)</td></tr>
<tr><td style="vertical-align:top;text-align:left;border:solid 1px;" ><span style="font-family:monospace">not</span>, <span style="font-family:monospace">!</span></td><td style="vertical-align:top;text-align:left;border:solid 1px;" >&#X201C;not&#X201D;</td></tr>
</table>
</div><p>
<a id="hevea_default346"></a>
<a id="hevea_default347"></a>
<a id="hevea_default348"></a>
<a id="hevea_default349"></a>
<a id="hevea_default350"></a>
<a id="hevea_default351"></a>
<a id="hevea_default352"></a>
<a id="hevea_default353"></a></p><p>You can extend <span style="font-family:monospace">Xcas</span> by adding desired functions with its
built-in programming language. The main features of the language are:</p><ul class="itemize"><li class="li-itemize">
It is a functional language. The argument of a function can
be another function; in which case you can either give the name of
a function or the definition of the function. If 
<span style="font-family:monospace">f(x) := x^2</span>, then
<span style="font-family:monospace">function_diff(f)</span> is the same as
<span style="font-family:monospace">function_diff(x-&gt;x^2)</span>.</li><li class="li-itemize">There is no distinction between a program and a function. A
function returns the value of the last evaluated statement or what
follows the reserved word <span style="font-family:monospace">return</span>.</li><li class="li-itemize">The language is untyped. Any variable can take on any value; the
only different types of variables are global variables, which are
not declared, and local variables, which are declared at the
beginning of a function.
</li></ul><p>A function declaration looks like
</p><pre class="verbatim">   function_name (var1, var2, ...) := {
   local var_loc1, var_loc2, ... ;
     statement1;
     statement2;
     ...
   }
</pre><p>
The syntax is similar to <span style="font-family:monospace">C++</span>, although many variants are
recognized, particularly in compatibility mode.
Recall that <span style="font-family:monospace">i</span> is &#X221A;<span style="text-decoration:overline">&#X2212;1</span> and cannot be used for a loop
variable. 
The conditional tests are Booleans, which are the results of the usual
Boolean operators.</p><p>A program can capture runtime errors with a
<span style="font-family:monospace">try</span>&#X2013;<span style="font-family:monospace">catch</span> construction, which takes the form
</p><pre class="verbatim">   try 
     {
      block to catch errors
     }
   catch (variable)
     {
      block to execute when an error is caught
     }
</pre><p>
For example, the following will catch an error caused by incorrect
matrix multiplication:
</p><pre class="verbatim">   try 
     { A := idn(2) * idn(3) }
   catch (error)
     { print("The error is " + error) }
</pre>
<!--TOC subsection id="sec41" Some examples-->
<h3 id="sec41" class="subsection">7.2&#XA0;&#XA0;Some examples</h3><!--SEC END --><p>To write a program, it is a good idea to use the program editor that
comes with <span style="font-family:monospace">Xcas</span>, which provides a template and commands
helpful for writing programs. You can open this editor with the
<span style="font-family:monospace">New Program</span> item in the <span style="font-family:monospace">Prg</span> menu or the
<span style="font-family:monospace">Alt+p</span> key.</p><p>Consider the following program, which takes two integers and returns the
quotient and remainder of the Euclidean division algorithm (like the
<span style="font-family:monospace">iquorem</span> function).
</p><pre class="verbatim">   idiv2(a,b) := {
     local q,r;
     if (b != 0) {
       q := iquo(a,b);
       r := irem(a,b);
       }
     else {
       q := 0;
       r := a;
       }
     return [q,r];
   }
</pre><p>
If you enter this into the editor, you can test it with the
<span style="font-family:monospace">OK</span> button. You can then use the function in the command
line; if you enter
</p><blockquote class="quote"><span style="font-family:monospace">idiv2(25,15)
</span></blockquote><p>
you will get
</p><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
[1,10]
</td></tr>
</table><p>
You can save it in a file; the name <span style="font-family:monospace">idiv2.cxx</span> would be a good
name. You can then use it in later session with the command
</p><blockquote class="quote"><span style="font-family:monospace">read("idiv2.cxx")
</span></blockquote><p>
or by opening it in the program editor and validating it with the
<span style="font-family:monospace">OK</span> button.</p><p>Here are some more programs that you can play with. This first one
computes the GCD of two integers iteratively.
</p><pre class="verbatim">   pgcdi(a,b) := {
     local r;
     while (b != 0) {
       r := irem(a,b);
       a := b;
       b := r;
       }
     return a;
   }:;
</pre><p>
The second one computes the GCD recursively.
</p><pre class="verbatim">   pgcdr(a,b) := {
     if (b == 0) return a;
     return pgcdr(b, irem(a,b));
   }:;
</pre><p>If a program doesn&#X2019;t work the way you expect, you can run it in
step-by-step mode with the debug command. For more details, consult
the <span style="font-family:monospace">Interface</span> item of the <span style="font-family:monospace">Help</span> menu. For example,
you can start the debugging by typing
</p><blockquote class="quote"><span style="font-family:monospace">debug(idiv2(25,15))
</span></blockquote><p>
The debugger will automatically display the values of the parameters
<span style="font-family:monospace">a</span> and <span style="font-family:monospace">b</span> and local variables <span style="font-family:monospace">q</span> and
<span style="font-family:monospace">r</span> when executing the program line by line with the
<span style="font-family:monospace">sst</span> button.</p>
<!--TOC subsection id="sec42" Programming style-->
<h3 id="sec42" class="subsection">7.3&#XA0;&#XA0;Programming style</h3><!--SEC END --><p>The <span style="font-family:monospace">Xcas</span> programming language is interpreted, not compiled.
The run time of an <span style="font-family:monospace">Xcas</span> program is affected by the number of
instructions rather than the number of lines. </p><p>The speed of a program does not always match up with the clarity of
the program; compromises are often necessary. For the most part, the
calculation time isn&#X2019;t an issue; interpreted languages are often used
to test algorithms and create models. Full scale applications are
written in a compiled language like <span style="font-family:monospace">C++</span>. A <span style="font-family:monospace">C++</span> can
use <span style="font-family:monospace">giac</span> for the formal calculations.</p><p>When you are trying to write a fast program, you may want to take into
account the number of instructions and the speed of the instructions.
For example, it is in general faster to create lists and sequences
than it is to program loops. Recall than in <span style="font-family:monospace">Xcas</span> you can
find out how long it takes to run a command by entering
</p><blockquote class="quote"><span style="font-family:monospace">time(</span><span style="font-family:monospace"><span style="font-style:italic">command</span></span><span style="font-family:monospace">)
</span></blockquote>
<!--TOC section id="sec43" Exercises-->
<h2 id="sec43" class="section">8&#XA0;&#XA0;Exercises</h2><!--SEC END --><p>There are usually several ways to get the same result in
<span style="font-family:monospace">Xcas</span>. We will try to use the simplest approaches.</p><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;1</span>&#XA0;&#XA0;Verify the following identities.
<ol class="enumerate" type=1><li class="li-enumerate">
(2<sup>1/3</sup>+4<sup>1/3</sup>)<sup>3</sup>&#X2212;6(2<sup>1/3</sup>+4<sup>1/3</sup>)=6
</li><li class="li-enumerate">&#X3C0; /4 = 4arctan(1/5)&#X2212;arctan(1/239)
</li><li class="li-enumerate">sin(5<span style="font-style:italic">x</span>) = 5sin(<span style="font-style:italic">x</span>)&#X2212;20sin<sup>3</sup>(<span style="font-style:italic">x</span>)+16sin<sup>5</sup>(<span style="font-style:italic">x</span>)
</li><li class="li-enumerate">(tan(<span style="font-style:italic">x</span>)+tan(<span style="font-style:italic">y</span>))cos(<span style="font-style:italic">x</span>)cos(<span style="font-style:italic">y</span>) = sin(<span style="font-style:italic">x</span>+<span style="font-style:italic">y</span>)
</li><li class="li-enumerate">cos<sup>6</sup>(<span style="font-style:italic">x</span>)+sin<sup>6</sup>(<span style="font-style:italic">x</span>) = 1&#X2212;3sin<sup>2</sup>(<span style="font-style:italic">x</span>)cos<sup>2</sup>(<span style="font-style:italic">x</span>)
</li><li class="li-enumerate">ln(tan(<span style="font-style:italic">x</span>/2+&#X3C0;/4)) = argsinh(tan(<span style="font-style:italic">x</span>))
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;2</span>&#XA0;&#XA0;Transform the rational expression
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>4</sup>+<span style="font-style:italic">x</span><sup>3</sup>&#X2212;4<span style="font-style:italic">x</span><sup>2</sup>&#X2212;4<span style="font-style:italic">x</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>4</sup>+<span style="font-style:italic">x</span><sup>3</sup>&#X2212;<span style="font-style:italic">x</span><sup>2</sup>&#X2212;<span style="font-style:italic">x</span></td></tr>
</table></td></tr>
</table>
into the following:
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>+2)(<span style="font-style:italic">x</span>+1)(<span style="font-style:italic">x</span>&#X2212;2)</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>3</sup>+<span style="font-style:italic">x</span><sup>2</sup>&#X2212;<span style="font-style:italic">x</span>&#X2212;1</td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;&#XA0;
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>4</sup>+<span style="font-style:italic">x</span><sup>3</sup>&#X2212;4<span style="font-style:italic">x</span><sup>2</sup>&#X2212;4<span style="font-style:italic">x</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)<sup>2</sup></td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;&#XA0;
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>+2)(<span style="font-style:italic">x</span>&#X2212;2)</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)</td></tr>
</table></td><td class="dcell">&#XA0;,
</td></tr>
</table>
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)</td></tr>
</table></td><td class="dcell">&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">4</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)</td></tr>
</table></td><td class="dcell">&#XA0;.
</td></tr>
</table>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;3</span>&#XA0;&#XA0;Transform the rational expression
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">2</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>3</sup>&#X2212;<span style="font-style:italic">yx</span><sup>2</sup>&#X2212;<span style="font-style:italic">yx</span>+<span style="font-style:italic">y</span><sup>2</sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>3</sup>&#X2212;<span style="font-style:italic">yx</span><sup>2</sup>&#X2212;<span style="font-style:italic">x</span>+<span style="font-style:italic">y</span></td></tr>
</table></td></tr>
</table>
into the following
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">2</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup>&#X2212;<span style="font-style:italic">y</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup>&#X2212;1</td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;&#XA0;
2</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup>&#X2212;<span style="font-style:italic">y</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(<span style="font-style:italic">x</span>&#X2212;1)(<span style="font-style:italic">x</span>+1)</td></tr>
</table></td><td class="dcell">
&#XA0;,
</td></tr>
</table>
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">2&#X2212;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">y</span>&#X2212;1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>&#X2212;1</td></tr>
</table></td><td class="dcell">+</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">y</span>&#X2212;1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>+1</td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;&#XA0;
2&#X2212;2</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">y</span>&#X2212;1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span><sup>2</sup>&#X2212;1</td></tr>
</table></td><td class="dcell">&#XA0;.
</td></tr>
</table>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;4</span>&#XA0;&#XA0;For each of the following definitions of a function <span style="font-style:italic">f</span>
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)&#XA0;=&#XA0;</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" ><span style="font-style:italic">e</span><sup><span style="font-style:italic">x</span></sup>&#X2212;1</td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;&#XA0;
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)&#XA0;=&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">x</span></td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >1+<span style="font-style:italic">x</span><sup>2</sup></td></tr>
</table></td></tr>
</table></td></tr>
</table></td><td class="dcell">
&#XA0;,
</td></tr>
</table>
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)&#XA0;=&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">1+sin(<span style="font-style:italic">x</span>)+cos(<span style="font-style:italic">x</span>)</td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;&#XA0;
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)&#XA0;=&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">ln(<span style="font-style:italic">x</span>)</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>(<span style="font-style:italic">x</span><sup>2</sup>+1)<sup>2</sup></td></tr>
</table></td><td class="dcell">
&#XA0;.
</td></tr>
</table>
<ol class="enumerate" type=1><li class="li-enumerate">
Find an antiderivative <span style="font-style:italic">F</span>.
</li><li class="li-enumerate">Find <span style="font-style:italic">F</span>&#X2032;(<span style="font-style:italic">x</span>) and show that <span style="font-style:italic">F</span>&#X2032;(<span style="font-style:italic">x</span>) can be simplified to <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>).
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;5</span>&#XA0;&#XA0;For each of the following integrals
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:xx-large">&#X222B;</span></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">&#X2212;1</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">&#X2212;2</td></tr>
</table></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span></td></tr>
</table></td><td class="dcell">&#XA0;<span style="font-style:italic">dx</span>&#XA0;,&#XA0;
</td><td class="dcell"><span style="font-size:xx-large">&#X222B;</span></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">1</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">0</td></tr>
</table></td><td class="dcell">&#XA0;<span style="font-style:italic">x</span>arctan(<span style="font-style:italic">x</span>)&#XA0;<span style="font-style:italic">dx</span>&#XA0;,
</td></tr>
</table>
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-size:xx-large">&#X222B;</span></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">&#X3C0;/2</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">0</td></tr>
</table></td><td class="dcell">&#XA0;</td><td class="dcell"><span style="font-size:x-large">&#X221A;</span></td><td class="dcell"><table style="border:0;border-spacing:1;border-collapse:separate;" class="cellpadding0"><tr><td class="hbar"></td></tr>
<tr><td style="text-align:center;white-space:nowrap" >cos(<span style="font-style:italic">x</span>)</td></tr>
</table></td><td class="dcell">&#XA0;<span style="font-style:italic">dx</span>&#XA0;,&#XA0;
</td><td class="dcell"><span style="font-size:xx-large">&#X222B;</span></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">&#X3C0;/2</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">0</td></tr>
</table></td><td class="dcell">&#XA0;<span style="font-style:italic">x</span><sup>4</sup>sin(<span style="font-style:italic">x</span>)cos(<span style="font-style:italic">x</span>)&#XA0;<span style="font-style:italic">dx</span>&#XA0;.
</td></tr>
</table> 
<ol class="enumerate" type=1><li class="li-enumerate">
Find the exact value, and find an approximation.
</li><li class="li-enumerate">For <span style="font-style:italic">n</span>=100 and <span style="font-style:italic">n</span>=1000, do the following.
For each <span style="font-style:italic">j</span>=0,&#X2026;,<span style="font-style:italic">n</span>, let <span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span></sub>=<span style="font-style:italic">a</span>+<span style="font-style:italic">j</span>(<span style="font-style:italic">b</span>&#X2212;<span style="font-style:italic">a</span>)/<span style="font-style:italic">n</span> and <span style="font-style:italic">y</span><sub><span style="font-style:italic">j</span></sub>=<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span></sub>).
Find an approximate value for the integral by using the left endpoint
rule:
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">n</span>&#X2212;1</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-size:xx-large">&#X2211;</span></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">j</span>=0</td></tr>
</table></td><td class="dcell">&#XA0;<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span></sub>)(<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span>+1</sub>&#X2212;<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span></sub>)&#XA0;.
</td></tr>
</table>
</li><li class="li-enumerate">Do the same as the previous part, except use the trapezoid
method:
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">n</span>&#X2212;1</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-size:xx-large">&#X2211;</span></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">j</span>=0</td></tr>
</table></td><td class="dcell">&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">2</td></tr>
</table></td><td class="dcell">(<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span></sub>)+<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span>+1</sub>))(<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span>+1</sub>&#X2212;<span style="font-style:italic">x</span><sub><span style="font-style:italic">j</span></sub>)&#XA0;.
</td></tr>
</table>
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;6</span>&#XA0;&#XA0;Define the function <span style="font-style:italic">f</span> by 
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>)=cos(<span style="font-style:italic">xy</span>).
<ol class="enumerate" type=1><li class="li-enumerate">
Let <span style="font-style:italic">x</span><sub>0</sub>=<span style="font-style:italic">y</span><sub>0</sub>=&#X3C0;/4. Define the function that maps (<span style="font-style:italic">u</span>,<span style="font-style:italic">v</span>,<span style="font-style:italic">t</span>) to
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>0</sub>+<span style="font-style:italic">ut</span>,<span style="font-style:italic">y</span><sub>0</sub>+<span style="font-style:italic">vt</span>)&#XA0;.</td></tr>
</table>
</li><li class="li-enumerate">Define the function <span style="font-style:italic">g</span> which is the partial derivative of the
preceding function with respect to <span style="font-style:italic">t</span> (so this will be a directional
derivative of <span style="font-style:italic">f</span>).
</li><li class="li-enumerate">Find the gradient of <span style="font-style:italic">f</span> at (<span style="font-style:italic">x</span><sub>0</sub>,<span style="font-style:italic">y</span><sub>0</sub>), then find the scalar product
of this gradient with the vector (<span style="font-style:italic">u</span>,<span style="font-style:italic">v</span>). Write this result in terms
of <span style="font-style:italic">g</span>.
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;7</span>&#XA0;&#XA0;Consider <span style="font-style:italic">x</span><sup>3</sup>&#X2212;(<span style="font-style:italic">a</span>&#X2212;1)<span style="font-style:italic">x</span><sup>2</sup>+<span style="font-style:italic">a</span><sup>2</sup><span style="font-style:italic">x</span>&#X2212;<span style="font-style:italic">a</span><sup>3</sup>=0 as an equation in <span style="font-style:italic">x</span>.
<ol class="enumerate" type=1><li class="li-enumerate">
Graph the solution <span style="font-style:italic">x</span> as a function of <span style="font-style:italic">a</span> using <span style="font-family:monospace">plotimplicit</span>.
</li><li class="li-enumerate">Find the three solutions of the equation. You can use <span style="font-family:monospace">rootof</span>
to find the first solution, then use <span style="font-family:monospace">quo</span> to factor out the
first solution. You can then find the last two solutions by solving
the resulting second degree equation. (You can use <span style="font-family:monospace">coeff</span> to
find the discriminant of the equation.)
</li><li class="li-enumerate">For the values of <span style="font-style:italic">a</span> which give three real roots, graph each of the
roots in different colors on the same graph.
(You can use <span style="font-family:monospace">resultant</span> to find the values of <span style="font-style:italic">a</span> for which the
equation has a multiple root; these values are the possible bounds of
intervals for <span style="font-style:italic">a</span> where each of the roots is real.)
</li><li class="li-enumerate">Find the solutions for <span style="font-style:italic">a</span>=0,1,2.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;8</span>&#XA0;&#XA0;For each of the limits
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">&nbsp;</td></tr>
<tr><td class="dcell" style="text-align:center">lim</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>&#X2192;&#XA0;0</td></tr>
</table></td><td class="dcell">&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">sin(<span style="font-style:italic">x</span>)</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span></td></tr>
</table></td><td class="dcell">
&#XA0;,&#XA0;
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">&nbsp;</td></tr>
<tr><td class="dcell" style="text-align:center">lim</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>&#X2192;&#XA0;0<sup>+</sup></td></tr>
</table></td><td class="dcell">&#XA0;(sin(<span style="font-style:italic">x</span>))<sup>1/<span style="font-style:italic">x</span></sup>
&#XA0;,&#XA0;
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">&nbsp;</td></tr>
<tr><td class="dcell" style="text-align:center">lim</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>&#X2192;&#XA0;+&#X221E;</td></tr>
</table></td><td class="dcell">&#XA0;(1+1/<span style="font-style:italic">x</span>)<sup><span style="font-style:italic">x</span></sup>
&#XA0;,&#XA0;
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">&nbsp;</td></tr>
<tr><td class="dcell" style="text-align:center">lim</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span>&#X2192;&#XA0;+&#X221E;</td></tr>
</table></td><td class="dcell">&#XA0;(2<sup><span style="font-style:italic">x</span></sup>+3<sup><span style="font-style:italic">x</span></sup>)<sup>1/<span style="font-style:italic">x</span></sup>
</td></tr>
</table>
<ol class="enumerate" type=1><li class="li-enumerate">
Find the exact value.
</li><li class="li-enumerate">Find a value of <span style="font-style:italic">x</span> such that the distance from <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>) to the limit is
less than 10<sup>&#X2212;3</sup>.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;9</span>&#XA0;&#XA0;For each function <span style="font-style:italic">f</span>, find ranges for the <span style="font-style:italic">x</span> coordinates and the <span style="font-style:italic">y</span>
coordinates that give the most informative graph.
<ol class="enumerate" type=1><li class="li-enumerate">
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)=1/<span style="font-style:italic">x</span>.
</li><li class="li-enumerate"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)=<span style="font-style:italic">e</span><sup><span style="font-style:italic">x</span></sup>.
</li><li class="li-enumerate"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)=1/sin(<span style="font-style:italic">x</span>).
</li><li class="li-enumerate"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)=<span style="font-style:italic">x</span>/sin(<span style="font-style:italic">x</span>).
</li><li class="li-enumerate"><span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)=sin(<span style="font-style:italic">x</span>)/<span style="font-style:italic">x</span>.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;10</span>&#XA0;&#XA0;Let
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>)=3<span style="font-style:italic">x</span><sup>2</sup>+1+1/&#X3C0;<sup>4</sup>ln((&#X3C0;&#X2212;<span style="font-style:italic">x</span>)<sup>2</sup>).
<ol class="enumerate" type=1><li class="li-enumerate">
Verify that this function takes negative values on &#X211D;<sup>+</sup>.
Graph the function over the interval [0,5].
</li><li class="li-enumerate">Find &#X454; &gt;0 such that <span style="font-family:monospace">Xcas</span> gives the correct graph of the
function over the interval [&#X3C0;&#X2212;&#X454;,&#X3C0;+&#X454;]. 
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;11</span>&#XA0;&#XA0;&#XA0;
<ol class="enumerate" type=1><li class="li-enumerate">
Graph the function exp(<span style="font-style:italic">x</span>) over the interval [&#X2212;1,1]. 
On the same graph, plot the Taylor polynomials (of orders 1,2,3 and 4)
for this function centered at <span style="font-style:italic">x</span>=0.
</li><li class="li-enumerate">Same question for the interval [1,2]. 
</li><li class="li-enumerate">Graph the function sin(<span style="font-style:italic">x</span>) on the interval [&#X2212;&#X3C0;,&#X3C0;].
On the same graph, plot the Taylor polynomials (of orders 1,3 and 5)
for this function centered at <span style="font-style:italic">x</span>=0.
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;12</span>&#XA0;&#XA0;Plot the following graphs on the same window, with <span style="font-style:italic">x</span> and <span style="font-style:italic">y</span>
coordinates from 0 to 1.
<ol class="enumerate" type=1><li class="li-enumerate">
The line <span style="font-style:italic">y</span>=<span style="font-style:italic">x</span>.
</li><li class="li-enumerate">The graph of the function <span style="font-style:italic">f</span>&#XA0;: &#XA0;<span style="font-style:italic">x</span>&#X21A6; 1/6+<span style="font-style:italic">x</span>/3+<span style="font-style:italic">x</span><sup>2</sup>/2.
</li><li class="li-enumerate">The tangent line to the graph of <span style="font-style:italic">f</span> at <span style="font-style:italic">x</span>=1.
</li><li class="li-enumerate">The vertical line segment from the <span style="font-style:italic">x</span>-axis to the point where the
graph of <span style="font-style:italic">f</span> intersects the line <span style="font-style:italic">y</span>=<span style="font-style:italic">x</span>, and a horizontal line segment
from the <span style="font-style:italic">y</span>-axis to that point of intersection.
</li><li class="li-enumerate">The labels &#X201C;fixed point&#X201D; and &#X201C;tangent&#X201D;, at the appropriate positions.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;13</span>&#XA0;&#XA0;The goal of this exercise is to graph a family of functions on the
same screen. You will need to choose the number of curves, the
interval to graph over to obtain the most informative graphic.
<ol class="enumerate" type=1><li class="li-enumerate">
Functions <span style="font-style:italic">f</span><sub><span style="font-style:italic">a</span></sub>(<span style="font-style:italic">x</span>) = <span style="font-style:italic">x</span><sup><span style="font-style:italic">a</span></sup><span style="font-style:italic">e</span><sup>&#X2212;<span style="font-style:italic">x</span></sup> for <span style="font-style:italic">a</span> from &#X2212;1 to 1. 
</li><li class="li-enumerate">Functions <span style="font-style:italic">f</span><sub><span style="font-style:italic">a</span></sub>(<span style="font-style:italic">x</span>)=1/(<span style="font-style:italic">x</span>&#X2212;<span style="font-style:italic">a</span>)<sup>2</sup> for <span style="font-style:italic">a</span> from &#X2212;1 to 1.
</li><li class="li-enumerate">Functions <span style="font-style:italic">f</span><sub><span style="font-style:italic">a</span></sub>(<span style="font-style:italic">x</span>)=sin(<span style="font-style:italic">ax</span>), for <span style="font-style:italic">a</span> from 0 to 2.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;14</span>&#XA0;&#XA0;Graph each of the following curves. You will need to choose a range
of values for the parameter to make sure you have the complete graph.
<ol class="enumerate" type=1><li class="li-enumerate">
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23A8;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">x</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >sin(<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >cos<sup>3</sup>(<span style="font-style:italic">t</span>)
</td></tr>
</table></td><td class="dcell">
</td></tr>
</table>
</li><li class="li-enumerate"><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23A8;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">x</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >sin(4&#XA0;<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >cos<sup>3</sup>(6&#XA0;<span style="font-style:italic">t</span>)
</td></tr>
</table></td><td class="dcell">
</td></tr>
</table>
</li><li class="li-enumerate"><table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23A8;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">x</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >sin(132&#XA0;<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >cos<sup>3</sup>(126&#XA0;<span style="font-style:italic">t</span>)
</td></tr>
</table></td><td class="dcell">
</td></tr>
</table>
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;15</span>&#XA0;&#XA0;The goal of this exercise is to visualize in different ways the
surface of the graph <span style="font-style:italic">z</span>=<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>)=<span style="font-style:italic">x</span>&#XA0;<span style="font-style:italic">y</span><sup>2</sup>. You will need to have a
3-d geometry window open.
<ol class="enumerate" type=1><li class="li-enumerate">
Use <span style="font-family:monospace">plotfunc</span> to draw an informative graph, choosing an
appropriate domain and number of steps.
</li><li class="li-enumerate">Create an editable parameter <span style="font-style:italic">a</span> with <span style="font-family:monospace">assume</span>. Draw the curve
<span style="font-style:italic">z</span>=<span style="font-style:italic">f</span>(<span style="font-style:italic">a</span>,<span style="font-style:italic">y</span>) and vary the parameter with the mouse.
</li><li class="li-enumerate">Create an editable parameter <span style="font-style:italic">b</span> with <span style="font-family:monospace">assume</span>. Draw the curve
<span style="font-style:italic">z</span>=<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">b</span>) and vary the parameter with the mouse.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;16</span>&#XA0;&#XA0;The goal of this exercise is to visualize a cone in different ways.
<ol class="enumerate" type=1><li class="li-enumerate">
Draw the surface given by <span style="font-style:italic">z</span>=1&#X2212;&#X221A;<span style="text-decoration:overline"><span style="font-style:italic">x</span></span><sup><span style="text-decoration:overline">2</span></sup><span style="text-decoration:overline">+</span><span style="text-decoration:overline"><span style="font-style:italic">y</span></span><sup><span style="text-decoration:overline">2</span></sup>.
</li><li class="li-enumerate">Sketch the parameterized surface defined by
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23AA;<br>
&#X23A8;<br>
&#X23AA;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">x</span>(<span style="font-style:italic">u</span>,<span style="font-style:italic">v</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">u</span>&#XA0;cos(<span style="font-style:italic">v</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span>(<span style="font-style:italic">u</span>,<span style="font-style:italic">v</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">u</span>&#XA0;sin(<span style="font-style:italic">v</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span>(<span style="font-style:italic">u</span>,<span style="font-style:italic">v</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >1&#X2212;<span style="font-style:italic">u</span>&#XA0;.
</td></tr>
</table></td><td class="dcell">
</td></tr>
</table>
</li><li class="li-enumerate">For a sufficiently large value of <span style="font-style:italic">a</span>, draw the curve parameterized by
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23AA;<br>
&#X23A8;<br>
&#X23AA;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">x</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">t</span>&#XA0;cos(<span style="font-style:italic">a</span>&#XA0;<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">t</span>&#XA0;sin(<span style="font-style:italic">a</span>&#XA0;<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >1&#X2212;<span style="font-style:italic">t</span>&#XA0;.
</td></tr>
</table></td><td class="dcell">
</td></tr>
</table></li><li class="li-enumerate">Draw the family of curves parameterized by
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X23A7;<br>
&#X23AA;<br>
&#X23A8;<br>
&#X23AA;<br>
&#X23A9;</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">x</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">a</span>&#XA0;cos(<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">y</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">a</span>&#XA0;sin(<span style="font-style:italic">t</span>)</td></tr>
<tr><td style="text-align:left;white-space:nowrap" ><span style="font-style:italic">z</span>(<span style="font-style:italic">t</span>)</td><td style="text-align:center;white-space:nowrap" >=</td><td style="text-align:left;white-space:nowrap" >1&#X2212;<span style="font-style:italic">a</span>&#XA0;.
</td></tr>
</table></td><td class="dcell">
</td></tr>
</table>
</li><li class="li-enumerate">Draw the cone using the <span style="font-family:monospace">cone</span> function.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;17</span>&#XA0;&#XA0;&#XA0;
<ol class="enumerate" type=1><li class="li-enumerate">
Generate a list &#X2113; of 100 integers randomly generated between 1 and 9.
</li><li class="li-enumerate">Verify that all values in &#X2113; are in {1,&#X2026;,9}.
</li><li class="li-enumerate">Extract from the list &#X2113; all values greater than or equal to 5.
</li><li class="li-enumerate">For each <span style="font-style:italic">k</span>=1,&#X2026;,9, find the number of values in &#X2113; which are
equal to <span style="font-style:italic">k</span>.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;18</span>&#XA0;&#XA0;For a real number <span style="font-style:italic">x</span>, the continued fraction for <span style="font-style:italic">x</span> of order <span style="font-style:italic">n</span> is
a list of integers [<span style="font-style:italic">a</span><sub>0</sub>,&#X2026;,<span style="font-style:italic">a</span><sub><span style="font-style:italic">n</span></sub>] created in the following way:
<ul class="itemize"><li class="li-itemize">
let <span style="font-style:italic">x</span><sub>0</sub> = <span style="font-style:italic">x</span>.
</li><li class="li-itemize">let <span style="font-style:italic">a</span><sub>0</sub> be the integer part of <span style="font-style:italic">x</span><sub>0</sub>.
</li><li class="li-itemize">let <span style="font-style:italic">x</span><sub>1</sub> = 1/(<span style="font-style:italic">x</span><sub>0</sub>&#X2212;<span style="font-style:italic">a</span><sub>0</sub>).
</li><li class="li-itemize">for <span style="font-style:italic">k</span>=1,&#X2026;,<span style="font-style:italic">n</span>, let <span style="font-style:italic">a</span><sub><span style="font-style:italic">k</span></sub> be the integer part of <span style="font-style:italic">x</span><sub><span style="font-style:italic">k</span></sub> and let
<span style="font-style:italic">x</span><sub><span style="font-style:italic">k</span>+1</sub> = 1/(<span style="font-style:italic">x</span><sub><span style="font-style:italic">k</span></sub> &#X2212; <span style="font-style:italic">a</span><sub><span style="font-style:italic">k</span></sub>).
</li></ul>
The list [<span style="font-style:italic">a</span><sub>0</sub>,&#X2026;,<span style="font-style:italic">a</span><sub><span style="font-style:italic">n</span></sub>] is associated with the fraction
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">u</span><sub><span style="font-style:italic">n</span></sub>&#XA0;=&#XA0;<span style="font-style:italic">a</span><sub>0</sub>+</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">a</span><sub>1</sub>+
</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">a</span><sub>2</sub>+</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><table class="display"><tr style="vertical-align:middle"><td class="dcell">&#X22F1;+</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1</td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">a</span><sub><span style="font-style:italic">n</span></sub></td></tr>
</table></td></tr>
</table></td></tr>
</table></td></tr>
</table></td></tr>
</table></td></tr>
</table></td></tr>
</table></td></tr>
</table>
For <span style="font-style:italic">x</span>&#X2208;{&#X3C0;,&#X221A;<span style="text-decoration:overline">2</span>, <span style="font-style:italic">e</span>} and <span style="font-style:italic">n</span>&#X2208; {5,10}&#XA0;:
<ol class="enumerate" type=1><li class="li-enumerate">
Find [<span style="font-style:italic">a</span><sub>0</sub>,&#X2026;,<span style="font-style:italic">a</span><sub><span style="font-style:italic">n</span></sub>].
</li><li class="li-enumerate">Compare your result with the value given by <span style="font-family:monospace">Xcas</span>&#X2019;s <span style="font-family:monospace">dfc</span>
function.
</li><li class="li-enumerate">Find <span style="font-style:italic">u</span><sub><span style="font-style:italic">n</span></sub> and the numeric value of <span style="font-style:italic">x</span>&#X2212;<span style="font-style:italic">u</span><sub><span style="font-style:italic">n</span></sub>.
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;19</span>&#XA0;&#XA0;Write (without using a loop) the following sequences:
<ol class="enumerate" type=1><li class="li-enumerate">
The numbers from 1 to 3 in steps of 0.1.
</li><li class="li-enumerate">The numbers from 3 to 1 in steps of &#X2212;0.1.
</li><li class="li-enumerate">The squares of the first 10 integers.
</li><li class="li-enumerate">Numbers of the form (&#X2212;1)<sup><span style="font-style:italic">n</span></sup> <span style="font-style:italic">n</span><sup>2</sup> for <span style="font-style:italic">n</span>=1,&#X2026;,10.
</li><li class="li-enumerate">10 &#X201C;0&#X201D;s followed by 10 &#X201C;1&#X201D;s.
</li><li class="li-enumerate">3 &#X201C;0&#X201D;s followed by 3 &#X201C;1&#X201D;s, followed by 3 &#X201C;2&#X201D;,&#X2026;, 
followed by 3 &#X201C;9&#X201D;s. 
</li><li class="li-enumerate">&#X201C;1&#X201D; followed by 1 &#X201C;0&#X201D;, followed by a &#X201C;2&#X201D; followed by 2 &#X201C;0&#X201D;s,
&#X2026;, followed by &#X201C;8&#X201D; followed by 8 &#X201C;0&#X201D;s, followed by &#X201C;9&#X201D;.
</li><li class="li-enumerate">1 &#X201C;1&#X201D; followed by 2 &#X201C;2&#X201D;s, followed by 3 &#X201C;3&#X201D;s,&#X2026;,
followed by 9 &#X201C;9&#X201D;s.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;20</span>&#XA0;&#XA0;&#XA0;
<ol class="enumerate" type=1><li class="li-enumerate">
Define the following polynomials of degree 6.
<ol class="enumerate" type=a><li class="li-enumerate">
A polynomial whose roots are the integers from 1 to 6.
</li><li class="li-enumerate">A polynomial whose roots are 0 (triple root), 1
(double root) and 2 (simple root).
</li><li class="li-enumerate">The polynomial (<span style="font-style:italic">x</span><sup>2</sup>&#X2212;1)<sup>3</sup>.
</li><li class="li-enumerate">The polynomial <span style="font-style:italic">x</span><sup>6</sup>&#X2212;1.
</li></ol>
</li><li class="li-enumerate">Write (without using the <span style="font-family:monospace">companion</span> function)
the companion matrix <span style="font-style:italic">A</span> for each of the polynomials in (1).
Recall the the companion matrix for the polynomial
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">P</span>=<span style="font-style:italic">x</span><sup><span style="font-style:italic">d</span></sup>+<span style="font-style:italic">a</span><sub><span style="font-style:italic">d</span>&#X2212;1</sub><span style="font-style:italic">x</span><sup><span style="font-style:italic">d</span>&#X2212;1</sup>+&#X22EF;+<span style="font-style:italic">a</span><sub>1</sub><span style="font-style:italic">x</span>+<span style="font-style:italic">a</span><sub>0</sub>&#XA0;,
</td></tr>
</table>
is
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">
<a id="compagnon"></a>
<span style="font-style:italic">A</span>&#XA0;=&#XA0;
</td><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239C;<br>
&#X239C;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell">
</td><td class="dcell"><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >1</td><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >&#X2026;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >0</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X22EE;</td><td style="text-align:center;white-space:nowrap" >&#X22F1;</td><td style="text-align:center;white-space:nowrap" >&#X22F1;</td><td style="text-align:center;white-space:nowrap" >&#X22F1;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&#X22EE;</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X22EE;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&#X22F1;</td><td style="text-align:center;white-space:nowrap" >&#X22F1;</td><td style="text-align:center;white-space:nowrap" >0</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >&#X2026;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&#X2026;</td><td style="text-align:center;white-space:nowrap" >0</td><td style="text-align:center;white-space:nowrap" >1</td></tr>
<tr><td style="text-align:center;white-space:nowrap" >&#X2212;<span style="font-style:italic">a</span><sub>0</sub></td><td style="text-align:center;white-space:nowrap" >&#X2212;<span style="font-style:italic">a</span><sub>1</sub></td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&#X2026;</td><td style="text-align:center;white-space:nowrap" >&nbsp;</td><td style="text-align:center;white-space:nowrap" >&#X2212;<span style="font-style:italic">a</span><sub><span style="font-style:italic">d</span>&#X2212;1</sub>
</td></tr>
</table></td><td class="dcell">
</td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X239F;<br>
&#X239F;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td><td class="dcell">&#XA0;.
&#XA0;&#XA0;&#XA0;&#XA0;(1)</td></tr>
</table> 
</li><li class="li-enumerate">Find the eigenvalues of the matrix <span style="font-style:italic">A</span>.
</li><li class="li-enumerate">Find the characteristic polynomial of <span style="font-style:italic">A</span>.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;21</span>&#XA0;&#XA0;&#XA0;
<ol class="enumerate" type=1><li class="li-enumerate">
For variables <span style="font-style:italic">a</span> and <span style="font-style:italic">b</span>, write the square matrix <span style="font-style:italic">A</span> of order 4 with
<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>=<span style="font-style:italic">a</span> if <span style="font-style:italic">j</span>=<span style="font-style:italic">k</span> and <span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>=<span style="font-style:italic">b</span> if <span style="font-style:italic">j</span> &#X2260; <span style="font-style:italic">k</span>.
</li><li class="li-enumerate">Find and factor the characteristic polynomial of <span style="font-style:italic">A</span>.
</li><li class="li-enumerate">Find an orthogonal matrix <span style="font-style:italic">P</span> such that <span style="font-style:italic">P</span><sup><span style="font-style:italic">T</span></sup> <span style="font-style:italic">A</span> <span style="font-style:italic">P</span> is a diagonal
matrix. 
</li><li class="li-enumerate">Use your answer to the previous question to define the function that
maps an integer <span style="font-style:italic">n</span> to the matrix <span style="font-style:italic">A</span><sup><span style="font-style:italic">n</span></sup>.
</li><li class="li-enumerate">Find <span style="font-style:italic">A</span><sup><span style="font-style:italic">k</span></sup> for <span style="font-style:italic">k</span>=1,&#X2026;,6 by finding the matrix products. Check
that the function given in the previous part gives the same results.
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;22</span>&#XA0;&#XA0;&#XA0;
<ol class="enumerate" type=1><li class="li-enumerate">
Find the square matrix <span style="font-style:italic">N</span> of order 6 given by <span style="font-style:italic">n</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>=1 if
<span style="font-style:italic">k</span>=<span style="font-style:italic">j</span>+1 and <span style="font-style:italic">n</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>=0 if <span style="font-style:italic">k</span> &#X2260; <span style="font-style:italic">j</span>+1. 
</li><li class="li-enumerate">Find <span style="font-style:italic">N</span><sup><span style="font-style:italic">p</span></sup> for <span style="font-style:italic">p</span>=1,&#X2026;,6. 
</li><li class="li-enumerate">Write the matrix <span style="font-style:italic">A</span> = <span style="font-style:italic">xI</span>+<span style="font-style:italic">N</span>, where <span style="font-style:italic">x</span> is a variable.
</li><li class="li-enumerate">Find <span style="font-style:italic">A</span><sup><span style="font-style:italic">p</span></sup> for <span style="font-style:italic">p</span>=1,&#X2026;,6. 
</li><li class="li-enumerate">Find exp(<span style="font-style:italic">At</span>) as a function of <span style="font-style:italic">x</span> and <span style="font-style:italic">t</span>&#XA0;:
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">exp(<span style="font-style:italic">At</span>)&#XA0;=&#XA0;<span style="font-style:italic">I</span>+</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">&#X221E;</td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-size:xx-large">&#X2211;</span></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">p</span>=1</td></tr>
</table></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">t</span><sup><span style="font-style:italic">p</span></sup></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center"><span style="font-style:italic">p</span>!</td></tr>
</table></td><td class="dcell">&#XA0;<span style="font-style:italic">A</span><sup><span style="font-style:italic">p</span></sup>&#XA0;.
</td></tr>
</table>
</li></ol> 
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;23</span>&#XA0;&#XA0;Define the following functions without using a loop.
<ol class="enumerate" type=1><li class="li-enumerate">
The function <span style="font-style:italic">f</span> which takes as input an integer <span style="font-style:italic">n</span> and two real
numbers <span style="font-style:italic">a</span> and <span style="font-style:italic">b</span> and returns the <span style="font-style:italic">n</span>&#XD7; <span style="font-style:italic">n</span> matrix <span style="font-style:italic">A</span> whose
diagonal terms are all equal to <span style="font-style:italic">a</span> and whose non-diagonal entries are
equal to <span style="font-style:italic">b</span>.
</li><li class="li-enumerate">The function <span style="font-style:italic">g</span> which takes as input an integer <span style="font-style:italic">n</span> and three real
numbers <span style="font-style:italic">a</span>,<span style="font-style:italic">b</span> and <span style="font-style:italic">c</span>m and returns the matrix 
<span style="font-style:italic">A</span>=(<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>)<sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span>=1,&#X2026;,<span style="font-style:italic">n</span></sub> whose diagonal elements are equal to
<span style="font-style:italic">a</span>, whose terms <span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">j</span>+1</sub> are equal to <span style="font-style:italic">b</span> and whose terms <span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>+1,<span style="font-style:italic">j</span></sub> 
are equal to <span style="font-style:italic">c</span>, and whose remaining terms are 0.
</li><li class="li-enumerate">The function <span style="font-style:italic">H</span> which takes as input an integer <span style="font-style:italic">n</span> and returns
Hilbert&#X2019;s Matrix; the matrix <span style="font-style:italic">A</span>=(<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>)<sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span>=1,&#X2026;,<span style="font-style:italic">n</span></sub> where
<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub> = 1/(<span style="font-style:italic">j</span>+<span style="font-style:italic">k</span>+1).
Compare the execution time of your function with that of the
<span style="font-family:monospace">hilbert</span> function.
</li><li class="li-enumerate">The function <span style="font-style:italic">V</span> which takes as input a vector <span style="font-style:italic">x</span>=[<span style="font-style:italic">x</span><sub>1</sub>,&#X2026;,<span style="font-style:italic">x</span><sub><span style="font-style:italic">n</span></sub>] and
returns Vandermonde&#X2019;s Matrix; the matrix
<span style="font-style:italic">A</span>=(<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>)<sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span>=1,&#X2026;,<span style="font-style:italic">n</span></sub> where <span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub> = <span style="font-style:italic">x</span><sub><span style="font-style:italic">k</span></sub><sup><span style="font-style:italic">j</span>&#X2212;1</sup>.
Compare the execution time of your function with that of the
<span style="font-family:monospace">vandermonde</span> function.
</li><li class="li-enumerate">The function <span style="font-style:italic">T</span> which takes as input a vector <span style="font-style:italic">x</span>=[<span style="font-style:italic">x</span><sub>1</sub>,&#X2026;,<span style="font-style:italic">x</span><sub><span style="font-style:italic">n</span></sub>] and
returns the Toeplitz Matrix; the matrix
<span style="font-style:italic">A</span>=(<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub>)<sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span>=1,&#X2026;,<span style="font-style:italic">n</span></sub> where
<span style="font-style:italic">a</span><sub><span style="font-style:italic">j</span>,<span style="font-style:italic">k</span></sub> = <span style="font-style:italic">x</span><sub>|<span style="font-style:italic">j</span>&#X2212;<span style="font-style:italic">k</span>|+1</sub> .
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;24</span>&#XA0;&#XA0;Write the following functions, which take as input a function <span style="font-style:italic">f</span>:&#X211D;
&#X2192; &#X211D; and three real numbers <span style="font-style:italic">x</span><sub><span style="font-style:italic">min</span></sub>, <span style="font-style:italic">x</span><sub>0</sub> and <span style="font-style:italic">x</span><sub><span style="font-style:italic">max</span></sub> with
<span style="font-style:italic">x</span><sub><span style="font-style:italic">min</span></sub>&#X2264; <span style="font-style:italic">x</span><sub>0</sub> &#X2264; <span style="font-style:italic">x</span><sub><span style="font-style:italic">max</span></sub>. 
<ol class="enumerate" type=1><li class="li-enumerate">
<span style="font-family:monospace">derive</span>&#XA0;: 
This function calculates and graphs the derivative of <span style="font-style:italic">f</span> over the
interval [<span style="font-style:italic">x</span><sub><span style="font-style:italic">min</span></sub>,<span style="font-style:italic">x</span><sub><span style="font-style:italic">max</span></sub>] and returns <span style="font-style:italic">f</span>&#X2032;(<span style="font-style:italic">x</span><sub>0</sub>).
</li><li class="li-enumerate"><span style="font-family:monospace">tangent</span>&#XA0;: 
This function graphs the function <span style="font-style:italic">f</span> on the interval
[<span style="font-style:italic">x</span><sub><span style="font-style:italic">min</span></sub>,<span style="font-style:italic">x</span><sub><span style="font-style:italic">max</span></sub>] and in the same window draws the tangent to the
graph at <span style="font-style:italic">x</span><sub>0</sub>. It returns the equation for the tangent line as a
first degree polynomial.
</li><li class="li-enumerate"><span style="font-family:monospace">araignee</span>&#XA0;:
This function graphs the function <span style="font-style:italic">f</span> on the [<span style="font-style:italic">x</span><sub><span style="font-style:italic">min</span></sub>,<span style="font-style:italic">x</span><sub><span style="font-style:italic">max</span></sub>], as
well as the line <span style="font-style:italic">y</span>=<span style="font-style:italic">x</span>. It calculates and returns the first 10
iterates of <span style="font-style:italic">f</span> starting at <span style="font-style:italic">x</span><sub>0</sub> (so <span style="font-style:italic">x</span><sub>1</sub> = <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>0</sub>), <span style="font-style:italic">x</span><sub>2</sub> =
<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>1</sub>),&#X2026;). It also draws the sequence of segments, alternately
vertical and horizontal, allowing you to visualize the iterations:
segments joining (<span style="font-style:italic">x</span><sub>0</sub>,0), (<span style="font-style:italic">x</span><sub>0</sub>,<span style="font-style:italic">x</span><sub>1</sub>), (<span style="font-style:italic">x</span><sub>1</sub>,<span style="font-style:italic">x</span><sub>1</sub>),
(<span style="font-style:italic">x</span><sub>1</sub>,<span style="font-style:italic">x</span><sub>2</sub>), (<span style="font-style:italic">x</span><sub>2</sub>,<span style="font-style:italic">x</span><sub>2</sub>), &#X2026;(compare this to the function <span style="font-family:monospace">plotseq</span>)
</li><li class="li-enumerate"><span style="font-family:monospace">newton_graph</span>&#XA0;:
This function graphs the function <span style="font-style:italic">f</span> over the interval [<span style="font-style:italic">x</span><sub><span style="font-style:italic">min</span></sub>,<span style="font-style:italic">x</span><sub><span style="font-style:italic">max</span></sub>].
It also calculates and returns the first ten iterates of the sequence
starting at <span style="font-style:italic">x</span><sub>0</sub> given by Newton&#X2019;s Method: <span style="font-style:italic">x</span><sub>1</sub>=<span style="font-style:italic">x</span><sub>0</sub> &#X2212;<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>0</sub>)/<span style="font-style:italic">f</span>&#X2032;(<span style="font-style:italic">x</span><sub>0</sub>),
<span style="font-style:italic">x</span><sub>2</sub>=<span style="font-style:italic">x</span><sub>1</sub> &#X2212; <span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>1</sub>)/<span style="font-style:italic">f</span>&#X2032;(<span style="font-style:italic">x</span><sub>1</sub>) &#X2026;&#XA0; (The values of the derivative
should be approximated.) This function also graphs in the same window
the segments displaying the iterations: segments joining
(<span style="font-style:italic">x</span><sub>0</sub>,0), (<span style="font-style:italic">x</span><sub>0</sub>,<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>0</sub>)), (<span style="font-style:italic">x</span><sub>1</sub>,0),
(<span style="font-style:italic">x</span><sub>1</sub>,<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>1</sub>)), (<span style="font-style:italic">x</span><sub>2</sub>,0), (<span style="font-style:italic">x</span><sub>2</sub>,<span style="font-style:italic">f</span>(<span style="font-style:italic">x</span><sub>2</sub>)),&#X2026;(compare with the function <span style="font-family:monospace">newton</span>)
</li></ol>
</div><div class="theorem"><span style="font-weight:bold">Exercise&#XA0;25</span>&#XA0;&#XA0;Let <span style="font-style:italic">D</span> be the unit square <span style="font-style:italic">D</span>=(0,1)<sup>2</sup>. Let &#X3A6;
be the function defined on <span style="font-style:italic">D</span> by
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell">&#X3A6;(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>)&#XA0;=&#XA0;(<span style="font-style:italic">z</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>),<span style="font-style:italic">t</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>))=
</td><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">x</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">1+<span style="font-style:italic">y</span></td></tr>
</table></td><td class="dcell">&#XA0;,&#XA0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center"><span style="font-style:italic">y</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">1+<span style="font-style:italic">x</span></td></tr>
</table></td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td><td class="dcell">&#XA0;.
</td></tr>
</table>
<ol class="enumerate" type=1><li class="li-enumerate">
Find the inverse of &#X3A6;.
</li><li class="li-enumerate">Find and graph the image under &#X3A6; of the domain <span style="font-style:italic">D</span>: &#X394;=&#X3A6;(<span style="font-style:italic">D</span>).
</li><li class="li-enumerate">Let <span style="font-style:italic">A</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>) be the Jacobian matrix of &#X3A6; at a point (<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>) in
<span style="font-style:italic">D</span>, and <span style="font-style:italic">B</span>(<span style="font-style:italic">z</span>,<span style="font-style:italic">t</span>) the Jacobian matrix of &#X3A6;<sup>&#X2212;1</sup> at a point
(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>) in &#X394;. Calculate these two matrices, and verify that 
<span style="font-style:italic">B</span>(&#X3A6;(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>)) and <span style="font-style:italic">A</span>(<span style="font-style:italic">x</span>,<span style="font-style:italic">y</span>) are inverses of each other.
</li><li class="li-enumerate">Let <span style="font-style:italic">J</span>(<span style="font-style:italic">z</span>,<span style="font-style:italic">t</span>) be the determinant of the matrix <span style="font-style:italic">B</span>. Calculate and simplify 
<span style="font-style:italic">J</span>(<span style="font-style:italic">z</span>,<span style="font-style:italic">t</span>).
</li><li class="li-enumerate">Evaluate
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">I</span><sub>1</sub>=</td><td class="dcell"><span style="font-size:xx-large">&#X222C;</span></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">&nbsp;</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left"><span style="font-style:italic">D</span></td></tr>
</table></td><td class="dcell">&#XA0;</td><td class="dcell">&#X239B;<br>
&#X239C;<br>
&#X239C;<br>
&#X239D;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:center">1+<span style="font-style:italic">x</span>+<span style="font-style:italic">y</span></td></tr>
<tr><td class="hbar"></td></tr>
<tr><td class="dcell" style="text-align:center">(1+<span style="font-style:italic">x</span>)(1+<span style="font-style:italic">y</span>)</td></tr>
</table></td><td class="dcell">&#XA0;</td><td class="dcell">&#X239E;<br>
&#X239F;<br>
&#X239F;<br>
&#X23A0;</td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">3</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">&nbsp;</td></tr>
</table></td><td class="dcell">&#XA0;&#XA0;<span style="font-style:italic">dxdy</span>&#XA0;.
</td></tr>
</table> 
</li><li class="li-enumerate">Evaluate
<table class="display dcenter"><tr style="vertical-align:middle"><td class="dcell"><span style="font-style:italic">I</span><sub>2</sub>=</td><td class="dcell"><span style="font-size:xx-large">&#X222C;</span></td><td class="dcell"><table class="display"><tr><td class="dcell" style="text-align:left">&nbsp;</td></tr>
<tr><td class="dcell" style="text-align:left"><br>
<br>
</td></tr>
<tr><td class="dcell" style="text-align:left">&#X394;</td></tr>
</table></td><td class="dcell">&#XA0;(1+<span style="font-style:italic">z</span>)(1+<span style="font-style:italic">t</span>)&#XA0;<span style="font-style:italic">dzdt</span>&#XA0;,
</td></tr>
</table> 
and verify that <span style="font-style:italic">I</span><sub>1</sub>=<span style="font-style:italic">I</span><sub>2</sub>.
</li></ol>
</div><!--TOC section id="sec44" Index-->
<h2 id="sec44" class="section">Index</h2><!--SEC END --><p></p><table style="border-spacing:6px;border-collapse:separate;" class="cellpading0"><tr><td style="vertical-align:top;text-align:left;" ><ul class="indexenv"><li class="li-indexenv">
<span style="font-family:monospace">()</span>, <a href="#hevea_default135">3.5</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">-&gt;</span>, <a href="#hevea_default130">3.4</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">:=</span>, <a href="#hevea_default7">1.3</a>, <a href="#hevea_default45">3.2</a>, <a href="#hevea_default51">3.2</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">=</span>, <a href="#hevea_default59">3.2</a>, <a href="#hevea_default61">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">==</span>, <a href="#hevea_default52">3.2</a>, <a href="#hevea_default54">3.2</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">[]</span>, <a href="#hevea_default136">3.5</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">%{ %}</span>, <a href="#hevea_default137">3.5</a>
<br>
<br>
</li><li class="li-indexenv">All_trig_sol, <a href="#hevea_default22">2.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">abs</span>, <a href="#hevea_default73">3.4</a>
</li><li class="li-indexenv">absolute value, <a href="#hevea_default74">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">acos</span>, <a href="#hevea_default120">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">acosh</span>, <a href="#hevea_default126">3.4</a>
</li><li class="li-indexenv">addition, <a href="#hevea_default24">3.1</a>
</li><li class="li-indexenv">and, <a href="#hevea_default346">7.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">and</span>, <a href="#hevea_default48">3.2</a>
</li><li class="li-indexenv">antiderivatives, <a href="#hevea_default189">4.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">append</span>, <a href="#hevea_default144">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">apply</span>, <a href="#hevea_default145">3.5</a>
</li><li class="li-indexenv">arc<ul class="indexenv"><li class="li-indexenv">
cosine, <a href="#hevea_default121">3.4</a>
</li><li class="li-indexenv">sine, <a href="#hevea_default119">3.4</a>
</li><li class="li-indexenv">tangent, <a href="#hevea_default123">3.4</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">arg</span>, <a href="#hevea_default92">3.4</a>
</li><li class="li-indexenv">argument, <a href="#hevea_default93">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">asc</span>, <a href="#hevea_default160">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">asin</span>, <a href="#hevea_default118">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">asinh</span>, <a href="#hevea_default124">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">assume</span>, <a href="#hevea_default47">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">atan</span>, <a href="#hevea_default122">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">atanh</span>, <a href="#hevea_default128">3.4</a>
<br>
<br>
</li><li class="li-indexenv">Bezout, <a href="#hevea_default212">5.1</a>
</li><li class="li-indexenv">Bezout&#X2019;s identity, <a href="#hevea_default249">5.2</a>
</li><li class="li-indexenv">Booleans, <a href="#hevea_default53">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">blockmatrix</span>, <a href="#hevea_default281">5.4</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">canonical_form</span>, <a href="#hevea_default224">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ceil</span>, <a href="#hevea_default84">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">char</span>, <a href="#hevea_default161">3.6</a>
</li><li class="li-indexenv">characters, <a href="#hevea_default169">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">circle</span>, <a href="#hevea_default317">6.2</a>, <a href="#hevea_default326">6.2</a>
</li><li class="li-indexenv">cloud of dots, <a href="#hevea_default325">6.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">coeff</span>, <a href="#hevea_default225">5.2</a>
</li><li class="li-indexenv">command line, <a href="#hevea_default2">1.1</a>, <a href="#hevea_default23">2.4</a>
</li><li class="li-indexenv">complex roots, <a href="#hevea_default21">2.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">concat</span>, <a href="#hevea_default163">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">cone</span>, <a href="#hevea_default340">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">conj</span>, <a href="#hevea_default90">3.4</a>
</li><li class="li-indexenv">conjugate, <a href="#hevea_default91">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">convert</span>, <a href="#hevea_default69">3.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">coordinates</span>, <a href="#hevea_default94">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">cos</span>, <a href="#hevea_default106">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">cosh</span>, <a href="#hevea_default114">3.4</a>
</li><li class="li-indexenv">cosine, <a href="#hevea_default107">3.4</a>
<ul class="indexenv"><li class="li-indexenv">
hyperbolic, <a href="#hevea_default115">3.4</a>
</li></ul>
</li><li class="li-indexenv">cotangent, <a href="#hevea_default111">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">cumSum</span>, <a href="#hevea_default142">3.5</a>
</li><li class="li-indexenv">cumulative sum, <a href="#hevea_default143">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">curl</span>, <a href="#hevea_default176">4.1</a>
</li><li class="li-indexenv">curve<ul class="indexenv"><li class="li-indexenv">
implicit, <a href="#hevea_default312">6</a>
</li><li class="li-indexenv">parametric, <a href="#hevea_default310">6</a>
</li><li class="li-indexenv">polar, <a href="#hevea_default311">6</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">cyclotomic</span>, <a href="#hevea_default252">5.2</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">Digits</span>, <a href="#hevea_default18">2.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">degree</span>, <a href="#hevea_default229">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">desolve</span>, <a href="#hevea_default194">4.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">det</span>, <a href="#hevea_default274">5.4</a>
</li><li class="li-indexenv">determinant, <a href="#hevea_default287">5.4</a>
</li><li class="li-indexenv">diagonalization, <a href="#hevea_default295">5.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">diff</span>, <a href="#hevea_default170">4.1</a>
</li><li class="li-indexenv">divergence, <a href="#hevea_default175">4.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">divergence</span>, <a href="#hevea_default174">4.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">divis</span>, <a href="#hevea_default235">5.2</a>
</li><li class="li-indexenv">division, <a href="#hevea_default27">3.1</a>
</li><li class="li-indexenv">divisors, <a href="#hevea_default236">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">divpc</span>, <a href="#hevea_default250">5.2</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">e</span>, <a href="#hevea_default32">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">egcd</span>, <a href="#hevea_default248">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">eigenvals</span>, <a href="#hevea_default298">5.6</a>
</li><li class="li-indexenv">eigenvalues, <a href="#hevea_default302">5.6</a>
</li><li class="li-indexenv">eigenvectors, <a href="#hevea_default303">5.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">eigenvects</span>, <a href="#hevea_default299">5.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">else</span>, <a href="#hevea_default345">7.1</a>, <a href="#hevea_default351">7.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">epsilon</span>, <a href="#hevea_default19">2.3</a>, <a href="#hevea_default31">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">equation</span>, <a href="#hevea_default319">6.2</a>, <a href="#hevea_default327">6.2</a>
</li><li class="li-indexenv">equations, <a href="#hevea_default60">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">evalf</span>, <a href="#hevea_default5">1.2</a>, <a href="#hevea_default13">1.6</a>, <a href="#hevea_default29">3.1</a>, <a href="#hevea_default42">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">exact</span>, <a href="#hevea_default30">3.1</a>, <a href="#hevea_default43">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">exp</span>, <a href="#hevea_default98">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">exp2trig</span>, <a href="#hevea_default267">5.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">expand</span>, <a href="#hevea_default9">1.4</a>, <a href="#hevea_default63">3.3</a>, <a href="#hevea_default218">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">expr</span>, <a href="#hevea_default168">3.6</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">False</span>, <a href="#hevea_default58">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">factor</span>, <a href="#hevea_default10">1.4</a>, <a href="#hevea_default66">3.3</a>, <a href="#hevea_default233">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">factorial</span>, <a href="#hevea_default95">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">factors</span>, <a href="#hevea_default234">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">false</span>, <a href="#hevea_default57">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">floor</span>, <a href="#hevea_default83">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">for</span>, <a href="#hevea_default352">7.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">frac</span>, <a href="#hevea_default81">3.4</a>
</li><li class="li-indexenv">fractional part, <a href="#hevea_default82">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">froot</span>, <a href="#hevea_default237">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">fsolve</span>, <a href="#hevea_default191">4.4</a>
</li><li class="li-indexenv">function<ul class="indexenv"><li class="li-indexenv">
apply to a list, <a href="#hevea_default146">3.5</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">function_diff</span>, <a href="#hevea_default171">4.1</a>
</li><li class="li-indexenv">functions, <a href="#hevea_default8">1.3</a>
<br>
<br>
</li><li class="li-indexenv">Gauss-Jordan, <a href="#hevea_default289">5.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">gcd</span>, <a href="#hevea_default209">5.1</a>, <a href="#hevea_default246">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">getDenom</span>, <a href="#hevea_default241">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">getNum</span>, <a href="#hevea_default240">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">grad</span>, <a href="#hevea_default172">4.1</a>
</li><li class="li-indexenv">gradient, <a href="#hevea_default173">4.1</a>
<br>
<br>
</li><li class="li-indexenv">Help index, <a href="#hevea_default12">1.6</a>, <a href="#hevea_default14">1.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">head</span>, <a href="#hevea_default165">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">hermite</span>, <a href="#hevea_default256">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">hessian</span>, <a href="#hevea_default178">4.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">horner</span>, <a href="#hevea_default223">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">hyp2exp</span>, <a href="#hevea_default268">5.3</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">i</span>, <a href="#hevea_default34">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">idivis</span>, <a href="#hevea_default208">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">idn</span>, <a href="#hevea_default277">5.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">egcd</span>, <a href="#hevea_default211">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">if</span>, <a href="#hevea_default344">7.1</a>, <a href="#hevea_default350">7.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ifactor</span>, <a href="#hevea_default205">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ifactors</span>, <a href="#hevea_default207">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">im</span>, <a href="#hevea_default88">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">image</span>, <a href="#hevea_default276">5.4</a>
</li><li class="li-indexenv">imaginary part, <a href="#hevea_default89">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">inf</span>, <a href="#hevea_default36">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">infinity</span>, <a href="#hevea_default35">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">int</span>, <a href="#hevea_default186">4.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">integer</span>, <a href="#hevea_default62">3.2</a>
</li><li class="li-indexenv">integrals, <a href="#hevea_default188">4.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">inter</span>, <a href="#hevea_default318">6.2</a>, <a href="#hevea_default341">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">interactive_plotode</span>, <a href="#hevea_default198">4.5</a>
</li><li class="li-indexenv">interface, <a href="#hevea_default15">2.1</a>
</li><li class="li-indexenv">intersection, <a href="#hevea_default320">6.2</a>
</li><li class="li-indexenv">inverse<ul class="indexenv"><li class="li-indexenv">
cosine hyperbolic, <a href="#hevea_default127">3.4</a>
</li><li class="li-indexenv">sine hyperbolic, <a href="#hevea_default125">3.4</a>
</li><li class="li-indexenv">tangent hyperbolic, <a href="#hevea_default129">3.4</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">iquo</span>, <a href="#hevea_default202">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">iquorem</span>, <a href="#hevea_default204">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">irem</span>, <a href="#hevea_default200">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">isprime</span>, <a href="#hevea_default213">5.1</a>
<br>
<br>
</li><li class="li-indexenv">Jordan form, <a href="#hevea_default294">5.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">jordan</span>, <a href="#hevea_default293">5.6</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">ker</span>, <a href="#hevea_default275">5.4</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">lagrange</span>, <a href="#hevea_default254">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">laguerre</span>, <a href="#hevea_default258">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">laplacian</span>, <a href="#hevea_default177">4.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">lcm</span>, <a href="#hevea_default210">5.1</a>, <a href="#hevea_default247">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">lcoeff</span>, <a href="#hevea_default230">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">legend</span>, <a href="#hevea_default313">6.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">limit</span>, <a href="#hevea_default181">4.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">linsolve</span>, <a href="#hevea_default192">4.4</a>, <a href="#hevea_default290">5.5</a>
</li><li class="li-indexenv">list, <a href="#hevea_default133">3.5</a>
<ul class="indexenv"><li class="li-indexenv">
of coefficients, <a href="#hevea_default150">3.5</a>
</li></ul>
</li></ul></td><td style="vertical-align:top;text-align:left;" ><ul class="indexenv"><li class="li-indexenv">lists, <a href="#hevea_default152">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ln</span>, <a href="#hevea_default100">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">log</span>, <a href="#hevea_default99">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">log10</span>, <a href="#hevea_default103">3.4</a>
</li><li class="li-indexenv">logarithm<ul class="indexenv"><li class="li-indexenv">
base 10, <a href="#hevea_default102">3.4</a>
</li><li class="li-indexenv">natural, <a href="#hevea_default101">3.4</a>
</li></ul>
</li><li class="li-indexenv">loop, <a href="#hevea_default353">7.1</a>
</li><li class="li-indexenv">loops, <a href="#hevea_default343">7.1</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">makematrix</span>, <a href="#hevea_default280">5.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">map</span>, <a href="#hevea_default147">3.5</a>
</li><li class="li-indexenv">matrix<ul class="indexenv"><li class="li-indexenv">
determinant, <a href="#hevea_default286">5.4</a>
</li><li class="li-indexenv">hessian, <a href="#hevea_default179">4.1</a>
</li><li class="li-indexenv">identity, <a href="#hevea_default282">5.4</a>
</li><li class="li-indexenv">image, <a href="#hevea_default285">5.4</a>
</li><li class="li-indexenv">kernel, <a href="#hevea_default284">5.4</a>
</li><li class="li-indexenv">rank, <a href="#hevea_default283">5.4</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">matrix</span>, <a href="#hevea_default279">5.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">max</span>, <a href="#hevea_default76">3.4</a>
</li><li class="li-indexenv">maximum, <a href="#hevea_default77">3.4</a>
</li><li class="li-indexenv">menu bar, <a href="#hevea_default16">2.1</a>, <a href="#hevea_default17">2.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">mid</span>, <a href="#hevea_default139">3.5</a>, <a href="#hevea_default164">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">min</span>, <a href="#hevea_default78">3.4</a>
</li><li class="li-indexenv">minimum, <a href="#hevea_default79">3.4</a>
</li><li class="li-indexenv">multiplication, <a href="#hevea_default26">3.1</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">NULL</span>, <a href="#hevea_default138">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">nextprime</span>, <a href="#hevea_default215">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">normal</span>, <a href="#hevea_default64">3.3</a>, <a href="#hevea_default217">5.2</a>
</li><li class="li-indexenv">not, <a href="#hevea_default348">7.1</a>
</li><li class="li-indexenv">number<ul class="indexenv"><li class="li-indexenv">
prime, <a href="#hevea_default214">5.1</a>
</li></ul>
</li><li class="li-indexenv">numbers<ul class="indexenv"><li class="li-indexenv">
approximate, <a href="#hevea_default4">1.2</a>, <a href="#hevea_default37">3.1</a>
</li><li class="li-indexenv">exact, <a href="#hevea_default3">1.2</a>, <a href="#hevea_default38">3.1</a>, <a href="#hevea_default39">3.1</a>
</li><li class="li-indexenv">hexadecimal, <a href="#hevea_default41">3.1</a>
</li><li class="li-indexenv">octal, <a href="#hevea_default40">3.1</a>
</li></ul>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">odesolve</span>, <a href="#hevea_default195">4.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">open_polygon</span>, <a href="#hevea_default324">6.2</a>, <a href="#hevea_default337">6.3</a>
</li><li class="li-indexenv">or, <a href="#hevea_default347">7.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">or</span>, <a href="#hevea_default49">3.2</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">parameq</span>, <a href="#hevea_default328">6.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">partfrac</span>, <a href="#hevea_default72">3.3</a>, <a href="#hevea_default243">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">pcar</span>, <a href="#hevea_default296">5.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">pcoeff</span>, <a href="#hevea_default228">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">peval</span>, <a href="#hevea_default222">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">pi</span>, <a href="#hevea_default33">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plane</span>, <a href="#hevea_default338">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plotpolar</span>, <a href="#hevea_default308">6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plot</span>, <a href="#hevea_default11">1.5</a>, <a href="#hevea_default304">6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plotfield</span>, <a href="#hevea_default196">4.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plotfunc</span>, <a href="#hevea_default305">6</a>, <a href="#hevea_default331">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plotimplicit</span>, <a href="#hevea_default309">6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plotode</span>, <a href="#hevea_default197">4.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">plotparam</span>, <a href="#hevea_default307">6</a>, <a href="#hevea_default332">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">pmin</span>, <a href="#hevea_default297">5.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">point</span>, <a href="#hevea_default315">6.2</a>, <a href="#hevea_default333">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">poly2symb</span>, <a href="#hevea_default148">3.5</a>, <a href="#hevea_default226">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">polygon</span>, <a href="#hevea_default323">6.2</a>, <a href="#hevea_default336">6.3</a>
</li><li class="li-indexenv">polygonal line, <a href="#hevea_default321">6.2</a>, <a href="#hevea_default334">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">polygonplot</span>, <a href="#hevea_default322">6.2</a>, <a href="#hevea_default335">6.3</a>
</li><li class="li-indexenv">polynomial<ul class="indexenv"><li class="li-indexenv">
characteristic, <a href="#hevea_default300">5.6</a>
</li><li class="li-indexenv">cyclotomic, <a href="#hevea_default253">5.2</a>
</li><li class="li-indexenv">Hermite, <a href="#hevea_default257">5.2</a>
</li><li class="li-indexenv">Lagrange, <a href="#hevea_default255">5.2</a>
</li><li class="li-indexenv">Laguerre, <a href="#hevea_default259">5.2</a>
</li><li class="li-indexenv">minimal, <a href="#hevea_default301">5.6</a>
</li><li class="li-indexenv">Taylor, <a href="#hevea_default220">5.2</a>
</li><li class="li-indexenv">Tchebyshev, <a href="#hevea_default261">5.2</a>
</li></ul>
</li><li class="li-indexenv">power, <a href="#hevea_default28">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">powmod</span>, <a href="#hevea_default199">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">previousprime</span>, <a href="#hevea_default216">5.1</a>
</li><li class="li-indexenv">prime factors, <a href="#hevea_default206">5.1</a>
</li><li class="li-indexenv">product<ul class="indexenv"><li class="li-indexenv">
cross, <a href="#hevea_default270">5.4</a>
</li><li class="li-indexenv">matrix, <a href="#hevea_default271">5.4</a>
</li><li class="li-indexenv">scalar, <a href="#hevea_default269">5.4</a>
</li><li class="li-indexenv">term by term, <a href="#hevea_default272">5.4</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">product</span>, <a href="#hevea_default141">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">proot</span>, <a href="#hevea_default193">4.4</a>, <a href="#hevea_default238">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">propfrac</span>, <a href="#hevea_default242">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ptayl</span>, <a href="#hevea_default219">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">purge</span>, <a href="#hevea_default50">3.2</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">quo</span>, <a href="#hevea_default244">5.2</a>
</li><li class="li-indexenv">quotient, <a href="#hevea_default203">5.1</a>
<br>
<br>
</li><li class="li-indexenv">radian, <a href="#hevea_default20">2.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">randpoly</span>, <a href="#hevea_default251">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">rank</span>, <a href="#hevea_default273">5.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ranm</span>, <a href="#hevea_default278">5.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">ratnormal</span>, <a href="#hevea_default65">3.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">re</span>, <a href="#hevea_default86">3.4</a>
</li><li class="li-indexenv">real part, <a href="#hevea_default87">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">rem</span>, <a href="#hevea_default245">5.2</a>
</li><li class="li-indexenv">remainder, <a href="#hevea_default201">5.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">romberg</span>, <a href="#hevea_default187">4.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">round</span>, <a href="#hevea_default80">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">rref</span>, <a href="#hevea_default292">5.5</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">scatterplot</span>, <a href="#hevea_default329">6.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">segment</span>, <a href="#hevea_default316">6.2</a>
</li><li class="li-indexenv">sequence, <a href="#hevea_default132">3.5</a>
</li><li class="li-indexenv">sequences, <a href="#hevea_default151">3.5</a>
</li><li class="li-indexenv">series, <a href="#hevea_default184">4.2</a>
<ul class="indexenv"><li class="li-indexenv">
Taylor, <a href="#hevea_default185">4.2</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">series</span>, <a href="#hevea_default183">4.2</a>
</li><li class="li-indexenv">set, <a href="#hevea_default134">3.5</a>
</li><li class="li-indexenv">sets, <a href="#hevea_default153">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sign</span>, <a href="#hevea_default75">3.4</a>
</li><li class="li-indexenv">simplifications, <a href="#hevea_default70">3.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">simplify</span>, <a href="#hevea_default67">3.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">simult</span>, <a href="#hevea_default291">5.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sin</span>, <a href="#hevea_default104">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sincos</span>, <a href="#hevea_default71">3.3</a>
</li><li class="li-indexenv">sine, <a href="#hevea_default105">3.4</a>
<ul class="indexenv"><li class="li-indexenv">
hyperbolic, <a href="#hevea_default113">3.4</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">sinh</span>, <a href="#hevea_default112">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">size</span>, <a href="#hevea_default162">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">solve</span>, <a href="#hevea_default190">4.4</a>
</li><li class="li-indexenv">space, <a href="#hevea_default330">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sphere</span>, <a href="#hevea_default339">6.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sqrt</span>, <a href="#hevea_default96">3.4</a>
</li><li class="li-indexenv">square root, <a href="#hevea_default97">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">string</span>, <a href="#hevea_default167">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sturmab</span>, <a href="#hevea_default239">5.2</a>
</li><li class="li-indexenv">sublist, <a href="#hevea_default158">3.5</a>
</li><li class="li-indexenv">sublists, <a href="#hevea_default156">3.5</a>
</li><li class="li-indexenv">submatrix, <a href="#hevea_default288">5.4</a>
</li><li class="li-indexenv">subsequence, <a href="#hevea_default157">3.5</a>
</li><li class="li-indexenv">subsequences, <a href="#hevea_default155">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">subst</span>, <a href="#hevea_default46">3.2</a>
</li><li class="li-indexenv">subtraction, <a href="#hevea_default25">3.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">sum</span>, <a href="#hevea_default140">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">symb2poly</span>, <a href="#hevea_default149">3.5</a>, <a href="#hevea_default227">5.2</a>
<br>
<br>
</li><li class="li-indexenv">Taylor polynomial, <a href="#hevea_default221">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">True</span>, <a href="#hevea_default56">3.2</a>
</li><li class="li-indexenv">tables, <a href="#hevea_default154">3.5</a>, <a href="#hevea_default159">3.5</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tail</span>, <a href="#hevea_default166">3.6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">cot</span>, <a href="#hevea_default110">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tan</span>, <a href="#hevea_default108">3.4</a>
</li><li class="li-indexenv">tangent, <a href="#hevea_default109">3.4</a>
<ul class="indexenv"><li class="li-indexenv">
hyperbolic, <a href="#hevea_default117">3.4</a>
</li></ul>
</li><li class="li-indexenv"><span style="font-family:monospace">tangent</span>, <a href="#hevea_default306">6</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tanh</span>, <a href="#hevea_default116">3.4</a>
</li><li class="li-indexenv"><span style="font-family:monospace">taylor</span>, <a href="#hevea_default182">4.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tchebyshev1</span>, <a href="#hevea_default260">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tchebyshev2</span>, <a href="#hevea_default262">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tcoeff</span>, <a href="#hevea_default232">5.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tcollect</span>, <a href="#hevea_default264">5.3</a>
</li><li class="li-indexenv">test, <a href="#hevea_default342">7.1</a>, <a href="#hevea_default349">7.1</a>
</li><li class="li-indexenv"><span style="font-family:monospace">texpand</span>, <a href="#hevea_default265">5.3</a>
</li><li class="li-indexenv">text, <a href="#hevea_default314">6.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tlin</span>, <a href="#hevea_default263">5.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">trig2exp</span>, <a href="#hevea_default266">5.3</a>
</li><li class="li-indexenv"><span style="font-family:monospace">true</span>, <a href="#hevea_default55">3.2</a>
</li><li class="li-indexenv"><span style="font-family:monospace">tsimplify</span>, <a href="#hevea_default68">3.3</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">unapply</span>, <a href="#hevea_default131">3.4</a>, <a href="#hevea_default180">4.1</a>
<br>
<br>
</li><li class="li-indexenv"><span style="font-family:monospace">valuation</span>, <a href="#hevea_default231">5.2</a>
</li><li class="li-indexenv">variables, <a href="#hevea_default6">1.3</a>, <a href="#hevea_default44">3.2</a>
<br>
<br>
</li><li class="li-indexenv">whole part, <a href="#hevea_default85">3.4</a>
<br>
<br>
</li><li class="li-indexenv">Xcas<ul class="indexenv"><li class="li-indexenv">
getting, <a href="#hevea_default1">1.1</a>
</li><li class="li-indexenv">starting, <a href="#hevea_default0">1.1</a>
</li></ul>
</li></ul></td></tr>
</table><!--CUT END -->
<!--HTMLFOOT-->
<!--ENDHTML-->
<!--FOOTER-->
<hr style="height:2"><blockquote class="quote"><em>This document was translated from L<sup>A</sup>T<sub>E</sub>X by
</em><a href="http://hevea.inria.fr/index.html"><em>H</em><em><span style="font-size:small"><sup>E</sup></span></em><em>V</em><em><span style="font-size:small"><sup>E</sup></span></em><em>A</em></a><em>.</em></blockquote></body>
</html>