File: tutoriel.tex

package info (click to toggle)
giac 1.6.0.41%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 64,540 kB
  • sloc: cpp: 351,842; ansic: 105,138; python: 30,545; javascript: 8,675; yacc: 2,690; lex: 2,449; makefile: 1,243; sh: 579; perl: 314; lisp: 216; asm: 62; java: 41; sed: 16; csh: 7; pascal: 6
file content (4361 lines) | stat: -rwxr-xr-x 137,178 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
\documentclass{article}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{stmaryrd}
\usepackage{makeidx}
\usepackage{times}
\usepackage{mathptmx}
%Uncomment next line for pdflatex and use includegraphics with eps file
% for latex2html don't use the option [width=\textwidth]
% check that xfig files are exported magnif 100%
\usepackage{ifpdf}
\ifpdf
 \usepackage[colorlinks,pdftex]{hyperref}
\else
%\usepackage[ps2pdf,breaklinks=true,colorlinks=true,linkcolor=red,citecolor=green]{hyperref}
\fi
%\usepackage[francais]{babel}
\usepackage[T1]{fontenc}
%\DeclareGraphicsExtensions{.pdf, .png, .mps, .eps}
\newcommand{\R}{{\mathbb{R}}}
\newcommand{\C}{{\mathbb{C}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\N}{{\mathbb{N}}}
\newcommand{\faux}{$\square\;$}
\newcommand{\vrai}{$\boxtimes\;$}
\newcommand{\itemf}{\item\faux}
\newcommand{\itemvv}{\item\vrai}
\newcommand{\xcasin}[1]
{\begin{quote}\ttfamily
#1
\end{quote}}
\newcommand{\xcasout}[1]
{\begin{equation*}
#1
\end{equation*}}

%---------------------------------------------
\newtheorem{exo}{Exercise}[section]
\makeindex
%---------------------------------------------
\begin{document}
\vspace*{1cm}
\begin{center}
{\Huge An \texttt{Xcas} Tutorial}
\end{center}

\tableofcontents

\newpage

\texttt{Xcas} is a free (as in Free Software) computer algebra system.
Although there are other computer algebra systems, both free and
commercial, few if any are as versatile as \texttt{Xcas},
which is capable of, among other things:
\begin{itemize}
  \item
  Symbolic and numeric calculation.
  \item
  Programming.
  \item
  Graphing functions.
  \item
  Working with spreadsheets.
  \item
  Interactive geometry (both two- and three-dimensional).
  \item
  Turtle geometry.
\end{itemize}
This tutorial will briefly introduce you to calculating,
programming and graphing with \texttt{Xcas}.  The first section, 
``Getting started'', will be just enough information to get you
started.  The second section will be a brief overview of the
graphic interface and the rest will be more in-depth tutorial.

For more information, you can refer to the manual or any of the other
sources of information under the \texttt{Help} menu.

\section{Getting started}

\subsection{Starting \texttt{Xcas}}
\index{Xcas!starting}

\texttt{Xcas} is available from 
\url{http://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html}.
\index{Xcas!getting}
This page also has information on installation.  Once installed, the
way to start the program depends on the operating system.
\begin{itemize}
  \item
  Under Windows, there should be a shortcut \texttt{xcasen.bat} that
  you can click on.
  \item
  Under Linux, you can either find it on a menu provided by the
  desktop environment, or enter \texttt{xcas \&} in a terminal window.
  \item
  Under MacOS, you can click on \texttt{xcas} in the Applications menu.
\end{itemize}
For this tutorial, you will mostly be working with the
command line, which will be a white rectangle next to the number
\texttt{1}.\index{command line}  There you can enter a command, after which there will be
a window with the result, followed by another command line with the
number \texttt{2}.

\subsection{\texttt{XCas} as a calculator}

Once you have started \texttt{Xcas}, you can immediately use it as a
calculator.  Simply type in the expression that you wish to
use using the standard arithmetic operators; namely \texttt{+} for
addition, \texttt{-} for subtraction, \texttt{*} for multiplication,
\texttt{/} for division and \texttt{\^{}} for exponentiation.
If you enter
\xcasin{34+45*12}
you will get
\xcasout{574}
If you enter
\xcasin{2/3 + 98/7}
you will get
\xcasout{\frac{44}{3}}
The operators have a standard order of operations, and parentheses
can be used for grouping.  (Brackets have a different meaning, see
section \ref{lists}, ``Lists, sequences and sets''.)

Notice that if you enter integers or other exact 
values,\index{numbers!exact}
\texttt{Xcas} will give you the exact result.  If you enter an
approximate value, such as a number with a decimal point (computers
regard numbers with decimal points as approximate values), then
\texttt{Xcas} will give you an approximate 
result.\index{numbers!approximate}  For example, if
you enter
\xcasin{2/3 + 3/2}
you will get
\xcasout{\frac{13}{6}}
but if you enter
\xcasin{2/3 + 1.5}
you will get
\xcasout{2.16666666667}
You can also get a decimal approximation using the \texttt{evalf}
function.\index{evalf@{\texttt{evalf}}}  If you enter
\xcasin{evalf(2/3 + 3/2)}
you will get
\xcasout{2.16666666667}
By default, \texttt{Xcas} will give you 12 decimal places of accuracy
in its approximations, but this is configurable (see section
\ref{config}, ``Configuration'').

\texttt{Xcas} also has the standard functions, such as
\texttt{sin}, \texttt{cos}, \texttt{asin} (for the arcsin),
\texttt{log} (for the natural logarithm).
It also has common constants such as \texttt{pi}, \texttt{e} and \texttt{i}.

The trigonometric functions assume that angles are measured in
radians.  (This can be configured, see section \ref{config},
``Configuration''.)  If you enter
\xcasin{sin(pi/4)}
you will get
\xcasout{\frac{\sqrt{2}}{2}}

\subsection{Functions and variables}

\texttt{Xcas} can work with expressions and variables as well as 
numbers.\index{variables}
A variable in \texttt{Xcas} needs to begin with a letter and can
include numbers and underscores. If you enter
\xcasin{x\^{}2 + x + 2*x + 2}
you will get
\xcasout{x^2 + 3*x + 2}
You can give a variable a value with the assignment operator,
\texttt{:=}.\index{:=@{\texttt{:=}}}  To assign the variable
\texttt{myvar} the value 5, for example, you can enter
\xcasin{myvar := 5}
If you later use \texttt{myvar} in an expression, it will be replaced
by \texttt{5}; entering
\xcasin{myvar*x + myvar\^{}2}
will result in
\xcasout{5*x + 25}

The assignment operator can also be used to define 
functions.\index{functions}  To
define the squaring function, for example, you can enter
\xcasin{sqr(x) := x\^{}2}
Afterwards, whenever you enter \texttt{sqr(expression)} you will
get the expression squared.  For example, entering
\xcasin{sqr(7)}
will return
\xcasout{49}
and entering
\xcasin{sqr(x+1)}
will result in
\xcasout{(x+1)^2}

\subsection{Simplifying expressions}

When you enter an expression into \texttt{Xcas}, some simplifications
will be done automatically.  For example, if you enter
\xcasin{a := 3}
\xcasin{b := 4}
and
\xcasin{a*b*x + 4*b\^{}2}
you will get
\xcasout{12*x + 64}

\texttt{Xcas} has several transformations in case you want an
expression to be simplified beyond the automatic simplifications, or
perhaps transformed in another way.  Some examples are:
\begin{description}
  \item[\texttt{expand}]\index{expand@{\texttt{expand}}}
  This will expand integer powers, and more generally distribute
  multiplication across addition.  For example, if you enter
  \xcasin{expand((x+1)\^{}3)}
  you will get
  \xcasout{x^3 + 3*x^2 + 3*x + 1}
  
  \item[\texttt{factor}]\index{factor@{\texttt{factor}}}
  This will factor polynomials.  For example, if you enter
  \xcasin{factor(x\^{}2 + 3*x + 2)}
  you will get
  \xcasout{(x + 1)*(x + 2)}
\end{description}  

\subsection{Graphs}

\texttt{Xcas} has several functions for plotting graphs; perhaps the
simplest is the \texttt{plot} function.\index{plot@{\texttt{plot}}}  
The \texttt{plot} function requires two arguments, an expression to be
graphed and a variable. For example, if you enter
\xcasin{plot(sin(x),x)}
you will get the graph
\begin{center}
\includegraphics[width=\textwidth]{xcas-sinplot.png}
\end{center}
To the right of the graph will be a panel you can use to control
various aspects.  By default, the graph will cover values of the
variable from $-10$ to $10$; this is of course configurable (see
section \ref{config}, ``Configuration'').  To plot
over a different interval you can also use a second argument of 
\textit{var}=\textit{min}..\textit{max} instead of simply
\textit{var}.  For example, if you enter
\xcasin{plot(sin(x),x=-pi..pi)}
you will get the graph
\begin{center}
\includegraphics[width=\textwidth]{xcas-sinplot2.png}
\end{center}

\subsection{The Help Index}

You can get a list of all \texttt{Xcas} commands and variables using the
\texttt{Help$\blacktriangleright$Index}\index{Help index} menu item.
This will bring up the following window:
\begin{center}
\includegraphics[width=\textwidth]{xcas-help-index.png}
\end{center}
Under \texttt{Index} will be a scrollable list of all the commands and
variables.  
If you begin typing to the right of the question mark, you will be
taken to the part of the list beginning with the characters you typed;
for example, if you type \texttt{evalf}, \index{evalf@{\texttt{evalf}}}
you will get the following:
\begin{center}
\includegraphics[width=\textwidth]{xcas-help-evalf.png}
\end{center}
In the upper right-hand pane under \texttt{Related} is a list of
commands related to the chosen command, below that is a list of
synonyms; you can see that the \texttt{approx} command is the same as
the \texttt{evalf} command.  Below the line where you typed the
command name is a description of the command; here you
can see that \texttt{evalf} takes an optional second argument
(brackets in the description indicate that an argument is optional)
which can specify the number of digits in the approximation; for
example, 
\xcasin{evalf(pi)}
will return
\xcasout{3.14159265359}
but 
\xcasin{evalf(pi,20)}
will return
\xcasout{3.1415926535897932385}
Below the description is a line where you can enter the arguments for
the command; if you enter values in these boxes then the command with
the chosen arguments will be placed on the \texttt{Xcas} command line.
At the bottom of the help window is a list of examples of the command
being used; if you click on one of these examples it will appear on
the \texttt{Xcas} command line.

As well as using the menu, you can get to the help 
index\index{Help index} by using the
tab key while at the \texttt{Xcas} command line.  If you have typed
the beginning of a command before using the tab key, then that
beginning will be presented to you in the help index.

\section{The interface}

\subsection{Overview}

When you start \texttt{Xcas}, you will be presented with a window which
looks like the following:
\begin{center}
\includegraphics[width=\textwidth]{xcas-open.png}
\end{center}
From top to bottom, there is\index{interface}
\begin{itemize}
  \item
  A menu bar.\index{menu bar}
  \item
  A tab indicating the name of the session, or \texttt{Unnamed} if the
  session has not been saved.  You can run several sessions
  simultaneously, in which case each session will get its own tab.
  \item
  A session management bar, with
  \begin{itemize}
    \item
    A \texttt{?} button, which will open the help index.
    \item
    A \texttt{save} button to save the session.
    \item
    A configuration button indicating how \texttt{Xcas} is currently
    configured.  Clicking on this button will open a configuration
    window.
    \item
    A \texttt{STOP} button you can use to interrupt a calculation
    which is running on too long.
    \item
    A \texttt{Kbd} button to bring up an on-screen keyboard which you
    can use to help enter your commands.  It will come with a control panel
    which you can use to display a message window (\texttt{msg}) or
    show an extra menu (\texttt{cmds}) at the bottom.
    \item
    An \texttt{X} button to close the session.
  \end{itemize}
  \item
  A numbered command line.
\end{itemize}

\subsection{The menu bar}
\index{menu bar}
The menu items have submenus, and sometimes sub-submenus. When
indicating a submenu item, it will be separated from the menu item with
$\blacktriangleright$; for example, you can save a session with
\texttt{File$\blacktriangleright$Save}, which is the \texttt{Save}
item in the \texttt{File} menu.

The menu bar contains the usual menus for graphic programs.  It also
contains all of the \texttt{Xcas} commands grouped by themes.  For
some commands, if you choose it from a menu then the command will be
put on the command line.  If the message window is open (which you can
open with the
\texttt{Cfg$\blacktriangleright$Show$\blacktriangleright$msg}
menu item), a brief description of the command will appear in that
window.  For other commands, for example the \texttt{Graphic}
commands, you will get a dialog box which lets you specify the
arguments; afterwards, the command with the arguments will be placed
on the command line.

The \texttt{Help} menu has links to the Help index, various manuals,
as well as the online forum.  

\subsection{Configuration}
\label{config}

The \texttt{Cfg} menu has various items that allow you to configure
various aspects of \texttt{Xcas}.  This tutorial will
refer to the \texttt{Cfg$\blacktriangleright$Cas configuration} and 
\texttt{Cfg$\blacktriangleright$Graph configuration} menu items.  The
\texttt{Cfg$\blacktriangleright$Cas configuration} menu item will
bring up the same configuration page as clicking on the status bar.
These items will bring up windows with various entry fields and
check boxes; after you make any changes, you can click the
\texttt{Apply} button to apply them and the \texttt{Save} button to
save them for future sessions.

The \texttt{Cfg$\blacktriangleright$Cas configuration} menu item will
bring up a window with options that determine how \texttt{Xcas} computes.
This includes some things mentioned in this tutorial, such as:
\begin{itemize}
  \item
  \textbf{Digits.}\index{Digits@{\texttt{Digits}}}
  This entry field determines the number of significant digits used in
  calculations.  This resets the value of the variable \texttt{Digits},
  which you can also reset from the command line.
  \item
  \textbf{epsilon.}\index{epsilon@{\texttt{epsilon}}}
  This entry field determines how close the fraction returned by
  \texttt{exact} will be to the input.  This resets the value of the
  variable \texttt{epsilon}, which you can also reset from the command
  line.
  \item
  \textbf{radian.}\index{radian}
  This checkbox determines whether angles are measured in radians or
  degrees.
  \item
  \textbf{Complex.}\index{complex roots}
  This checkbox determines whether computations will find complex
  solutions to equations.
  \item
  \textbf{All\_trig\_sol.}\index{All\_trig\_sol}
  This checkbox determines whether \texttt{solve} will find the
  primary solutions to trigonometric equations or all solutions.
\end{itemize}

The \texttt{Cfg$\blacktriangleright$Graph configuration} menu item
will bring up a window with options that determine how \texttt{Xcas}
draws graphs.  This includes the default ranges for the axes; the
$x$-axis will go from \texttt{X-} to \texttt{X+}, the $y$-axis will go
from \texttt{Y-} to \texttt{Y+} and the $z$-axis will go from
\texttt{Z-} to \texttt{Z+}.

\subsection{The command line}
\index{command line}

You can run a command by typing it into the command
line and pressing \texttt{Enter}.  If you want to enter more than one
command on a line, you can separate them with semicolons.  If you want
to suppress the output of a command, you can end it with a
colon-semicolon (\texttt{:;}).

If you have enough commands, there will be a scroll bar on the right
which you can use to scroll through different command line levels.  The
\texttt{Edit} menu will allow you to merge levels, group levels and
add comments.

All commands are kept in memory.  You can scroll through previous
commands with \texttt{Ctrl+} arrow keys, and modify them if you want.

\section{Computational objects}

\subsection{Numbers}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Operations}}\\
\hline\hline
\texttt{+}    & addition\\
\texttt{-}    & subtraction \\
\texttt{*}    & multiplication  \\
\texttt{/}    & division\\
\texttt{\^{}} & power  \\
\hline
\end{tabular}
\end{center}
\index{addition}
\index{subtraction}
\index{multiplication}
\index{division}
\index{power}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Conversions}}\\
\hline\hline
\texttt{evalf}   & approximate a number\\
\texttt{exact}   & find an exact number close to the given number\\
\texttt{epsilon} & determine how close a fraction has to be to
                   a floating point number to be returned by
		   \texttt{exact}\\
\hline
\end{tabular}
\end{center}
\index{evalf@{\texttt{evalf}}}
\index{exact@{\texttt{exact}}}
\index{epsilon@{\texttt{epsilon}}}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Constants}}\\
\hline\hline
\texttt{pi}  & $\pi\simeq 3.14159265359$ \\
\texttt{e}   & $e \simeq 2.71828182846$  \\
\texttt{i}   & $i=\sqrt{-1}$  \\
\texttt{infinity} or \texttt{inf}   & $\infty$  \\
\texttt{+infinity} or \texttt{+inf} & $+\infty$  \\
\texttt{-infinity} or \texttt{-inf} & $-\infty$  \\
\hline
\end{tabular}
\end{center}
\index{e@{\texttt{e}}}
\index{pi@{\texttt{pi}}}
\index{i@{\texttt{i}}}
\index{infinity@{\texttt{infinity}}}
\index{inf@{\texttt{inf}}}


There are two types of numbers in \texttt{Xcas}, approximate and exact.

Computer programs like \texttt{Xcas} regard floating point numbers,
which are numbers displayed with decimal points, as 
approximations.\index{numbers!approximate}  Other
numbers will be regarded as exact.\index{numbers!exact}  For example, the number
\texttt{2} is exactly $2$, while \texttt{2.0} represents a number that
equals 2 to within the current precision, which by default is about 12
significant digits (see section \ref{config}, ``Configuration'').
Approximate numbers can be entered by
typing in a number with a decimal point or in scientific notation
(which is a decimal number followed by \texttt{e} and then an integer,
where the integer represents the power of $10$).  So \texttt{2000.0},
\texttt{2e3} and \texttt{2.0e3} all represent the same approximate
number.

Exact numbers are integers, symbolic constants (like $e$ and $\pi$),
and numeric expressions which only involve exact 
numbers.\index{numbers!exact} For example,
$\sin(1)$ will be exact, and so won't be given a decimal
approximation; if you enter
\xcasin{sin(1)}
you will get
\xcasout{\sin(1)}
However, $\sin(1.0)$ involves the approximate number \texttt{1.0}, and
so will be regarded as approximate itself.  If you enter
\xcasin{sin(1.0)}
you will get
\xcasout{0.841470984808}

As with many computer languages, if you enter an integer beginning
with the digit $0$, the \texttt{Xcas} will regard it as an integer
base 8;\index{numbers!octal} if you enter
\xcasin{011}
you will get
\xcasout{9}
since $11$ is the base $8$ representation of the decimal number $9$.
Similarly, if you write \texttt{0x} at the beginning of an integer,
\texttt{Xcas} will regard it as a hexadecimal (base 16) 
integer.\index{numbers!hexadecimal}  If you enter
\xcasin{0x11}
you will get
\xcasout{17}
since $11$ is the base $16$ representation of the decimal number $17$.

The symbolic constants that are built in to \texttt{Xcas} are
\texttt{pi}, \texttt{e}, \texttt{i}, \texttt{infinity},
\texttt{+infinity} and \texttt{-infinity}.
Note that \texttt{Xcas} distinguishes between \texttt{+infinity},
\texttt{-infinity} and \texttt{infinity}, which is unsigned infinity.
The distinction can be noted in the following calculations:
\xcasin{1/0}
will result in \texttt{infinity},
\xcasout{\infty}
while
\xcasin{(1/0)\^{}2}
will result in \texttt{+infinity},
\xcasout{+\infty}
and
\xcasin{-(1/0)\^{}2}
will result in \texttt{-infinity},
\xcasout{-\infty}
These variables cannot be reassigned; in particular, the variable
\texttt{i} can't be used as a loop index.

\texttt{Xcas} can handle integers of arbitrary length; if, for
example, you enter
\xcasin{500!}
you will be given all 1135 digits of the factorial of $500$.

When \texttt{Xcas} combines two numbers, the result will be exact
unless one of the numbers is approximate, in which case the result
will be approximate.  For example, entering
\xcasin{3/2 + 1}
will return the exact value
\xcasout{\frac{5}{2}}
while entering
\xcasin{1.5 + 1}
will return
\xcasout{2.5}

The \texttt{evalf}\index{evalf@{\texttt{evalf}}} function will
transform a number to an approximate value.  While entering
\xcasin{sqrt(2)}
will return
\xcasout{\sqrt{2}}
entering
\xcasin{evalf(sqrt(2))}
will return
\xcasout{1.41421356237}
which is the square root of two to the default precision, in this case
$12$ digits.  The \texttt{evalf} function can also take a second
argument which you can use to specify how many digits of precision
that you want; for example if you want to know the square root of two
to 50 digits, you can enter
\xcasin{evalf(sqrt(2),50)}
and get
\xcasout{1.4142135623730950488016887242096980785696718753770}

The \texttt{exact}\index{exact@{\texttt{exact}}} function will turn 
an approximate value into a nearby
exact value.  Specifically, given an approximate value $x$,
\texttt{exact($x$)} will be a rational number $r$ with
$|x - r| < \epsilon$, where $\epsilon$ is the value of the variable
\texttt{epsilon}, which has a default value of $10^{-12}$.  This value
is configurable (see section \ref{config}, ``Configuration'').


\subsection{Variables}
\index{variables}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Variables}}\\
\hline\hline
\texttt{:=}  & assignment \\
\texttt{subst} & give a variable a value for a single instance\\
\texttt{assume}   & put assumptions on variables \\
\texttt{and} & combine assumptions\\
\texttt{or} & combine assumptions\\
\texttt{purge}   & remove values and assumptions attached to variables \\
\hline
\end{tabular}
\end{center}
\index{:=@{\texttt{:=}}}
\index{subst@{\texttt{subst}}}
\index{assume@{\texttt{assume}}}
\index{and@{\texttt{and}}}
\index{or@{\texttt{or}}}
\index{purge@{\texttt{purge}}}

A variable in \texttt{Xcas} begins with a letter and can contain
letters, numbers and underscores.  

A variable can be given a value with the assignment operator \texttt{:=}.
If you enter
\xcasin{a := 3}
then \texttt{a} will be replaced by \texttt{3} in all later
calculations.  If you later enter
\xcasin{4*a\^{}2}
you will get
\xcasout{36}
The \texttt{purge} command will unassign a variable; if you enter
\xcasin{purge(a)}
and then
\xcasin{4*a\^{}2}
you will get
\xcasout{4\cdot a^2}

The assignment operator \texttt{:=} is one of three types of
equalities used in \texttt{Xcas}.  They are
\begin{itemize}
  \item
  The assignment operator, \texttt{:=},\index{:=@{\texttt{:=}}} 
  which is used to assign values.
  \item
  The Boolean equality, \texttt{==},\index{==@{\texttt{==}}} 
  which tells you whether two
  quantities are equal to each other or not.  If you enter
  \textit{A}\texttt{==}\textit{B}, then you will get either
  \texttt{true} or \texttt{false} as a result.  The predefined
  constants \texttt{true} and \texttt{True} are equal to 1, the
  predefined constants \texttt{false} and \texttt{False} are equal to 0.
  \index{Booleans}
  \index{==@{\texttt{==}}}
  \index{true@{\texttt{true}}}
  \index{True@{\texttt{True}}}
  \index{false@{\texttt{false}}}
  \index{False@{\texttt{False}}}  
  \item
  The equal sign \texttt{=}\index{=@{\texttt{=}}} is used to define an 
  equation.  In this case, the equation will be the expression.
  \index{equations}
  \index{=@{\texttt{=}}}
\end{itemize}

If you want to replace a variable by a value for a single expression,
you can use the \texttt{subst} command.  This command takes an
expression and an equation \textit{var} \texttt{=} \textit{value} as a
second argument.  If \texttt{a} is an unassigned variable, for example, then
entering
\xcasin{subst(a\^{}2 + 2, a=3)}
will result in
\xcasout{11}
Afterwards, \texttt{a} will still be unassigned.

Even without giving a variable a value, you can still tell
\texttt{Xcas} some of its properties with the \texttt{assume} command.
For example, for a real number $a$, the expression $\sqrt{a^2}$
simplifies to $|a|$, since $a$ could be positive or negative.  If you
enter 
\xcasin{sqrt(a\^{}2)}
you will get
\xcasout{|a|}
If you enter 
\xcasin{assume(a<0)}
beforehand, then \texttt{Xcas} will work under the assumption that
\texttt{a} is negative, and so entering
\xcasin{sqrt(a\^{}2)}
will result in
\xcasout{-a}
As well as assuming that a variable satifies an equation or
inequality, you can use the keywords \texttt{and} and \texttt{or} to
assume that a variable satisifies more than one inequality.  Some
assumptions on a variable require a second argument; for example, to
assume that $a$ is an integer you can enter
\xcasin{assume(a,integer)}\index{integer@{\texttt{integer}}}
Afterwards
\xcasin{sin(a*pi)}
will result in 
\xcasout{0}
The \texttt{purge} command will remove any assumptions about a
variable as well as any assigned values.


\subsection{Expressions}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Conversions}}\\
\hline\hline
\texttt{expand}  &  expand powers and distribute multiplication  \\
\texttt{normal}   & reduce to lowest terms\\
\texttt{ratnormal}   & reduce to lowest terms\\
\texttt{factor}   &  factor\\
\texttt{simplify}   & reduce an expression to simpler form\\
\texttt{tsimplify}   & reduce and expression to simpler form\\
\texttt{convert}   & convert an expression to a different type\\
\hline
\end{tabular}
\end{center}
\index{expand@{\texttt{expand}}}
\index{normal@{\texttt{normal}}}
\index{ratnormal@{\texttt{ratnormal}}}
\index{factor@{\texttt{factor}}}
\index{simplify@{\texttt{simplify}}}
\index{tsimplify@{\texttt{tsimplify}}}
\index{convert@{\texttt{convert}}}

An expression is a combination of numbers and variables combined by
arithmetic operators.  For example, \texttt{x\^{}2 + 2*x + c} is an
expression. 

When you enter an expression, \texttt{Xcas} will perform some
automatic simplifications,\index{simplifications} such as
\begin{itemize}
  \item
  Any variables that have been assigned are replaced by their values.
  \item
  Operations on numbers are performed.
  \item
  Trivial simplifications, such as $x+0=x$ and $x\cdot 0 = 0$, are made.
  \item
  Some trigonometric forms are rewritten; for example, \texttt{cos(-x)} is
  replaced by \texttt{cos(x)} and \texttt{cos(pi/4)} is replaced by $\sqrt{2}/2$.
\end{itemize}

Other simplifications are not done automatically, since it isn't
always clear what sort of simplifications the user might want, and
besides non-trivial simplifications are time-consuming.
The most used commands for simplifying and transforming commands are:
\begin{description}
  \item[\texttt{expand}]
  This will expand integer powers and more generally distribute
  multiplication across addition.  For example, if you enter
  \xcasin{expand((x+1)\^{}3)}
  you will get
  \xcasout{x^3 + 3*x^2 + 3*x + 1}
  
  \item[\texttt{normal} and \texttt{ratnormal}]
  These commands will reduce a rational function to lowest terms.  For
  example, if you enter
  \xcasin{normal((x\^{}3-1)/(x\^{}2-1))}
  then \texttt{Xcas} will cancel a common factor of $x-1$ from the top
  and bottom and return
  \xcasout{\frac{x^2+x+1}{x+1}}
  \texttt{ratnormal} will have the same behavior on this expression.
  The difference between the two commands is that \texttt{ratnormal}
  does not take into account reductions with algebraic numbers, while
  \texttt{normal} does.  If you enter
  \xcasin{ratnormal((x\^{}2-2)/(x-sqrt(2)))}
  you will get
  \xcasout{\frac{x^2-2}{x-\sqrt{2}}}
  but if you enter
  \xcasin{normal((x\^{}2-2)/(x-sqrt(2)))}
  you will get
  \xcasout{x+\sqrt{2}}
  
  Neither of these commands will take into account relationships
  between transcendental functions such as \texttt{sin} and \texttt{cos}.
    
  \item[\texttt{factor}]
  This will factor polynomials and reduce rational expressions.  This
  is a little slower than \texttt{normal} and \texttt{ratnormal} and
  different in that it will give the result in factored form.  For
  example, if you enter  
  \xcasin{factor(x\^{}2 + 3*x + 2)}
  you will get
  \xcasout{(x + 1)*(x + 2)}

  \item[\texttt{simplify}]
  This command will try to reduce an expression to algebraically
  independent variables, then it will apply \texttt{normal}.
  Simplifications requiring algebraic extensions (such as roots) may
  require two calls to \texttt{simplify} and possibly adding some
  assumptions with \texttt{assume}.  
  
  \item[\texttt{tsimplify}]
  Like \texttt{simplify}, this will try to reduce an expression to
  algebraically independent variables, but will not apply
  \texttt{normal} afterwards.
\end{description}  

The \texttt{convert} command will rewrite expressions to different
formats; the first argument will be the expression and the second
argument will indicate the format to convert the expression to.  For
example, you can convert $e^{i \theta}$ to sines and 
cosines\index{sincos@{\texttt{sincos}}} with
\xcasin{convert(exp(i*theta),sincos)}
the result will be
\xcasout{\cos(\theta) + i*\sin(\theta)}
You can use \texttt{convert} to find the partial fraction
decomposition of a rational expression with a second argument of
\texttt{partfrac};\index{partfrac@{\texttt{partfrac}}} 
for example, if you enter
\xcasin{convert((x-1)/(x\^{}2 - x -2), partfrac)}
you will get
\xcasout{\frac{2}{(x+1)*3} + \frac{1}{(x-2)*3}}


\subsection{Functions}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Common functions}\\
\hline\hline
\texttt{abs} & absolute value\\
\texttt{sign} & sign (-1,0,+1)\\
\texttt{max} & maximum\\
\texttt{min} & minimum\\
\texttt{round} & round to the nearest integer \\
\texttt{floor} & greatest integer less than or equal to\\
\texttt{frac} & fractional part\\
\texttt{ceil} & least integer greater than or equal to\\
\hline
\texttt{re} & real part\\
\texttt{im} & imaginary part\\
\texttt{abs} & absolute value\\
\texttt{arg} & argument\\
\texttt{conj} & conjugate\\
\texttt{coordinates} & the coordinates of a point\\
\hline
\texttt{factorial} & factorial\\
\texttt{!} & factorial\\
\texttt{sqrt} & square root\\
\texttt{exp} & exponential\\
\texttt{log} & natural logarithm\\
\texttt{ln} & natural logarithm\\
\texttt{log10} & logarithm base 10\\
\hline
\texttt{sin} & sine\\
\texttt{cos} & cosine\\
\texttt{tan} & tangent\\
\texttt{cot} & cotangent\\
\texttt{asin} & arcsine\\
\texttt{acos} & arccosine\\
\texttt{atan} & arctangent\\
\hline
\texttt{sinh} & hyperbolic sine\\
\texttt{cosh} & hyperbolic cosine\\
\texttt{tanh} & hyperbolic tangent\\
\texttt{asinh} & inverse hyperbolic sine\\
\texttt{acosh} & inverse hyperbolic cosine\\
\texttt{atanh} & inverse hyperbolic tangent\\
\hline
\end{tabular}
\end{center}
\index{abs@{\texttt{abs}}}
\index{absolute value}
\index{sign@{\texttt{sign}}}
\index{max@{\texttt{max}}}
\index{maximum}
\index{min@{\texttt{min}}}
\index{minimum}
\index{round@{\texttt{round}}}
\index{frac@{\texttt{frac}}}
\index{fractional part}
\index{floor@{\texttt{floor}}}
\index{ceil@{\texttt{ceil}}}
\index{whole part}
\index{re@{\texttt{re}}}
\index{real part}
\index{im@{\texttt{im}}}
\index{imaginary part}
\index{conj@{\texttt{conj}}}
\index{conjugate}
\index{arg@{\texttt{arg}}}
\index{argument}
\index{coordinates@{\texttt{coordinates}}}
\index{factorial@{\texttt{factorial}}}
\index{sqrt@{\texttt{sqrt}}}
\index{square root}
\index{exp@{\texttt{exp}}}
\index{log@{\texttt{log}}}
\index{ln@{\texttt{ln}}}
\index{logarithm!natural}
\index{logarithm!base 10}
\index{log10@{\texttt{log10}}}
\index{sin@{\texttt{sin}}}
\index{sine}
\index{cos@{\texttt{cos}}}
\index{cosine}
\index{tan@{\texttt{tan}}}
\index{tangent}
\index{tan@{\texttt{cot}}}
\index{cotangent}
\index{sinh@{\texttt{sinh}}}
\index{sine!hyperbolic}
\index{cosh@{\texttt{cosh}}}
\index{cosine!hyperbolic}
\index{tanh@{\texttt{tanh}}}
\index{tangent!hyperbolic}
\index{asin@{\texttt{asin}}}
\index{arc!sine}
\index{acos@{\texttt{acos}}}
\index{arc!cosine}
\index{atan@{\texttt{atan}}}
\index{arc!tangent}
\index{asinh@{\texttt{asinh}}}
\index{inverse!sine hyperbolic}
\index{acosh@{\texttt{acosh}}}
\index{inverse!cosine hyperbolic}
\index{atanh@{\texttt{atanh}}}
\index{inverse!tangent hyperbolic}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Create functions}}\\
\hline\hline
\texttt{:=} & assign an expression to a function\\
\texttt{->}  &  define a function\\
\texttt{unapply}   & turn an expression into a function\\
\hline
\end{tabular}
\end{center}
\index{->@{\texttt{->}}}
\index{unapply@{\texttt{unapply}}}

\texttt{Xcas} has many built in functions; you can get a complete list
with the help index.  You can also define your own functions with the
assignment (\texttt{:=}) operator.
To define a function $f$ given by $f(x) = x*\exp(x)$, for example, you
can enter 
\xcasin{f(x) := x*exp(x)}
Note that in this case the name of the function is $f$; $f(x)$ is the
value of the function evaluated at $x$.  The function is a rule which
takes an input \texttt{x} and returns \texttt{x*exp(x)}.  This rule
can be written without giving it a name as \texttt{x -> x*exp(x)}.  In
fact, another way you can define the function $f$ as above is
\xcasin{f := x ->x*exp(x)}
In either case, if you enter
\xcasin{f(2)}
you will get
\xcasout{2*\exp(2)}

You can similarly define functions of more than one variable.
For example, to convert polar coordinates to rectangular coordinates,
you could define
\xcasin{p(r,theta) := (r*cos(theta), r*sin(theta))}
or equivalently
\xcasin{p := (r, theta) -> (r*cos(theta),r*sin(theta))}

The \texttt{unapply} command will transform an expression into a
function.  It takes as arguments an expression and a variable, it will
return the function defined by the expression.  If you enter
\xcasin{unapply(x*exp(x),x)}
you will get
\xcasout{x ->x*\exp(x)}
The \texttt{unapply} command will return the function written in terms
of built in functions; for example, for the function $f$ defined
above, if you enter
\xcasin{unapply(f(x),x)}
you will also get
\xcasout{x ->x*\exp(x)}

You can define a function in terms of a function that you previously
defined, but it's probably better to define any new functions in
terms of built-in functions.   For example, if you define
\xcasin{f(x) := exp(x)*sin(x)}
you can define a new function
\xcasin{g(x) := x*f(x)}
but it might be better to write
\xcasin{g(x) := x*exp(x)*sin(x)}
Perhaps a better alternative is to use \texttt{unapply}; you can
define \texttt{g} by
\texttt{g := unapply(x*f(x),x)}

In some cases, it will be necessary to use \texttt{unapply} to define
a function.  For example (see section \ref{deriv}, ``Derivatives''),
the \texttt{diff} command will
find the derivative of an expression; if you enter
\xcasin{diff(x*sin(x),x)}
you will get
\xcasout{\sin(x) + x * \cos(x)}
However, you cannot simply define a function
\texttt{g(x) := diff(x*sin(x),x)}
if you tried to do this, then evaluating \texttt{g(0)} for example
would give you \texttt{diff(0*sin(0),0)}, which is not what you want.
Instead, you could define \texttt{g} by
\xcasin{g := unapply(diff(x*sin(x),x)}

Another case where you need to use \texttt{unapply} to define a
function is when you have a function of two variables and you want to
use it to define a function of one variable, where the other variable
is a parameter.  For example, consider the polar coordinate function
\xcasin{p(r,theta) := (r*cos(theta), r*sin(theta))}
If you want to use this to define \texttt{C(r)} as a function of
$\theta$ for any value of $r$, you cannot simply define it as
\xcasin{C(r) := p(r,theta)}
Doing this will define \texttt{C(r)} as an expression involving
$\theta$, not a function of $\theta$.  Entering
\xcasin{C(1)(pi/4)}
would be the same as
\xcasin{(cos(theta),sin(theta))(pi/4)}
which is not what you want.   To define \texttt{C(r)}, you
would have to use \texttt{unapply}:
\xcasin{C(r) := unapply(p(r,theta),theta)}

The necessity of using \texttt{unapply} in these cases is because when
you define a function, the right hand side of the assignment is 
not evaluated.  For example, if you try to define the squaring
function by
\xcasin{sq := x\^{}2}
\xcasin{f(x) := sq}
it will not work; if you enter \texttt{f(5)}, for example, it will
get the value \texttt{sq}, which will then be replaced by its value.
You will end up getting \texttt{x\^{}2} and not \texttt{5\^{}2}.  You
should either define the function \texttt{f} by
\xcasin{f(x) := x\^{}2}
or perhaps
\xcasin{f := unapply(sq,x)}

Functions (not just expressions) can be added and multiplied.  To
define a function which is the sine function times the exponential,
instead of defining \texttt{f(x)} as the expression
\texttt{sin(x)*exp(x)}, you could simply enter
\xcasin{f := sin*exp}
Functions can also be composed with the \texttt{@} symbol.  For example, if
you define functions \texttt{f} and \texttt{g} by
\xcasin{f(x) := x\^{}2 + 1}
\xcasin{g(x) := sin(x)}
then 
\xcasin{f @ g}
will result in
\xcasout{x ->(\sin(x))^2 + 1}
You can use the \texttt{@} operator to compose a function with itself;
\texttt{f@f(x)} is the same as \texttt{f(f(x))}, but if you want to
compose a function with itself several times, you can use the
\texttt{@@} operator.  Entering \texttt{f @@ }$n$ for a positive
integer $n$ will give you the composition of $f$ with itself $n$
times; for example, if you enter
\xcasin{sin @@ 3}
you will get
\xcasout{x -> \sin(\sin(\sin(x)))}


\subsection{Lists, sequences and sets}
\label{lists}

\begin{center}
\begin{tabular}{|p{.35\textwidth}|p{.45\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Sequences and lists}}\\
\hline\hline
\texttt{(\quad)} & sequence delimiters\\
\texttt{[\quad]} & list delimiters\\
\texttt{\%\{\quad\%\}} & set delimiters\\
\texttt{NULL} & empty sequence\\
\texttt{E\$(k=n..m)} & create a sequence\\
\texttt{seq(E,k=n..m)} & create a sequence\\
\texttt{[E\$(k=n..m)]} & create a list\\
%$
\texttt{makelist(f,k,n,m,p)} & create a list\\
\texttt{append} & append an element to a list\\
\texttt{op(li)} & convert a list to a sequence\\
\texttt{nop(se)} & convert a sequence to a list\\
\texttt{nops(li)} & the number of elements\\
\texttt{size(li)} & the number of elements\\
\texttt{mid(li)} & extract a subsequence\\
\texttt{sum} & the sum of the  elements\\
\texttt{product} & the product of the elements\\
\texttt{cumSum} & the cumulative sums\\
\texttt{apply(f,li)} & apply a function to the list elements\\
\texttt{map(li,f)} & apply a function to the list elements\\
\texttt{map(li,f,matrix)} & apply a function to the elements of a matrix\\
\texttt{poly2symb} & convert a polynomial expression to a polynomial
list\\
\texttt{symb2poly} & convert a polynomial list to a polynomial
expression\\
\hline
\end{tabular}
\end{center}
\index{sequence}
\index{list}
\index{set}
\index{( )@{\texttt{()}}}
\index{[ ]@{\texttt{[]}}}
\index{\%\{ \%\}@{\texttt{\%\{ \%\}}}}
\index{NULL@{\texttt{NULL}}}
\index{mid@{\texttt{mid}}}
\index{sum@{\texttt{sum}}}
\index{product@{\texttt{product}}}
\index{cumSum@{\texttt{cumSum}}}
\index{cumulative sum}
\index{append@{\texttt{append}}}
\index{apply@{\texttt{apply}}}
\index{function!apply to a list}
\index{map@{\texttt{map}}}
\index{poly2symb@{\texttt{poly2symb}}}
\index{symb2poly@{\texttt{symb2poly}}}
\index{list!of coefficients}

\texttt{Xcas} can combine objects in several different ways.
\begin{description}
  \item[sequences]\index{sequences}
  A sequence is simply several items between parentheses, separated by
  commas.  For example, \texttt{(1,2,x,4)} is a sequence.
  (The parentheses can be omitted, but it's a good idea to use them.)    
  Sequences are flat, meaning an element in a sequence cannot be
  another sequence.
  The empty sequence is denoted \texttt{NULL}.
  \item[lists]\index{lists}
  A list consists of several items between square brackets,
  separated by commas.  For example, \texttt{[1,2,x,4]} is a
  list.  A list can contain other lists as elements.  Matrices, which
  will be discussed later, are lists of lists.  The empty list is
  denoted \texttt{[]}.
  \item[sets]\index{sets}
  A set consists of several items between \texttt{\%\{} and
  \texttt{\%\}}, separated by commas.  For example,
  \texttt{\%\{1,2,3\%\}} is a set.  In a set, order doesn't matter and
  each item only counts once.  The sets \texttt{\%\{1,2,3\%\}}
  \texttt{\%\{3,2,1\%\}} and \texttt{\%\{1,2,2,3\%\}} are all the same
  set.
  \item[tables]\index{tables}
  Tables are described later.
\end{description}
A sequence can be turned into a list or a set by putting it between
the appropriate delimiters.  For example, if you define a sequence
\xcasin{se := (1,2,4,2)}
then if you enter
\xcasin{[se]}
you will get the list
\xcasout{[1,2,4,2]}
You can turn a set or list into a sequence with the \texttt{op}
command; if you define a set
\xcasin{st := \%\{1,2,3\%\}}
and then enter
\xcasin{op(st)}
you will get the sequence
\xcasout{(1,2,3)}
You can find the number of elements in a sequence, list or set with
the \texttt{size} command; with \texttt{st} as above,
\xcasin{size(st)}
will return
\xcasout{3}

Sequences can be built using one of the iteration commands
\texttt{seq} or \texttt{\$}.  The \texttt{seq} command takes an
expression as the first argument, the second argument will be a
variable followed by a range in the form
\textit{variable}\texttt{=}\textit{beginning
value}\texttt{..}\textit{ending value}.  The resulting sequence will be
the values of the expression with the variable replaced by the
sequence of values.  For example,
\xcasin{seq(k\^{}2,k=-2..2)}
will result in the sequence
\xcasout{(4,1,0,1,4)}
The \texttt{\$} operator is an infix version of \texttt{seq}.  If you
enter
\xcasin{k\^{}2\$k=-2..2}
you will get, as above,
\xcasout{(4,1,0,1,4)}

A list can be built by putting a sequence in brackets; if you enter
\xcasin{[k\^{}3,k=1..3]}
you will get the list
\xcasout{[1,8,27]}
You can also create a list with the \texttt{makelist} command.  It
takes three arguments; a function (not an expression), an initial
value for the variable and an ending value for the variable.  If you
enter
\xcasin{makelist(x -> x\^{}2,-2,2)}
you will get the list
\xcasout{[4,1,0,1,4]}
There is an optional fourth argument, which will be the step size.

You can add an element to the end of a list with the \texttt{append}
command.  If you enter
\xcasin{append([1,5],3)}
you will get
\xcasout{[1,5,3]}

The elements of sequences and lists are indexed, beginning with the
index $0$.  You can get an element by following the sequence or
list with the index number in square brackets; if you enter
\xcasin{ls := [A,B,C,D,E,F]}
then
\xcasin{ls[1]}
will return
\xcasout{B}
You can get a subsequence\index{subsequences} (or sublist\index{sublists}) 
by putting an interval (a
beginning value and an ending values separated by two dots) in brackets.
If you enter
\xcasin{ls[2..4]}
you will get 
\xcasout{[C,D,E]}

The \texttt{mid}\index{subsequence}\index{sublist} command is another
way to get a subsequence or sublist. 
Given a sequence or list, a beginning index and a length, then
\texttt{mid} will return the subsequence of the sequence beginning at
the given index of the given length.  With \texttt{ls} as above,  if
you enter
\xcasin{mid(ls,2,3)}
you will get
\xcasout{[C,D,E]}
If the length is left off, then the subsequence will go to the end of
the given sequence; if you enter
\xcasin{mid(ls,2)}
you will get
\xcasout{[C,D,E,F]}


You can change the element in a particular position with the
\texttt{:=} operator; for example, to change the second element in
\texttt{ls}, you can enter
\xcasin{ls[1] := 7}
The value of \texttt{ls} will then be
\xcasout{[A,7,C,D,E,F]}

If a variable \textit{var} is not a list or sequence and you assign a
value to \textit{var}\texttt{[$n$]}, then \textit{var} becomes a
table.  A table is like a list, but the indices don't have to be
integers.  If you define
\xcasin{newls := []}
and then set
\xcasin{newls[2] := 5}
then since \texttt{newls} was previous a list, it will now be equal to
the list
\xcasout{[0,0,5]}
If \texttt{nols} is an undefined variable and you set
\xcasin{nols[2] := 5}
then \texttt{nols} will be a table,\index{tables}
\xcasout{\texttt{table}(2=5)}

When changing an element of a list (or sequence or table) using
\texttt{:=}, the entire list is copied.  This can be inefficient.  To
save copy time and modify the list element in place, you can use
\texttt{=<}.  If you have
\xcasin{ls := [a,b,c]}
and then enter
\xcasin{ls[2] =< 3}
then \texttt{ls} will be equal to
\xcasout{[a,b,3]}

Polynomials are typically given by expressions, but they can also be
given by a list of the coefficients in decreasing order, delimited
with \texttt{poly1[} and \texttt{]}.  The \texttt{symb2poly} will
transform a polynomial written as an expression to the list form of
the polynomial.  If you enter
\xcasin{symb2poly(2*x\^{}3 - 4*x + 1)}
you will get
\xcasout{\textrm{poly1}[2,0,-4,1]}
The \texttt{poly2symb} will transform in the other direction; if you
enter
\xcasin{poly2symb(poly1[2,0,-4,1])}
you will get
\xcasout{2*x^3 - 4*x + 1}
There is also a way to represent a multivariable polynomial with
lists; see the manual for more information.


\subsection{Characters and strings}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{String commands}}\\
\hline\hline
\texttt{asc} & convert a string to a list of ASCII codes \\
\texttt{char} & convert a list of ASCII codes to a string\\
\texttt{size} & the number of characters \\
\texttt{concat} or \texttt{+} & concatenation  \\
\texttt{mid}& substring\\
\texttt{head}& first character  \\
\texttt{tail}& the string without the first character\\
\texttt{string}& convert a number or expression to a string  \\
\texttt{expr}& convert a string to a number or expression \\
\hline
\end{tabular}
\end{center}
\index{asc@{\texttt{asc}}}
\index{char@{\texttt{char}}}
\index{size@{\texttt{size}}}
\index{concat@{\texttt{concat}}}
\index{mid@{\texttt{mid}}}
\index{head@{\texttt{head}}}
\index{tail@{\texttt{tail}}}
\index{string@{\texttt{string}}}
\index{expr@{\texttt{expr}}}

A string is simply text enclosed within quotation marks.
You can find out how many characters are in a string with the
\texttt{size} command; if you enter
\xcasin{size("this string")}
you will get
\xcasout{11}

A character is simply a string with length 1.\index{characters}  
The \texttt{char}
command will take an ASCII code (or a list of ASCII codes) and return
the character or string determined by the codes.  For example, the
letter ``a'' has ASCII code 65, so
\xcasin{char(65)}
will return
\xcasout{A}
The \texttt{asc} command will turn a string into the list of ASCII
codes; if you enter
\xcasin{asc("A")}
you will get
\xcasout{[65]}

The characters in a string are indexed starting with \texttt{0}.
To get the first character, for example, you can enter a string, or
the name of a string, followed by \texttt{[0]}.  If you enter
\xcasin{str := "abcde"}
\xcasin{str[0]}
you will get
\xcasout{a}
You can choose a substring from a string by putting the beginning and
ending indices in the brackets, separated by two periods \texttt{..}.
If you enter
\xcasin{str[1..3]}
you will get
\xcasout{bcd}

An alternate way of getting the first character from a string is with
the \texttt{head} command.  With \texttt{str} as above, 
\xcasin{head(str)}
will return
\xcasout{a}
The \texttt{tail} command will produce the remaining characters;
\xcasin{tail(str)}
will return
\xcasout{bcde}

Strings can be combined with the \texttt{concat} command or the infix
\texttt{+} operator.  Both 
\xcasin{concat("abc","def")}
and
\xcasin{"abc" + "def"}
will return
\xcasout{abcdef}

If a string represents a number, then the \texttt{expr} command will
convert the string to the number.  For example,
\xcasin{expr("123")}
will return the number $123$.  More generally, \texttt{expr} will
convert a string representing an expression or command into the
corresponding expression or command.  The \texttt{string} command
works in the opposite direction; it will take an expression and
convert it to a string.

\subsection{Calculation time and memory space}

One major issue with symbolic calculations is the complexity of the
intermediate calculations.  This complexity takes the form of the
amount of time required for the calculations and the amount of
computer memory needed.  The algorithms used by \texttt{Xcas} are
efficient, but not necessarily optimal.  The \texttt{time} command
will tell you how long a calculation takes.  For very quick
calculations, \texttt{Xcas} will execute it several times and return
the average for a more accurate result.  The amount of memory used by
\texttt{Xcas} is shown in the status line of the Unix version of
\texttt{Xcas}.  

If a command that you are timing takes more than a few seconds, you
could have made an input error and you may have to interrupt the
command (with the red \texttt{STOP} button on the status line, for
example).  It is a good idea to make a backup of your session beforehand.

\section{Analysis with \texttt{Xcas}}

\subsection{Derivatives}
\label{deriv}

\begin{center}
\begin{tabular}{|p{.30\textwidth}|p{.5\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Derivatives}}\\
\hline\hline
\texttt{diff(ex,t)} & the derivative of an expression with respect to t\\
\texttt{function\_diff(f)} & the derivative of a function\\
\texttt{diff(ex,x\$n,y\$m)} & partial derivatives\\
\texttt{grad} & gradient\\ 
\texttt{divergence} & divergence\\
\texttt{curl} & curl\\
\texttt{laplacian} & laplacian\\
\texttt{hessian} & hessian matrix\\
\hline
\end{tabular}
\end{center}
\index{diff@{\texttt{diff}}}
\index{function\_diff@{\texttt{function\_diff}}}
\index{grad@{\texttt{grad}}}
\index{gradient}
\index{divergence@{\texttt{divergence}}}
\index{divergence}
\index{curl@{\texttt{curl}}}
\index{laplacian@{\texttt{laplacian}}}
\index{hessian@{\texttt{hessian}}}
\index{matrix!hessian}

The \texttt{diff} function will find the derivative of an expression
and returns the derivative as an expression.  If you have a function
$f$, you can find the derivative by entering
\xcasin{diff(f(x),x)}
Note that the result will itself be an expression; do not define the
deritivave function by \texttt{fprime(x) := diff(f(x),x)}.  If you
want to define the derivative as a function, you can use
\texttt{unapply}:\index{unapply@{\texttt{unapply}}}
\xcasin{fprime := unapply(diff(f(x),x),x)}
Alternatively, you can use \texttt{function\_diff}, which takes a
function (not an expression) as input and returns the derivative
function;
\xcasin{fprime := function\_diff(f)}

The \texttt{diff} function can take a sequence of variables as the
second argument, and so can calculate successive partial derivatives.
Given
\xcasin{E := sin(x*y)}
then
\xcasin{diff(E,x)}
will return
\xcasout{y*\cos(x*y)}
\xcasin{diff(E,y)}
will return
\xcasout{x*\cos(x*y)}
\xcasin{diff(E,x,y)}
will return
\xcasout{-x*y*\sin(x*y) + \cos(x*y)}
and
\xcasin{diff(E,x \$ 2)}
will return
\xcasout{-y^2*\sin(x*y)}

If the second argument to \texttt{diff} is a list, then a list of
derivatives is returned.  For example, to find the gradient of
\texttt{E}, you can enter
\xcasin{diff(E,[x,y])}
and get
\xcasout{[y*\cos(x*y),x*\cos(x*y)]}
There is also a special \texttt{grad} command for this, as well as
commands for other types of special derivatives.


\subsection{Limits and series}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Limits and series}}\\
\hline\hline
\texttt{limit} & the limit of an expression\\
\texttt{taylor} & Taylor series\\
\texttt{series} & Taylor series\\
\texttt{order\_size} & used in the remainder term of a series expansion\\
\hline
\end{tabular}
\end{center}
\index{limit@{\texttt{limit}}}
\index{taylor@{\texttt{taylor}}}
\index{series@{\texttt{series}}}
\index{series}
\index{series!Taylor}

The \texttt{limit} function will take an expression, a variable and a
point and return the limit at the point.  If you enter
\xcasin{limit(sin(x)/x,x,0)}
you will get
\xcasout{1}
\texttt{Xcas} can also find limits at plus and minus infinity;
\xcasin{limit(sin(x)/x,x,+infinity)}
will return
\xcasout{0}
as well as limits of infinity;
\xcasin{limit(1/x,x,0)}
will return
\xcasout{\infty}
which recall is unsigned infinity.
An optional fourth argument can be used to find one-sided limits; if
the fourth argument is \texttt{1} it will be a right-handed limit and
if the argument is \texttt{-1} it will be a left-handed limit.
Entering
\xcasin{limit(1/x,x,0,-1)}
will result in
\xcasout{-\infty}

Given an expression and a variable, the \texttt{taylor} function will
find the Taylor series of the expression.  If you enter
\xcasin{taylor(sin(x)/x,x)}
you will get
\xcasout{1-\frac{x^2}{6} + \frac{x^4}{120} + x^6*\texttt{order\_size}(x)}
The \texttt{series} function works the same as the \texttt{taylor}
function.

By default, \texttt{taylor} will find the terms up to the fifth
degree.  The \texttt{order\_size(x)} represents a factor for which 
for all $a>0$, the term $x^a$\texttt{order\_size}$(x)$ will approach 0
as $x$  approaches 0.  

The series returned by \texttt{taylor} will also
be centered about 0 by default; if you want to center it around the number
\texttt{a}, you can replace \texttt{x} by \texttt{x=a};
\xcasin{taylor(exp(x),x=1)}
will result in
\xcasout{\exp(1)+\exp(1)*(x-1)+\exp(1)*(x-1)^2/2+ \exp(1)*(x-1)^3/6+}
\xcasout{\exp(1)*(x-1)^4/24+\exp(1)*(x-1)^5/120+(x-1)^6*\texttt{order\_size}(x-1)}
You can also give the center of the series with a third argument.
To find the terms to a different you can add an extra argument
giving the order;
\xcasin{taylor(sin(x)/x,x=0,3)}
will return
\xcasout{1-\frac{x^2}{6} + x^4*\texttt{order\_size}(x)}
Note that in this case you must explicitly give the center of the
series, even if it is 0.

To find the Taylor polynomial, you can add an extra argument of
\texttt{polynom};
\xcasin{taylor(sin(x)/x,x,polynom)}
will return
\xcasout{1-\frac{x^2}{6} + \frac{x^4}{120}}


\subsection{Antiderivatives and integrals}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Integrals}}\\
\hline\hline
\texttt{int} & antiderivatives and exact integrals\\
\texttt{romberg} & approximation of integrals\\
\hline
\end{tabular}
\end{center}
\index{int@{\texttt{int}}}
\index{romberg@{\texttt{romberg}}}
\index{integrals}
\index{antiderivatives}

The \texttt{int} function will find an antiderivative of an
expression.  By default, it will assume that the variable is $x$, to
use another variable you can give it as an argument.
\xcasin{int(x*sin(x))}
will result in
\xcasout{\sin(x) - x*\cos(x)}
and
\xcasin{int(t*sin(t),t)}
will result in
\xcasout{\sin(t) - t*\cos(t)}

To compute a definite integral, you can give the limits of integration
as arguments after the variable; to integrate $x*\sin(x)$ from $x=0$ to
$x=\pi$, you can enter
\xcasin{int(x*sin(x),x,0,pi)}
and get
\xcasout{\pi}
The limits of integration are allowed to be expressions; this can be
useful when computing a multiple integral over a non-rectangular
region.  For example, you can integrate $x y$ over the triangle $0 \le
x \le 1, 0 \le y \le x$ with
\xcasin{int(int(x*y,y,0,x),x,0,1)}
resulting in
\xcasout{\frac{1}{8}}

The \texttt{romberg} function will approximate the value of a definite
integral, for cases when the exact value can't be computed or you
don't want to compute it.  For example,
\xcasin{romberg(exp(-x\^{}2),x,0,10)}
will return
\xcasout{0.886226925452}


\subsection{Solving equations}
\label{solve}

\begin{center}
\begin{tabular}{|p{.4\textwidth}|p{.4\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Solving equations}\\
\hline\hline
\texttt{solve(eq,x)} & exact solutions of an  equation\\
\texttt{solve([eq1,eq2],[x,y])} & exact solutions of a system of equations\\
\texttt{fsolve(eq,x)} & approximate solution of an equation\\
\texttt{fsolve([eq1,eq2],[x,y])} & approximate solution of a system of equations\\
\texttt{linsolve} & solve a linear system\\
\texttt{proot} & approximate roots of a polynomial\\
\hline
\end{tabular}
\end{center}
\index{solve@{\texttt{solve}}}
\index{fsolve@{\texttt{fsolve}}}
\index{linsolve@{\texttt{linsolve}}}
\index{proot@{\texttt{proot}}}

Solving equations is important, but it is often impossible to find
exact solutions.  \texttt{Xcas} has the ability to find exact
solutions in some cases and to approximate solutions.

The \texttt{solve} function will attempt to find the exact solution of
an equation that you give it.  If you enter an expression that isn't
an equation, it will try to solve for the expression equal to zero.
By default, the variable will be $x$, but you can give a different
variable as a second argument.  If you enter 
\xcasin{solve(x\^{}3 -2*x\^{}2 + 1=0, x)}
you will get
\xcasout{\left[\frac{-(\sqrt{5})+1}{2},1,\frac{\sqrt{5}+1}{2}\right]}
By default, \texttt{solve} will only try to find real solutions; if
you enter
\xcasin{solve(x\^{}3+1=0,x)}
you will get
\xcasout{[-1]}
You can configure \texttt{Xcas} to find complex solutions (see
section \ref{config}, ``Configuration'').  If you do that,
then entering
\xcasin{solve(x\^{}3+1=0,x)}
will result in
\xcasout{\left[-1,\frac{-\sqrt{3}*i+1}{2},\frac{\sqrt{3}*i+1}{2}\right]}

For linear and quadratic functions, \texttt{solve} will always return
the exact solution.  For higher degree polynomials, \texttt{solve}
will try some approaches, but may return intermediate results or
approximate solutions.  (It doesn't use the Cardan and Ferrari
formulas for polynomials of degrees 3 and 4, since the solutions would
then not be easily managable.)

For trigonometric equations, the primary solutions are returned.  For
example,
\xcasin{solve(cos(x) + sin(x) = 0, x)}
will result in
\xcasout{\left[-\frac{\pi}{4},\frac{3*\pi}{4}\right]}
You can configure \texttt{Xcas} to find all solutions (see section
\ref{config}, ``Configuration'').  If you do that, then
\xcasin{solve(cos(x) + sin(x) = 0, x)}
will result in
\xcasout{\left[\frac{4*n_0*\pi-\pi}{4}\right]}
where $n_0$ represents an arbitrary integer.

The \texttt{solve} function can also handle systems of equations.
For this, use a list of equations for the first argument and a list of
variables for the second.  If you enter
\xcasin{solve([x\^{}2 + y - 2, x + y\^{}2 - 2],[x,y])}
you will get all four solutions as a matrix; each row represents one
solution.
\xcasout{
\left[\begin{matrix}1,& 1\\ -2,& -2\\ \frac{\sqrt{5}+1}{2}, &
-\left(\frac{\sqrt{5}+1}{2}\right)^2 + 2\\
\frac{-(\sqrt{5})+1}{2}, &
-\left(\frac{-(\sqrt{5})+1}{2}\right)^2 + 2
\end{matrix}\right]}

To approximate a solution to an equation or system of equations,
\texttt{Xcas} provides the \texttt{fsolve} command.  If you enter
\xcasin{fsolve(x\^{}3 -3*x + 1,x)}
you will get
\xcasout{[-1.87938524157,0.347296355334,1.53208888624]}
Algorithms for approximating solutions of equations 
typically involve starting with a given point and finding a sequence
which converges to a solution.  The \texttt{fsolve} command can take
a starting point, if you enter
\xcasin{fsolve(x\^{}3 -3*x + 1,x,1)}
you will get
\xcasout{0.347296355334}


\subsection{Differential equations}

\begin{center}
\begin{tabular}{|p{.35\textwidth}|p{.45\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Commands for differential equations}}\\
\hline\hline
\texttt{desolve} & exact solution\\
\texttt{odesolve} & approximate solution\\
\texttt{plotode} & graph of solution\\
\texttt{plotfield} & vector field\\
\texttt{interactive\_plotode} & clickable interface\\
\hline
\end{tabular}
\end{center}
\index{desolve@{\texttt{desolve}}}
\index{odesolve@{\texttt{odesolve}}}
\index{plotfield@{\texttt{plotfield}}}
\index{plotode@{\texttt{plotode}}}
\index{interactiveplotode@{\texttt{interactive\_plotode}}}

The \texttt{desolve} command is used to try to find exact solutions of
differential equations.  The first argument is the differential
equation itself, the second argument is the function.  The derivative
of an unknown function $y$ is denoted \texttt{diff(y)}, which can be
abbreviated \texttt{y'}.  The second derivative will be
\texttt{diff(diff(y))} or \texttt{y''}, etc.
If you enter
\xcasin{desolve(x\^{}2*y' = y,y)}
you will get
\xcasout{c_0 * \exp(-\frac{1}{x})}
where $c_0$ is an arbitrary constant.  By default the variable is $x$,
if you want to use a different variable, put it in the function in the
second argument;
\xcasin{desolve(t\^{}2*y' = y,y(t))}
will return
\xcasout{c_0 * \exp(-\frac{1}{t})}

If you want to solve a differential equation with initial conditions,
the first argument should be a list with the differential equation and
the conditions.  If you enter
\xcasin{desolve([y'{}' + 2*y' + y = 0, y(0) = 1, y'(0) = 2],y)}
you will get
\xcasout{\exp(-x)*(3*x+1)}

To solve a differential equation numerically, you can use the
\texttt{odesolve} command.  This will allow you to solve the equation
$y'=f(x,y)$ where the graph passes through a point $(x_0,y_0)$.  The
command
\xcasin{odesolve(f(x,y),[x,y],[x\_0,y\_0],a)}
will find $y(a)$ in this case.  For example, to calculate $y(2)$ where
$y(x)$ is the solution of $y'(x) =\sin(xy)$ with $y(0)=1$, you can
enter
\xcasin{odesolve(sin(x*y),[x,y],[0,1],2)}
The result will be 
\xcasout{[1.82241255674]}
The \texttt{plotode} command will plot the graph of the solution; if
you enter
\xcasin{plotode(sin(x*y),[x,y],[0,1])}
you will get
\begin{center}
\includegraphics[width=\textwidth]{xcas-plotode.png}
\end{center}
The \texttt{plotfield} command will plot the entire vector field;
\xcasin{plotfield(sin(x*y),[x,y])}
will result in
\begin{center}
\includegraphics[width=\textwidth]{xcas-plotfield.png}
\end{center}
If you use the \texttt{interactive\_odeplot} command, you will get the
vector field and you will be able to click on a point to find the
graph of the solution passing through the point.


\section{Algebra with \texttt{Xcas}}

\subsection{Integer arithmetic}

\begin{center}
\begin{tabular}{|p{.25\textwidth}|p{.55\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Integers}}\\
\hline\hline
\texttt{irem} & remainder\\
\texttt{iquo} & quotient\\
\texttt{iquorem} & quotient and remainder\\
\hline
\texttt{ifactor} & prime factorization\\
\texttt{ifactors} & list of prime factors\\
\texttt{idivis} & list of divisors\\
\hline
\texttt{gcd} & greatest common divisor\\
\texttt{lcm} & least common multiple\\
\texttt{iegcd} & Bezout's identity\\
\hline
\texttt{isprime} & primality test\\
\texttt{nextprime} & next prime number\\
\texttt{previousprime} & previous prime number\\
\hline
\texttt{a\%p} & $a$ modulo $p$\\
\texttt{powmod(a,n,p)} & $a^n$ modulo $p$\\
\hline
\end{tabular}
\end{center}
\index{powmod@{\texttt{powmod}}}
\index{irem@{\texttt{irem}}}
\index{remainder}
\index{iquo@{\texttt{iquo}}}
\index{quotient}
\index{iquorem@{\texttt{iquorem}}}
\index{ifactor@{\texttt{ifactor}}}
\index{prime factors}
\index{ifactors@{\texttt{ifactors}}}
\index{idivis@{\texttt{idivis}}}
\index{gcd@{\texttt{gcd}}}
\index{lcm@{\texttt{lcm}}}
\index{iegcd@{\texttt{{egcd}}}}
\index{Bezout}
\index{isprime@{\texttt{isprime}}}
\index{number!prime}
\index{nextprime@{\texttt{nextprime}}}
\index{previousprime@{\texttt{previousprime}}}

\texttt{Xcas} has the usual number theoretic functions.  The
\texttt{iquo} command will find the integer quotient of two integers
and \texttt{irem} will find the remainder.  The \texttt{iquorem}
command will return a list of both the quotient and remainder; if you
enter
\xcasin{iquorem(30,7)}
you will get
\xcasout{[4,2]}
since $30$ divided by $7$ is $4$ with a remainder of $2$.

The \texttt{gcd} and \texttt{lcm} commands will find the greatest
common divisor and least common multiple of two integers.  If you enter
\xcasin{gcd(72,120)}
you will get
\xcasout{24}
The greatest common divisor $d$ of two integers $a$ and $b$ can always be
written in the form $a*u + b*v = d$ for integers $u$ and $v$.  (This
is known as B\'ezout's Identity.)  The \texttt{iegcd} will
return the coefficients $u$ and $v$ as well as the greatest commond
divisor.  If you enter
\xcasin{iegcd(72,120)}
you will get
\xcasout{[2,-1,24]}
since
\[ 72\cdot 2 + 120\cdot(-1) = 24\]

The \texttt{ifactor} command will give the prime factorization of an
integer; if you enter
\xcasin{ifactor(250)}
you will get
\xcasout{2*5^3}
You can use \texttt{ifactors} to get a list of the prime factors of an
integer, where in the list each factor is followed by its multiplicity.
If you enter
\xcasin{ifactors(250)}
you will get
\xcasout{[2,1,5,3]}
since $250$ has a prime factor of $2$ (it has $1$ factor of $2$) and a
prime factor of $5$ (it has $3$ factors of $5$).
The \texttt{idivis} command will return a complete list of factors;
\xcasin{idivis(250)}
will return
\xcasout{[1,2,5,10,25,50,125,250]}

The subject of primes is a difficult one, and you should see the
manual for a discussion of how \texttt{Xcas} checks for primes.  But
the command \texttt{isprime} will return \texttt{true} or \texttt{false}
depending on whether or not you enter a prime.  If you enter
\xcasin{isprime(37)}
you will get
\xcasout{true}
since $37$ is a prime number.  The commands \texttt{nextprime} and
\texttt{previousprime} will find the first prime after (or before) the
number that you give it; if you enter
\xcasin{nextprime(37)}
you will get
\xcasout{41}
since the first prime after $37$ is $41$.

Integers modulo $p$ are defined by putting \texttt{\% p} after them.
Once an integer modulo $p$ is defined, then any calculations done with
it are done in $\Z/p\Z$.  For example, if you define
\xcasin{a := 3 \% 5}
then
\xcasin{a*2}
will return
\xcasout{1 \% 5}
(since 6 mod 5 is reduced to 1 mod 5); 
\xcasin{1/a}
will return
\xcasout{2 \% 5}
etc.  The \texttt{powermod} or \texttt{powmod} functions can be used
to efficiently calculate powers modulo a number.


\subsection{Polynomials and rational functions}

\begin{center}
\begin{tabular}{|p{.25\textwidth}|p{.55\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Polynomials}\\
\hline\hline
\texttt{normal} & normal form (expanded and reduced)\\
\texttt{expand} & expanded form\\
\texttt{ptayl} & Taylor form\\
\texttt{peval} or \texttt{horner} & evaluation using Horner's method\\
\texttt{canonical\_form} & canonical form for a trinomial\\
\hline
\texttt{coeff} & list of coefficients\\
\texttt{poly2symb} & transform an algebraic polynomial to list form\\
\texttt{symb2poly} & transform the list form of a polynomial to
algebraic form\\
\texttt{pcoeff} & return the polynomial (list form) given a list of zeroes\\
\hline
\texttt{degree} & degree\\
\texttt{lcoeff} & the coefficient of the leading term\\
\texttt{valuation} & the lowest degree of the terms\\
\texttt{tcoeff} & the coefficient of the term with the lowest degree\\
\hline
\texttt{factor} & prime factorization\\
\texttt{factors} & list of prime factors\\
\texttt{divis} & list of divisors\\
\hline
\texttt{froot} & roots with multiplicities\\
\texttt{proot} & approximate values of the roots\\
\texttt{sturmab} & the number of roots in an interval\\
\hline
\texttt{getNum} & the numerator of a rational function\\
\texttt{getDenom} & the denominator of a rational function\\
\texttt{propfrac} & writes a rational expression as a whole part and a
proper rational part\\
\texttt{partfrac} & partial fraction decomposition\\
\hline
\texttt{quo} & quotient\\
\texttt{rem} & remainder\\
\texttt{gcd} & greatest common divisor\\
\texttt{lcm} & least common multiple\\
\texttt{egcd} & Bezout's identity
\\
\texttt{divpc} & Taylor polynomial for a rational expression\\
\hline
\texttt{randpoly} & random polynomial\\
\texttt{cyclotomic} & cyclotomic polynomial\\
\texttt{lagrange} & Lagrange polynomials\\
\texttt{hermite} & Hermite polynomials\\
\texttt{laguerre} & Laguerre polynomials\\
\texttt{tchebyshev1} & Tchebyshev polynomials\\
\texttt{tchebyshev2} & Tchebyshev polynomials\\
\hline
\end{tabular}
\end{center}
\index{normal@{\texttt{normal}}}
\index{expand@{\texttt{expand}}}
\index{ptayl@{\texttt{ptayl}}}
\index{polynomial!Taylor}
\index{Taylor polynomial}
\index{peval@{\texttt{peval}}}
\index{horner@{\texttt{horner}}}
\index{canonical\_form@{\texttt{canonical\_form}}}
\index{coeff@{\texttt{coeff}}}
\index{poly2symb@{\texttt{poly2symb}}}
\index{symb2poly@{\texttt{symb2poly}}}
\index{pcoeff@{\texttt{pcoeff}}}
\index{degree@{\texttt{degree}}}
\index{lcoeff@{\texttt{lcoeff}}}
\index{valuation@{\texttt{valuation}}}
\index{tcoeff@{\texttt{tcoeff}}}
\index{factor@{\texttt{factor}}}
\index{factors@{\texttt{factors}}}
\index{divis@{\texttt{divis}}}
\index{divisors}
\index{froot@{\texttt{froot}}}
\index{proot@{\texttt{proot}}}
\index{sturmab@{\texttt{sturmab}}}
\index{getNum@{\texttt{getNum}}}
\index{getDenom@{\texttt{getDenom}}}
\index{propfrac@{\texttt{propfrac}}}
\index{partfrac@{\texttt{partfrac}}}
\index{quo@{\texttt{quo}}}
\index{rem@{\texttt{rem}}}
\index{gcd@{\texttt{gcd}}}
\index{lcm@{\texttt{lcm}}}
\index{egcd@{\texttt{egcd}}}
\index{Bezout's identity}
\index{divpc@{\texttt{divpc}}}
\index{randpoly@{\texttt{randpoly}}}
\index{cyclotomic@{\texttt{cyclotomic}}}
\index{polynomial!cyclotomic}
\index{lagrange@{\texttt{lagrange}}}
\index{polynomial!Lagrange}
\index{hermite@{\texttt{hermite}}} 
\index{polynomial!Hermite}
\index{laguerre@{\texttt{laguerre}}}
\index{polynomial!Laguerre}
\index{tchebyshev1@{\texttt{tchebyshev1}}}
\index{polynomial!Tchebyshev}
\index{tchebyshev2@{\texttt{tchebyshev2}}}

Various polynomial operations are available in the \texttt{Polynomials}
submenu of the \texttt{Cmds} menu.

The \texttt{expand} and \texttt{normal} operators will distribute
multiplication across addition, and so expand a polynomial completely
out.  If you enter
\xcasin{expand((x+1)*(x+2)\^{}2)}
you will get
\xcasout{x^3+5*x^2+8*x+4}
Additionally, \texttt{normal} will reduce a rational expression to
lowest terms; if you enter
\xcasin{normal((x-1)\^{}2/(x\^{}2-1))}
you will get
\xcasout{\frac{x-1}{x+1}}

The \texttt{factor} operator will factor a polynomial.  
If you enter
\xcasin{factor(x\^{}3+6*x\^{}2+3*x-10}
you will get
\xcasout{(x-1)*(x+2)*(x+5)}
The result often depends on the number field being used.  For example, over the
rational numbers the polynomial $x^4 - 1$ factors as 
$(x-1)(x+1)(x^2 + 1)$, while over the complex numbers it factors as 
$(x-1)(x+1)(x-i)(x+i)$.  If the coefficients of a polynomial are exact
fractions, then the factoring will be over the rationals.  To factor
over the complex numbers, you can configure \texttt{Xcas} to do
complex factorization (see section \ref{config}, ``Configuration'')
or use the \texttt{cfactor} command.
If the coefficients are in $\Z/p\Z$ then the polynomial will be
factored over  $\Z/p\Z$.


\subsection{Trigonometry}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Trigonom\'etrie}\\
\hline\hline
\texttt{tlin} &linearize\\
\texttt{tcollect} & linearize and regroup\\
\texttt{texpand} & expand\\
\texttt{trig2exp} & trigonometric to exponential\\
\texttt{exp2trig} &exponential to trigonometric\\
\texttt{hyp2exp} &hyperbolic to exponential\\
\hline
\end{tabular}
\end{center}
\index{tlin@{\texttt{tlin}}}
\index{tcollect@{\texttt{tcollect}}}
\index{texpand@{\texttt{texpand}}}
\index{trig2exp@{\texttt{trig2exp}}}
\index{exp2trig@{\texttt{exp2trig}}}
\index{hyp2exp@{\texttt{hyp2exp}}}

\texttt{Xcas} has the usual trigonometic functions, both circular and
hyperbolic, as well as their inverses.  It also has commands for
manipulating trigonometric expressions; these are in the
\texttt{Trigo} submenus of the \texttt{Expression} menu.

One example is the \texttt{tlin} command will write products and powers of sines and
cosines as linear combinations of $\sin(n x)$s and $\cos(n x)$s.  If
you enter
\xcasin{tlin(2*sin(x)\^{}2*cos(3*x))}
you will get
\xcasout{-\frac{\cos(x)}{2} + \cos(3*x) - \frac{\cos(5*x)}{2}}

The \texttt{texpand} command will take expressions involving 
$\sin(n x)$ and $\cos(n x)$ and write them in terms of powers if
$\sin(x)$ and $\cos(x)$.  If you enter
\xcasin{texpand(sin(2*x)\^{}2*cos(3*x))}
you will get
\xcasout{16*\cos(x)^5*\sin(x)^2-12*\cos(x)^3*\sin(x)^2}


\subsection{Vectors and matrices}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Vectors and matrices}\\
\hline\hline
\texttt{v*w} & scalar product\\
\texttt{cross(v,w)} & cross product\\
\texttt{A*B} & matrix product\\
\texttt{A.*B} & term by term product\\
\texttt{1/A} & inverse\\
\texttt{tran}& transpose\\
\texttt{rank} & rank\\
\texttt{det} & determinant\\
\texttt{ker} & basis for the kernel\\
\texttt{image} & base for the image\\
\texttt{idn} & identity matrix\\
\texttt{ranm} & matrix with random coefficients\\
\texttt{makematrix} & make a matrix from a function\\
\texttt{matrix} & make a matrix from a function\\
\texttt{blockmatrix} & combine matrices\\
\hline
\end{tabular}
\end{center}
\index{product!scalar}
\index{product!cross}
\index{product!matrix}
\index{product!term by term}
\index{rank@{\texttt{rank}}}
\index{det@{\texttt{det}}}
\index{ker@{\texttt{ker}}}
\index{image@{\texttt{image}}}
\index{idn@{\texttt{idn}}}
\index{ranm@{\texttt{ranm}}}
\index{matrix@{\texttt{matrix}}}
\index{makematrix@{\texttt{makematrix}}}
\index{blockmatrix@{\texttt{blockmatrix}}}
\index{matrix!identity}
\index{matrix!rank}
\index{matrix!kernel}
\index{matrix!image}
\index{matrix!determinant}
\index{determinant}

A vector is a list of numbers, such as \texttt{[2,3,5]}, and a matrix
is a list of vectors all of the same length, such as
\texttt{[[1,2,3],[4,5,6]]}.

The usual matrix operations (addition, scalar multiplication, matrix
multiplication) are done with the usual operators \texttt{+} and
\texttt{*}.  If you define
\xcasin{A := [[1,2,3],[4,5,6],[7,8,9]]}
\xcasin{B := [[1,1,1],[2,2,2]]}
then
\xcasin{3*A}
will give you
\xcasout{
\begin{pmatrix}
3 &   6 &  9\\
12 & 15 & 18\\
21 & 24 & 27
\end{pmatrix}}
and
\xcasin{B*A}
will give you
\xcasout{
\begin{pmatrix}
12 & 15 & 18\\
24 & 30 & 36
\end{pmatrix}}
A vector can be regarded as a matrix with one row, except that if a matrix
is multiplied on the right by a vector, the vector will be regarded as
a column.  In particular, if \texttt{v} and \texttt{w} are vectors of
the same length, then \texttt{v*w} will return the scalar product.

The \texttt{idn} command will create an identity matrix;
\xcasin{idn(2)}
will return
\xcasout{
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}}
You can also use \texttt{makemat} or \texttt{matrix} commands to build
a matrix. They both require a real-valued function of two variables,
the number of rows and the number of columns.  The indices start at 0,
and with the \texttt{makemat} the function comes first, with
\texttt{matrix} the function comes last.  Both
\xcasin{makemat((j,k)->j+k,3,2)}
and
\xcasin{matrix(3,2,(j,k)->j+k)}
produce
\xcasout{
\begin{pmatrix}
0 & 1\\
1 & 2\\
2 & 3
\end{pmatrix}}

Several matrices can be combined into a larger matrix with the
\texttt{blockmatrix} command.  To arrange $m * n$ matrices
into $m$ rows and $n$ columns, you give \texttt{blockmatrix} the
values $m$, $n$ and a list of the matrices.  If you enter
\xcasin{A := [[1,2,3],[4,5,6]]}
\xcasin{B := [[1,2],[2,3]]}
then
\xcasin{blockmatrix(2,2,[A,B,B,A])}
will give you
\xcasout{
\begin{pmatrix}
1 & 2 & 3 & 1 & 2\\
4 & 5 & 6 & 2 & 3\\
1 & 2 & 1 & 2 & 3\\
2 & 3 & 4 & 5 & 5
\end{pmatrix}}

You can get the elements from a matrix by following the matrix with
the indices in brackets, separated by commas.  For \texttt{A} as above,
\xcasin{A[1,2]}
will return
\xcasout{6}
You can extract a submatrix\index{submatrix} by using intervals of indices (the
beginning and end index separated by two periods);
\xcasin{A[0..1,1..2]}
returns
\xcasout{
\begin{pmatrix}
2 & 3\\
5 & 6
\end{pmatrix}}

Note that if you change one value of a matrix in \texttt{Xcas}, the
entire matrix will be copied.  If a program modifies parts of a large
matrix one element at a time, this time can add up.


\subsection{Linear systems}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Linear systems}\\
\hline\hline
\texttt{linsolve} & solution of a linear system\\
\texttt{simult} & solutions of many linear systems\\
\texttt{rref} & Gauss-Jordan reduction\\
\hline
\end{tabular}
\end{center}
\index{Gauss-Jordan}
\index{linsolve@{\texttt{linsolve}}}
\index{simult@{\texttt{simult}}}
\index{rref@{\texttt{rref}}}

The \texttt{linsolve} command will solve a system of linear equations;
its syntax is the same as that of \texttt{solve} (see section
\ref{solve}, ``Solving equations'').
If you enter
\xcasin{linsolve([2*x + 3*y = 4, 5*x + 4*y = 3],[x,y])}
you will get
\xcasout{[-1,2]}

The \texttt{simult} command can also solve a system of linear
equations; more generally, it can solve several systems with the same
coefficient matrix.  To solve the systems
\[ A\mathbf{x} = \mathbf{b}_1,\dots,A\mathbf{x}=\mathbf{b}_k\]
you can enter
\xcasin{simult(A,B)}
where
\[ B = \left(\mathbf{b}_1 \cdots \mathbf{b}_k\right)\]
The result will be a matrix whose $j$th column is the solution of
$A\mathbf{x}=\mathbf{b}_j$.
For example, if you want to solve the systems
\[
\left\{ \begin{array}{llllllr}
 x &+& y &-& z&=&1\\
 x & -&  y&+& z&=&1 \\
 -x & +&y &+& z&=&-2 
\end{array}\right.
\]
\[
\left\{ \begin{array}{llllllr}
 x &+& y &-& z&=&-2\\
 x & -&  y&+& z&=&1 \\
 -x & +&y &+& z&=&1 
\end{array}\right.
\]
which both have the same matrix of coefficients
\[
\begin{pmatrix}
  1 & 1 & -1\\
  1 & -1 & 1\\
  -1 & 1 & 1
\end{pmatrix}
\]
you can create the matrix which has one column for each system
\[
\begin{pmatrix}
  1 & -2\\
  1 &  1\\
  -2 & 1
\end{pmatrix}
\]
If you enter
\xcasin{simult([[1,1,-1],[1,-1,1],[-1,1,1]],[[1,-2],[1,1],[-2,1]])}
you will get
\xcasout{
\begin{pmatrix}
1 & -1/2\\
-1/2 & -1/2\\
-1/2 & 1
\end{pmatrix}}
The solution to the first system is the first column,
$x=1,y=-1/2,z=-1/2$, and the solution to the second system is the
second column, $x=-1/2,y=-1/2,z=1$.

When there are no solutions, \texttt{linsolve} will return the empty
list while \texttt{simult} will return an error.  When there are
infinitely many solutions, \texttt{linsolve} will return formulas for
all solutions while \texttt{simult} will return one solution.

\subsection{Matrix reduction}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Matrix reduction}}\\
\hline\hline
\texttt{jordan} & diagonalization or Jordan reduction\\
\texttt{pcar} & characteristic polynomial (list form)\\
\texttt{pmin} & minimal polynomial (list form)\\
\texttt{eigenvals} & eigenvalues\\
\texttt{eigenvects} & eigenvectors\\
\hline
\end{tabular}
\end{center}
\index{jordan@{\texttt{jordan}}}
\index{Jordan form}
\index{diagonalization}
\index{pcar@{\texttt{pcar}}}
\index{pmin@{\texttt{pmin}}}
\index{eigenvals@{\texttt{eigenvals}}}
\index{eigenvects@{\texttt{eigenvects}}}
\index{polynomial!characteristic}
\index{polynomial!minimal}
\index{eigenvalues}
\index{eigenvectors}

The \texttt{jordan} command will take a matrix $A$ and returns a
transition matrix $P$ and a matrix $J$ in Jordan canonical form, so
that $P^{-1} A P = J$.  In particular, if $A$ is diagonalizable, then
$J$ will be diagonal with the eigenvalues of $A$ on the diagonal and
the columns of $P$ will be the corresponding eigenvectors.
If you enter
\xcasin{jordan([[4,1],[-8,-5]])}
you will get
\xcasout{
\left(\begin{pmatrix}1 & 1\\ -1 & -8 \end{pmatrix},
      \begin{pmatrix}3 & 0\\ 0 & -4 \end{pmatrix}\right)}
This means that $3$ and $-4$ (the diagonal elements of the second
matrix) are the eigenvalues of 
$\begin{pmatrix}4 & 1\\-8 & -5\end{pmatrix}$ and the corresponding
eigenvectors are $\begin{pmatrix}1\\-1\end{pmatrix}$ and
$\begin{pmatrix}1\\-8\end{pmatrix}$ (the columns of the first matrix).
For diagonalizable matrices you can also get this information with the
\texttt{eigenvals} and \texttt{eigenvects} commands;
\xcasin{eigenvals([[4,1],[-8,-5]])}
will return
\xcasout{(3,-4)}
and 
\xcasin{eigenvects([[4,1],[-8,-5]])}
will return
\xcasout{\begin{pmatrix}1 & 1\\ -1 & -8 \end{pmatrix}}

For matrices with exact and symbolic values, the only eigenvalues used
are those computable with \texttt{solve}; for matrices with floating
point numbers, a numerical algorithm is used to find the eigenvalues.
This algorithm may fail in some cases where there are very close
eigenvalues or eigenvalues with multiplicity greater than one.

If a function is defined by a polynomial, you can evaluate it with an
argument of a square matrix.  If a function is given by a series, the
Jordan form of the matrix can be used to define the value of the
function at a matrix.  For example, you can find the exponential of a
square matrix;
\xcasin{exp([[0,-1],[1,2]])}
will result in
\xcasout{
\begin{pmatrix}
0 & -\exp(1)\\
\exp(1) & 2*\exp(1)
\end{pmatrix}}


\section{Graphs}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Plotting graphs}\\
\hline\hline
\texttt{plot} & graph an expression of one variable\\
\texttt{plotfunc} & graph an expression of one or two variables\\
\texttt{tangent} & tangent to a curve\\
\texttt{plotparam} & parametric curve\\
\texttt{plotpolar} & polar plotting\\
\texttt{plotimplicit} & implicit curve\\
\hline
\end{tabular}
\end{center}
\index{plot@{\texttt{plot}}}
\index{plotfunc@{\texttt{plotfunc}}}
\index{tangent@{\texttt{tangent}}}
\index{plotparam@{\texttt{plotparam}}}
\index{plopolar@{\texttt{plotpolar}}}
\index{plotimplicit@{\texttt{plotimplicit}}}
\index{curve!parametric}
\index{curve!polar}
\index{curve!implicit}

The \texttt{Graphic} menu has entries for several graphing commands;
if you choose one you will be given a template you can fill out to
produce a graphic.  The appropriate command will be placed on the
command line.  If you want several graphs in the same window, you can
put the commands on the same command line separated by semicolons.

Once you have created a graphic window, there will be a panel to the
right with buttons allowing you to control the image.  The default
parameters for graphs, such as the size of the graphs, are
configurable (see section \ref{config}, ``Configuration'').

As well as being displayed in the \texttt{Xcas} window, the two
dimensional graphics also appear in the DispG (Display Graphics)
window.  You can bring that window up with the
\texttt{Cfg$\blacktriangleright$Show$\blacktriangleright$DispG} menu item.
This window will contain all two dimensional graphs; they can be
cleared with the \texttt{ClrGraph} command. 

\subsection{Curves}

The simplest way to draw graphs is with the templates from the
\texttt{Graphic} menu, but there are command line equivalents. 

The command line instruction for graphing a function is the
\texttt{plot} command.  It takes an expression (or list of
expressions) followed by the variable.  To use a domain different than
the default, you can indicate the range of the variable by setting it
equal to an interval.  If you are plotting several curves, you can
distinguish them by giving them different colors; you can do this with
a third argument \texttt{color=} followed by a list of colors.
If you plot
\xcasin{plot([x\^{}2,x\^{}3],x=-1..1,color=[red,blue])}
you will get
\begin{center}
\includegraphics[width=\textwidth]{xcas-plot.png}
\end{center}

You can draw parameterized curves with the \texttt{plotparam} command.
The coordinates of the curve must be given as a single complex
expression; the $x$ coordinate will be the real part of the expression
and the $y$ coordinate will be the imaginary part.  For example, if
you enter
\xcasin{plotparam(sin(t) + i*cos(t),t)}
you will get the circle
\begin{center}
\includegraphics[width=\textwidth]{xcas-plotparam.png}
\end{center}
(Since the $x$- and $y$-axes are scaled differently, the circle
looks elliptical.)

You can draw a curve using polar coordinates with the
\texttt{plotpolar} command.  This takes the form
\texttt{plotpolar(f(theta),theta,theta-min,theta-max)}.

You can draw an implicitly defined curve with the
\texttt{plotimplicit} command; the command
\texttt{plotimplicit($f(x,y)$,$x$,$y$)} will draw the curve
$f(x,y)=0$.  For example, the command
\xcasin{plotimplicit(x\^{}2 + y\^{}2 = 1,x,y)}
will draw a circle.

The \texttt{tangent} command will draw the tangent line to a curve, if
you tell it the curve and the point.  To draw the tangent line to the
graph $y=x^2$ at $x=1$, for example, you can enter
\xcasin{tangent(plotfunc(x\^{}2,x),1)}
You will get
\begin{center}
\includegraphics[width=\textwidth]{xcas-tangent.png}
\end{center}


\subsection{Plane geometry}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf 2D graphical objects}\\
\hline\hline
\texttt{legend} & place text starting from a given point\\
\texttt{point} & determine a point given a complex number or two
coordinates\\
\texttt{segment} & segment determined by 2 points\\
\texttt{circle} & circle determined by a point and radius\\
\texttt{inter} & find the intersection of curves\\
\texttt{equation} & return the cartesian equation of a curve\\
\texttt{parameq} & return the parametric equation of a curve\\
\texttt{polygonplot} & draw a polygonal line\\
\texttt{scatterplot} & draw a cloud of dots\\
\texttt{polygon} & draw a closed polygon\\
\texttt{open\_polygon} & draw an open polygon\\
\hline
\end{tabular}
\end{center}
\index{legend@{\texttt{legend}}}
\index{text}
\index{point@{\texttt{point}}}
\index{segment@{\texttt{segment}}}
\index{circle@{\texttt{circle}}}
\index{inter@{\texttt{inter}}}
\index{equation@{\texttt{equation}}}
\index{intersection}
\index{polygonal line}
\index{polygonplot@{\texttt{polygonplot}}}
\index{polygon@{\texttt{polygon}}}
\index{open\_polygon@{\texttt{open\_polygon}}}
\index{cloud of dots}
\index{circle@{\texttt{circle}}}
\index{equation@{\texttt{equation}}}
\index{parameq@{\texttt{parameq}}}
\index{scatterplot@{\texttt{scatterplot}}}

Among its other capabilities, \texttt{Xcas} works with plane geometry.
The \texttt{Geo$\blacktriangleright$New figure 2D} menu item or the
\texttt{Alt+g} key will bring up the screen for plane geometry.

A point on the geometry screen can be specified with the
\texttt{point} command, which can take either an ordered pair or real
numbers or a complex number as argument.  The \texttt{Geo} menu
contains many commands for drawing geometric objects, such as
\texttt{circle} (which takes a point and a radius as arguments) and
\texttt{polygon} (which takes a sequence of points as arguments).

Some functions, such as \texttt{polygonplot} and \texttt{scatterplot},
take lists of $x$-coordinates and $y$-coordinates as arguments.  For
example,
\xcasin{polygonplot([0,2,0],[0,0,2])}
and 
\xcasin{open\_polygon(point(0,0),point(2,0),point(0,2))}
will both draw the same segments.

The \texttt{legend} can be used to place text on the screen; one
simple way of using it is to give it a point and text as arguments.


\subsection{3D graphical objects}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{3D graphical objects}}\\
\hline\hline
\texttt{plotfunc} & graph of a function\\
\texttt{plotparam} & parametric surface\\
\hline\hline
\texttt{point} & point\\
\texttt{plane} & plane\\
\texttt{sphere} & sphere with a center and radius\\
\texttt{cone} & cone with a center, axis and opening angle\\
\texttt{inter} & intersection \\
\texttt{polygon} & polygon \\
\texttt{open\_polygon} & open polygon\\
\hline
\end{tabular}
\end{center}
\index{space}
\index{plotfunc@{\texttt{plotfunc}}}
\index{plotparam@{\texttt{plotparam}}}
\index{point@{\texttt{point}}}
\index{polygonal line}
\index{polygonplot@{\texttt{polygonplot}}}
\index{polygon@{\texttt{polygon}}}
\index{open\_polygon@{\texttt{open\_polygon}}}
\index{plane@{\texttt{plane}}}
\index{sphere@{\texttt{sphere}}}
\index{cone@{\texttt{cone}}}
\index{inter@{\texttt{inter}}}

\texttt{Xcas} can also handle three-dimensions graphically, either by
drawing curves and graphs in three-dimensions or by drawing
three-dimensional geometric objects.  A three-dimensional screen can
be brought up with the \texttt{Geo$\blacktriangleright$New figure 3D}
menu item or the \texttt{Alt+h} key.
There will controls for the view window to the right of the screen.
You can rotate the visualization cube by using the mouse outside of
the cube or by clicking in the cube and using the \texttt{x},
\texttt{y} and \texttt{z} keys to rotate and the \texttt{+} and
\texttt{-} keys for zooming.

You can draw a graph $z = f(x,y)$ with the \texttt{plotfunc} command,
which takes an expression and a list of two variables.  Like graphs of
functions of one variable, you can use a domain different than the
default by giving the variables their own intervals.  The command
\xcasin{plotfunc(y\^{}2 - x\^{}2,[x=-1..1,y=-1..1])}
will give you the graph
\begin{center}
\includegraphics[width=\textwidth]{xcas-3dplot.png}
\end{center}

The \texttt{plotparam} command can be used to draw a parameterized
curves and surfaces in three-dimensions.  If the first argument is a
list of three expressions involving two variables and the next two
arguments are the variables (with optional intervals), then
\texttt{plotparam} will plot the surface.   If you enter
\xcasin{plotparam([u,u+v,v],u,v)}
you will get
\begin{center}
\includegraphics[width=\textwidth]{xcas-3dparam.png}
\end{center}
If the first argument is a list of three expressions involving one
variable and the next argument is the variable, then
\texttt{plotparam} will plot the curve.  If you enter
\xcasin{plotparam([cos(t),sin(t),t],t)}
you will get
\begin{center}
\includegraphics[width=\textwidth]{xcas-3dcurve.png}
\end{center}

A point in three-dimensions is given with the \texttt{point} command
with three arguments.  Commands like \texttt{polygon} and
\texttt{open\_polygon} work in three-dimensions as well as two, as
well as additional commands such as \texttt{sphere}.  A plane can be
drawn with the \texttt{plane} command, which can be given either three
points, a line and two points, or an equation of the form \texttt{a*x
+ b*y + c*z = d}.


\section{Programming}

\subsection{The language}

\begin{center}
\begin{tabular}{|p{.52\textwidth}|p{.28\textwidth}|}
\hline
\multicolumn{2}{|c|}{\textbf{Instructions for \texttt{Xcas}}}\\
\hline\hline
\texttt{a:=2;} & assignment \\
\texttt{input("a=",a);} & input expression \\
\texttt{textinput("a=",a);} & string input \\
\texttt{print("a=",a);} & output\\
\texttt{return(a);} & return value\\
\texttt{break;} & break out of loop\\
\texttt{continue;} & go to the next iteration\\
\texttt{if (<condition>) {<inst>};}  & if\dots then\\
\texttt{if (<condition>) {<inst1>} else {<inst2>};}  &
	     if\dots then \dots else\\
\texttt{for (j:= a;j<=b;j++) {<inst>};} & for loop\\
\texttt{for (j:= a;j<=b;j:=j+p) {<inst>};} & for loop\\
\texttt{repeat <inst> until <condition>;} & repeat loop\\
\texttt{while (<condition>) {<inst>};} & while loop\\
\texttt{do <inst1> if (<condition>) break;<inst2> od;} & do loop\\
\hline
\end{tabular}
\end{center}
\index{test}
\index{loops}
\index{if@{\texttt{if}}}
\index{else@{\texttt{else}}}

\begin{center}
\begin{tabular}{|p{.20\textwidth}|p{.6\textwidth}|}
\hline
\multicolumn{2}{|c|}{\bf Boolean operators}\\
\hline\hline
\texttt{==}   & test for equality\\
\texttt{!=} & test for inequality\\
\texttt{<}    & test for strictly less than\\
\texttt{>}  & test for strictly greater than\\
\texttt{<=}   & tes  for less than or equal\\
\texttt{>=} & test for greater than or equal to\\
\texttt{\&\&}, \texttt{and} & infixed ``and''\\
\texttt{||}, \texttt{or}& infixed ``or''\\
\texttt{true}    & boolean true (same as 1)\\
\texttt{false}  & boolean false (same as 0)\\
\texttt{not}, \texttt{!} & ``not''\\
\hline
\end{tabular}
\end{center}
\index{and}
\index{or}
\index{not}
\index{test}
\index{if@{\texttt{if}}}
\index{else@{\texttt{else}}}
\index{for@{\texttt{for}}}
\index{loop}

You can extend \texttt{Xcas} by adding desired functions with its
built-in programming language.  The  main features of the language are:

\begin{itemize}
  \item 
  It is a functional language.  The argument of a function can
  be another function; in which case you can either give the name of
  a function or the definition of the function.  If 
  \texttt{f(x) := x\^{}2}, then
  \texttt{function\_diff(f)} is the same as
  \texttt{function\_diff(x->x\^{}2)}.
  
  \item
  There is no distinction between a program and a function.  A
  function returns the value of the last evaluated statement or what
  follows the reserved word \texttt{return}.

  \item
  The language is untyped.  Any variable can take on any value; the
  only different types of variables are global variables, which are
  not declared, and local variables, which are declared at the
  beginning of a function.
\end{itemize}

A function declaration looks like
\begin{verbatim}
   function_name (var1, var2, ...) := {
   local var_loc1, var_loc2, ... ;
     statement1;
     statement2;
     ...
   }
\end{verbatim}
The syntax is similar to \texttt{C++}, although many variants are
recognized, particularly in compatibility mode.
Recall that \texttt{i} is $\sqrt{-1}$ and cannot be used for a loop
variable.  
The conditional tests are Booleans, which are the results of the usual
Boolean operators.

A program can capture runtime errors with a
\texttt{try}--\texttt{catch} construction, which takes the form
\begin{verbatim}
   try 
     {
      block to catch errors
     }
   catch (variable)
     {
      block to execute when an error is caught
     }
\end{verbatim}
For example, the following will catch an error caused by incorrect
matrix multiplication:
\begin{verbatim}
   try 
     { A := idn(2) * idn(3) }
   catch (error)
     { print("The error is " + error) }
\end{verbatim}

\subsection{Some examples}

To write a program, it is a good idea to use the program editor that
comes with \texttt{Xcas}, which provides a template and commands
helpful for writing programs.  You can open this editor with the
\texttt{New Program} item in the \texttt{Prg} menu or the
\texttt{Alt+p} key.

Consider the following program, which takes two integers and returns the
quotient and remainder of the Euclidean division algorithm (like the
\texttt{iquorem} function).
\begin{verbatim}
   idiv2(a,b) := {
     local q,r;
     if (b != 0) {
       q := iquo(a,b);
       r := irem(a,b);
       }
     else {
       q := 0;
       r := a;
       }
     return [q,r];
   }
\end{verbatim}
If you enter this into the editor, you can test it with the
\texttt{OK} button.  You can then use the function in the command
line; if you enter
\xcasin{idiv2(25,15)}
you will get
\xcasout{[1,10]}
You can save it in a file; the name \texttt{idiv2.cxx} would be a good
name.  You can then use it in later session with the command
\xcasin{read("idiv2.cxx")}
or by opening it in the program editor and validating it with the
\texttt{OK} button.

Here are some more programs that you can play with.  This first one
computes the GCD of two integers iteratively.
\begin{verbatim}
   pgcdi(a,b) := {
     local r;
     while (b != 0) {
       r := irem(a,b);
       a := b;
       b := r;
       }
     return a;
   }:;
\end{verbatim}
The second one computes the GCD recursively.
\begin{verbatim}
   pgcdr(a,b) := {
     if (b == 0) return a;
     return pgcdr(b, irem(a,b));
   }:;
\end{verbatim}

If a program doesn't work the way you expect, you can run it in
step-by-step mode with the debug command.  For more details, consult
the \texttt{Interface} item of the \texttt{Help} menu.  For example,
you can start the debugging by typing
\xcasin{debug(idiv2(25,15))}
The debugger will automatically display the values of the parameters
\texttt{a} and \texttt{b} and local variables \texttt{q} and
\texttt{r} when executing the program line by line with the
\texttt{sst} button.

\subsection{Programming style}

The \texttt{Xcas} programming language is interpreted, not compiled.
The run time of an \texttt{Xcas} program is affected by the number of
instructions rather than the number of lines.  

The speed of a program does not always match up with the clarity of
the program; compromises are often necessary.  For the most part, the
calculation time isn't an issue; interpreted languages are often used
to test algorithms and create models.   Full scale applications are
written in a compiled language like \texttt{C++}.  A \texttt{C++} can
use \texttt{giac} for the formal calculations.

When you are trying to write a fast program, you may want to take into
account the number of instructions and the speed of the instructions.
For example, it is in general faster to create lists and sequences
than it is to program loops.  Recall than in \texttt{Xcas} you can
find out how long it takes to run a command by entering
\xcasin{time(\textit{command})}

\section{Exercises}

There are usually several ways to get the same result in
\texttt{Xcas}.  We will try to use the simplest approaches.

%---------------------------------------------------------------------------
\begin{exo}{\rm
Verify the following identities.
\begin{enumerate}
\item
$(2^{1/3}+4^{1/3})^3-6(2^{1/3}+4^{1/3})=6$
\item
$\pi /4 = 4\arctan(1/5)-\arctan(1/239)$
\item
$\sin(5x) = 5\sin(x)-20\sin^3(x)+16\sin^5(x)$
\item
$(\tan(x)+\tan(y))\cos(x)\cos(y) = \sin(x+y)$
\item
  $\cos^6(x)+\sin^6(x) = 1-3\sin^2(x)\cos^2(x)$
\item
$\ln(\tan(x/2+\pi/4)) = \arg\sinh(\tan(x))$
\end{enumerate}
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Transform the rational expression
\[
\frac{x^4+x^3-4x^2-4x}{x^4+x^3-x^2-x}
\]
into the following:
\[
\frac{(x+2)(x+1)(x-2)}{x^3+x^2-x-1}
\;,\quad
\frac{x^4+x^3-4x^2-4x}{x(x-1)(x+1)^2}
\;,\quad
\frac{(x+2)(x-2)}{(x-1)(x+1)}\;,
\]
\[
\frac{x^2}{(x-1)(x+1)}-\frac{4}{(x-1)(x+1)}\;.
\]
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Transform the rational expression
\[
2\frac{x^3-yx^2-yx+y^2}{x^3-yx^2-x+y}
\]
into the following
\[
2\frac{x^2-y}{x^2-1}
\;,\quad
2\frac{x^2-y}{(x-1)(x+1)}
\;,
\]
\[
2-\frac{y-1}{x-1}+\frac{y-1}{x+1}
\;,\quad
2-2\frac{y-1}{x^2-1}\;.
\]
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
For each of the following definitions of a function $f$
\[
f(x) = \sqrt{e^x-1}
\;,\quad
f(x) = \frac{1}{x\sqrt{1+x^2}}
\;,
\]
\[
f(x) = \frac{1}{1+\sin(x)+\cos(x)}
\;,\quad
f(x) = \frac{\ln(x)}{x(x^2+1)^2}
 \;.
\]
\begin{enumerate}
\item
Find an antiderivative $F$.
\item
Find $F'(x)$ and show that $F'(x)$ can be simplified to $f(x)$.
\end{enumerate}
}\end{exo}

%---------------------------------------------------------------------------
\begin{exo}{\rm
For each of the following integrals
\[
\int_{-2}^{-1}\frac{1}{x}\,dx\,,\;
\int_0^1 x\arctan(x)\,dx\,,
\]
\[
\int_0^{\pi/2} \sqrt{\cos(x)}\,dx\,,\;
\int_0^{\pi/2} x^4\sin(x)\cos(x)\,dx\;.
\] 
\begin{enumerate}
\item
Find the exact value, and find an approximation.
\item
For $n=100$ and $n=1000$, do the following.
For each $j=0,\ldots,n$, let $x_j=a+j(b-a)/n$ and $y_j=f(x_j)$.
Find an approximate value for the integral by using the left endpoint
rule:
\[
\sum_{j=0}^{n-1} f(x_j)(x_{j+1}-x_j)\;.
\]
\item
Do the same as the previous part, except use the trapezoid
method:
\[
\sum_{j=0}^{n-1} \frac{1}{2}(f(x_j)+f(x_{j+1}))(x_{j+1}-x_j)\;.
\]
\end{enumerate}
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Define the function $f$ by 
$f(x,y)=\cos(xy)$.
\begin{enumerate}
\item
Let $x_0=y_0=\pi/4$. Define the function that maps $(u,v,t)$ to
\[f(x_0+ut,y_0+vt)\;.\]
\item
Define the function $g$ which is the partial derivative of the
preceding function with respect to $t$ (so this will be a directional
derivative of $f$).
\item
Find the gradient of $f$ at $(x_0,y_0)$, then find the scalar product
of this gradient with the vector $(u,v)$.  Write this result in terms
of $g$.
\end{enumerate}
}\end{exo}

%---------------------------------------------------------------------------
\begin{exo}{\rm
Consider $x^3-(a-1)x^2+a^2x-a^3=0$ as an equation in $x$.
\begin{enumerate}
\item
Graph the solution $x$ as a function of $a$ using \texttt{plotimplicit}.
\item
Find the three solutions of the equation.  You can use \texttt{rootof}
to find the first solution, then use \texttt{quo} to factor out the
first solution.  You can then find the last two solutions by solving
the resulting second degree equation.  (You can use \texttt{coeff} to
find the discriminant of the equation.)
\item
For the values of $a$ which give three real roots, graph each of the
roots in different colors on the same graph.
(You can use \texttt{resultant} to find the values of $a$ for which the
equation has a multiple root; these values are the possible bounds of
intervals for $a$ where each of the roots is real.)
\item
Find the solutions for $a=0,1,2$.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
For each of the limits
\[
\lim_{x\rightarrow 0} \frac{\sin(x)}{x}
\,,\;
\lim_{x\rightarrow 0^+} (\sin(x))^{1/x}
\,,\;
\lim_{x\rightarrow +\infty} (1+1/x)^{x}
\,,\;
\lim_{x\rightarrow +\infty} (2^x+3^x)^{1/x}
\]
\begin{enumerate}
\item
Find the exact value.
\item
Find a value of $x$ such that the distance from $f(x)$ to the limit is
less than $10^{-3}$.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
For each function $f$, find ranges for the $x$ coordinates and the $y$
coordinates that give the most informative graph.
\begin{enumerate}
\item
$f(x)=1/x$.
\item
$f(x)=e^x$.
\item
$f(x)=1/\sin(x)$.
\item
$f(x)=x/\sin(x)$.
\item
$f(x)=\sin(x)/x$.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Let
$f(x)=3x^2+1+\frac{1}{\pi^4}\ln((\pi-x)^2)$.
\begin{enumerate}
\item
Verify that this function takes negative values on $\mathbb{R}^+$.
Graph the function over the interval $[0,5]$.
\item
Find $\epsilon >0$ such that {\tt Xcas} gives the correct graph of the
function over the interval $[\pi-\epsilon,\pi+\epsilon]$. 
\end{enumerate}
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm~
\begin{enumerate}
\item
Graph the function $\exp(x)$ over the interval $[-1,1]$. 
On the same graph, plot the Taylor polynomials (of orders 1,2,3 and 4)
for this function centered at $x=0$.
\item
Same question for the interval $[1,2]$. 
\item
Graph the function $\sin(x)$ on the interval $[-\pi,\pi]$.
On the same graph, plot the Taylor polynomials (of orders 1,3 and 5)
for this function centered at $x=0$.
\end{enumerate}
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Plot the following graphs on the same window, with $x$ and $y$
coordinates from $0$ to $1$.
\begin{enumerate}
\item
The line $y=x$.
\item
The graph of the function $f~: \;x\mapsto 1/6+x/3+x^2/2$.
\item
The tangent line to the graph of $f$ at $x=1$.
\item
The vertical line segment from the $x$-axis to the point where the
graph of $f$ intersects the line $y=x$, and a horizontal line segment
from the $y$-axis to that point of intersection.
\item
The labels ``fixed point'' and ``tangent'', at the appropriate positions.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
The goal of this exercise is to graph a family of functions on the
same screen.  You will need to choose the number of curves, the
interval to graph over to obtain the most informative graphic.
\begin{enumerate}
\item 
Functions $f_a(x) = x^ae^{-x}$ for $a$ from $-1$ to $1$. 
\item
Functions $f_a(x)=1/(x-a)^2$ for $a$ from $-1$ to $1$.
\item
Functions $f_a(x)=\sin(ax)$, for $a$ from $0$ to $2$.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Graph each of the following curves.  You will need to choose a range
of values for the parameter to make sure you have the complete graph.
\begin{enumerate}
\item
\[
\left\{
\begin{array}{lcl}
x(t)&=& \sin(t)\\
y(t)&=& \cos^3(t)
\end{array}
\right.
\]
\item
\[
\left\{
\begin{array}{lcl}
x(t)&=& \sin(4\,t)\\
y(t)&=& \cos^3(6\,t)
\end{array}
\right.
\]
\item
\[
\left\{
\begin{array}{lcl}
x(t)&=& \sin(132\,t)\\
y(t)&=& \cos^3(126\,t)
\end{array}
\right.
\]
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
The goal of this exercise is to visualize in different ways the
surface of the graph $z=f(x,y)=x\,y^2$.  You will need to have a
3-d geometry window open.
\begin{enumerate}
\item
Use \texttt{plotfunc} to draw an informative graph, choosing an
appropriate domain and number of steps.
\item
Create an editable parameter $a$ with \texttt{assume}.  Draw the curve
$z=f(a,y)$ and vary the parameter with the mouse.
\item
Create an editable parameter $b$ with \texttt{assume}.  Draw the curve
$z=f(x,b)$ and vary the parameter with the mouse.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
The goal of this exercise is to visualize a cone in different ways.
\begin{enumerate}
\item
Draw the surface given by $z=1-\sqrt{x^2+y^2}$.
\item
Sketch the parameterized surface defined by
\[
\left\{
\begin{array}{lcl}
x(u,v)&=& u\,\cos(v)\\
y(u,v)&=& u\,\sin(v)\\
z(u,v)&=& 1-u\;.
\end{array}
\right.
\]
\item
For a sufficiently large value of $a$, draw the curve parameterized by
\[
\left\{
\begin{array}{lcl}
x(t)&=& t\,\cos(a t)\\
y(t)&=& t\,\sin(a t)\\
z(t)&=& 1-t\;.
\end{array}
\right.
\]

\item
Draw the family of curves parameterized by
\[
\left\{
\begin{array}{lcl}
x(t)&=& a\,\cos(t)\\
y(t)&=& a\,\sin(t)\\
z(t)&=& 1-a\;.
\end{array}
\right.
\]
\item 
Draw the cone using the \texttt{cone} function.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm ~
\begin{enumerate}
\item
Generate a list $\ell$ of $100$ integers randomly generated between $1$ and $9$.
\item
Verify that all values in $\ell$ are in $\{1,\ldots,9\}$.
\item
Extract from the list $\ell$ all values greater than or equal to $5$.
\item
For each $k=1,\ldots,9$, find the number of values in $\ell$ which are
equal to $k$.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
For a real number $x$, the continued fraction for $x$ of order $n$ is
a list of integers $[a_0,\ldots,a_n]$ created in the following way:
\begin{itemize}
  \item
  let $x_0 = x$.
  \item  
  let $a_0$ be the integer part of $x_0$.
  \item 
  let $x_1 = 1/(x_0-a_0)$.
   \item
   for $k=1,\dots,n$, let $a_k$ be the integer part of $x_k$ and let
   $x_{k+1} = 1/(x_k - a_k)$.
\end{itemize}
The list $[a_0,\ldots,a_n]$ is associated with the fraction
\[
u_n = a_0+\frac{1}{\displaystyle{a_1+
\frac{1}{\displaystyle{a_2+\frac{1}{\ddots+\displaystyle{\frac{1}{a_n}}}}}}}
\]
For $x\in\{\pi,\sqrt{2}, e\}$ and $n\in \{5,10\}$~:
\begin{enumerate}
\item
Find $[a_0,\ldots,a_n]$.
\item
Compare your result with the value given by \texttt{Xcas}'s \texttt{dfc}
function.
\item
Find $u_n$ and the numeric value of $x-u_n$.
\end{enumerate}
}\end{exo}

%---------------------------------------------------------------------------
\begin{exo}{\rm
Write (without using a loop) the following sequences:
\begin{enumerate}
\item
The numbers from $1$ to $3$ in steps of $0.1$.
\item
The numbers from $3$ to $1$ in steps of $-0.1$.
\item
The squares of the first $10$ integers.
\item
Numbers of the form $(-1)^n n^2$ for $n=1,\ldots,10$.
\item 
10 ``0''s followed by 10 ``1''s.
\item 
3 ``0''s followed by 3 ``1''s, followed by 3 ``2'',\ldots , 
followed by 3 ``9''s. 
\item
``1'' followed by 1 ``0'', followed by a ``2'' followed by 2 ``0''s,
\ldots, followed by ``8'' followed by 8 ``0''s, followed by ``9''.
\item
$1$ ``$1$'' followed by $2$ ``$2$''s, followed by $3$ ``$3$''s,\ldots ,
followed by $9$ ``$9$''s.
\end{enumerate} 
}\end{exo}

%---------------------------------------------------------------------------
\begin{exo}{\rm ~
\begin{enumerate}
\item
Define the following polynomials of degree 6.
\begin{enumerate}
\item
A polynomial whose roots are the integers from $1$ to $6$.
\item
A polynomial whose roots are $0$ (triple root), $1$
(double root) and $2$ (simple root).
\item
The polynomial $(x^2-1)^3$.
\item
The polynomial $x^6-1$.
\end{enumerate}
%

\item
Write (without using the \texttt{companion} function)
the companion  matrix $A$ for each of the polynomials in (1).
Recall the the companion matrix for the polynomial
\[
P=x^d+a_{d-1}x^{d-1}+\cdots+a_1x+a_0\;,
\]
is
\begin{equation}
\label{compagnon}
A = 
\left(
\begin{array}{cccccc}
0&1&0&\ldots&&0\\
\vdots&\ddots&\ddots&\ddots&&\vdots\\
&&&&&\\
\vdots&&&\ddots&\ddots&0\\
0&\ldots&&\ldots&0&1\\
-a_0&-a_1&&\ldots&&-a_{d-1}
\end{array}
\right)\;.
\end{equation} 
\item
Find the eigenvalues of the matrix $A$.
\item
Find the characteristic polynomial of $A$.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm ~
\begin{enumerate}
\item
For variables $a$ and $b$, write the square matrix $A$ of order 4 with
$a_{j,k}=a$ if $j=k$ and $a_{j,k}=b$ if $j \neq k$.
\item
Find and factor the characteristic polynomial of $A$.
\item
Find an orthogonal matrix $P$ such that ${P^T} A P$ is a diagonal
matrix. 
\item
Use your answer to the previous question to define the function that
maps an integer $n$ to the matrix $A^n$.
\item
Find $A^k$ for $k=1,\ldots,6$ by finding the matrix products.  Check
that the function given in the previous part gives the same results.
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm ~
\begin{enumerate}
\item
Find the square matrix $N$ of order $6$ given by $n_{j,k}=1$ if
$k=j+1$ and $n_{j,k}=0$ if $k \neq j+1$. 
\item
Find $N^p$ for $p=1,\ldots,6$. 
\item
Write the matrix $A = xI+N$, where $x$ is a variable.
\item
Find $A^p$ for $p=1,\ldots,6$. 
\item 
Find $\exp(At)$ as a function of $x$ and $t$~:
\[
\exp(At) = I+\sum_{p=1}^\infty \frac{t^p}{p!} A^p\;.
\]
\end{enumerate} 
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm 
Define the following functions without using a loop.
\begin{enumerate}
\item
The function $f$ which takes as input an integer $n$ and two real
numbers $a$ and $b$ and returns the $n\times n$ matrix $A$ whose
diagonal terms are all equal to $a$ and whose non-diagonal entries are
equal to $b$.
\item
The function $g$ which takes as input an integer $n$ and three real
numbers $a$,$b$ and $c$m and returns the matrix 
$A=(a_{j,k})_{j,k=1,\ldots,n}$ whose diagonal elements are equal to
$a$, whose terms $a_{j,j+1}$ are equal to $b$  and whose terms $a_{j+1,j}$ 
are equal to $c$, and whose remaining terms are 0.
\item
The function $H$ which takes as input an integer $n$ and returns
Hilbert's Matrix; the matrix $A=(a_{j,k})_{j,k=1,\ldots,n}$ where
$a_{j,k} = 1/(j+k+1)$.
Compare the execution time of your function with that of the
\texttt{hilbert} function.
\item
The function $V$ which takes as input a vector $x=[x_1,\dots,x_n]$ and
returns Vandermonde's Matrix; the matrix
$A=(a_{j,k})_{j,k=1,\ldots,n}$ where $a_{j,k} = x_k^{j-1}$.
Compare the execution time of your function with that of the
\texttt{vandermonde} function.
\item
The function $T$ which takes as input a vector $x=[x_1,\dots,x_n]$ and
returns the Toeplitz Matrix; the matrix
$A=(a_{j,k})_{j,k=1,\ldots,n}$ where
$a_{j,k} = x_{|j-k|+1}$ .
\end{enumerate}
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Write the following functions, which take as input a function $f:\R
\to \R$ and three real numbers $x_{min}$, $x_0$ and $x_{max}$ with
$x_{min}\leq x_0 \leq x_{max}$. 
\begin{enumerate}
\item \texttt{derive}~: 
This function calculates and graphs the derivative of $f$ over the
interval $[x_{min},x_{max}]$ and returns $f'(x_0)$.
\item \texttt{tangent}~: 
This function graphs the function $f$ on the interval
$[x_{min},x_{max}]$ and in the same window draws the tangent to the
graph at $x_0$.  It returns the equation for the tangent line as a
first degree polynomial.
\item \texttt{araignee}~:
This function graphs the function $f$ on the $[x_{min},x_{max}]$, as
well as the line $y=x$.  It calculates and returns the first 10
iterates of $f$ starting at $x_0$ (so $x_1 = f(x_0)$, $x_2 =
f(x_1),\dots)$.  It also draws the sequence of segments, alternately
vertical and horizontal, allowing you to visualize the iterations:
segments joining $(x_0,0)$, $(x_0,x_1)$, $(x_1,x_1)$,
$(x_1,x_2)$, $(x_2,x_2)$, \ldots
(compare this to the function \texttt{plotseq})
\item \texttt{newton\_graph}~:
This function graphs the function $f$ over the interval $[x_{min},x_{max}]$.
It also calculates and returns the first ten iterates of the sequence
starting at $x_0$ given by Newton's Method: $x_1=x_0 -f(x_0)/f'(x_0)$,
$x_2=x_1 - f(x_1)/f'(x_1)$ \ldots~  (The values of the derivative
should be approximated.)  This function also graphs in the same window
the segments displaying the iterations: segments joining
$(x_0,0)$, $(x_0,f(x_0))$, $(x_1,0)$,
$(x_1,f(x_1))$, $(x_2,0)$, $(x_2,f(x_2))$,\ldots
(compare with the function \texttt{newton})
\end{enumerate}
}\end{exo}
%---------------------------------------------------------------------------
\begin{exo}{\rm
Let $D$ be the unit square $D=(0,1)^2$. Let $\Phi$
be the function defined on $D$ by
\[
\Phi(x,y) = (z(x,y),t(x,y))=
\left(\frac{x}{1+y}\,,\,\frac{y}{1+x}\right)\;.
\]
\begin{enumerate}
\item
Find the inverse of $\Phi$.
\item
Find and graph the image under $\Phi$ of the domain $D$: $\Delta=\Phi(D)$.
\item
Let $A(x,y)$ be the Jacobian matrix of $\Phi$ at a point $(x,y)$ in
$D$, and $B(z,t)$ the Jacobian matrix of $\Phi^{-1}$ at a point
$(x,y)$ in $\Delta$. Calculate these two matrices, and verify that 
$B(\Phi(x,y))$ and $A(x,y)$ are inverses of each other.
\item
Let $J(z,t)$ be the determinant of the matrix $B$. Calculate and simplify 
$J(z,t)$.
\item
Evaluate
\[
I_1=\iint_D\,\left( \frac{1+x+y}{(1+x)(1+y)} \right)^3 \,dxdy\;.
\]  
\item
Evaluate
\[
I_2=\iint_\Delta\,(1+z)(1+t)\,dzdt\;,
\]  
and verify that $I_1=I_2$.
\end{enumerate}
}\end{exo}

\newpage

\printindex

\end{document}

\section{Exercises}

\subsection{Functions and graphs}

\noindent
\textbf{Exercise 1.}\\
Let $f:\R - \{3\} \to \R$ by
\[ f(x) = (x+1)\ln|x-3|\]
\begin{enumerate}
  \item
  Find the derivative $f'$ and the second derivative $f''$.
  \item
  Find the limit of $f'(x)$ as $x$ approaches negative infinity and as $x$
  approaches 3 from the left.
  \item
  Show that $f'$ vanishes once in $(-\infty,3)$.  Find an interval of
  width 0.1 containing the point where $f'$ vanishes.
  \item
  Determine the intervals on which $f(x)$ is increasing and the
  intervals on which it is decreasing.
  \item
  Plot the graph of $f(x)$.
  \item
  Find the area between the graph of $f$, the $x$-axis, and the lines
  $x=-1$ and $x=2$.
\end{enumerate}

\noindent
\texttt{Solutions}\\
\begin{enumerate}
  \item
  You can define $f$ by
  \xcasin{f(x) := (x+1)*ln(abs(x-3))}
  To find $f'$, you can enter
  \xcasin{f1 := function\_diff(f):;}
  Then
  \xcasin{f1(x)}
  will return
  \xcasout{\ln(|x-3|) + \frac{x+1}{x-3}}
  So
  \[ f'(x) = \ln(|x-3|) + \frac{x+1}{x-3}\]
  Next, to find $f''$, you can enter
  \xcasin{f2 := function\_diff(f1)}
  Then
  \xcasin{f2(x)}
  will return
  \xcasout{\frac{1}{x-3} - \frac{4}{(x-3)^2}}
  This can be tidied with
  \xcasin{factor(f2(x))}
  which returns
  \xcasout{\frac{x-7}{(x-3)^2}}
  
  Alternatively, once $f$ is defined as above, you can compute the
  expression
  \xcasin{dfx := diff(f(x),x)}
  to get
  \xcasout{\ln(|x-3|) + \frac{x+1}{x-3}}
  To define this as a function, you can enter
  \xcasin{f1 := unapply(dfx,x)}
  Next, to calculate $f''(x)$, you can enter
  \xcasin{ddfx := diff(dfx)}
  to get
  \xcasout{\frac{1}{x-3} - \frac{4}{(x-3)^2}}
  If you want a function for $f''$ you can define
  \xcasin{f2 := unapply(ddfx,x)}
  \item
  Since
  \xcasin{limit(f1(x),x,-infinity)}
  returns
  \xcasout{+\infty}
  we get
  \[\lim_{x\to -\infty} f'(x) = +\infty\]
  Since
  \xcasin{limit(f1(x),x,3,-1)}
  returns
  \xcasout{-\infty}
  we get
  \[\lim_{x\to 3^-} f'(x) = -\infty\]
  
  \item
  Since $f''(x) = (x-7)/(x-3)^2 < 0$ for $x$ in $(-\infty,3)$, the
  function $f'$ is decreasing as well as continuous from $-\infty$ to
  $3$.  From (2), you can see that $f'$ passes through all real values
  on $(-\infty,3)$, so $f'(x) = 0$ for a unique $x$ in $(-\infty,3)$.
  To approximate this value, you can enter
  \xcasin{assume(x<3); fsolve(f1(x),x)}
  which will return
  \xcasout{x, 0.776592890991}
  (You may wish to enter
  \xcasin{purge(x)}
  to remove the hypothesis on $x$.)
  Since
  \xcasin{f1(0.7)}
  returns
  \xcasout{0.0937786881525}
  and
  \xcasin{f1(0.8)}
  returns
  \xcasout{-0.0297244578175}
  you know that $f'(0.7) > 0$ and $f'(0.8) < 0$, so $f'(x) = 0$ for
  some $x$  in $(0.7,0.8)$.
  
  \item
  On the interval $(3,\infty)$, $f''(x)$ is positive for $x>7$ and
  negative for $x < 7$.  That means that $f'(x)$ has a minimum at
  $x=7$.  Since 
  \xcasin{f1(7)}
  returns
  \xcasout{\ln(4)+2}
  the minimum value of $f'(x)$ on $(3,\infty)$ is positive, so $f'(x)
  > 0$ for all $x$ in $(3,\infty)$.  So $f(x)$ is increasing on
  $(3,\infty)$.
  
  Letting $\alpha$ be the solution of $f'(x) = 0$ in $(-\infty,3)$,
  you get that $f'(x) > 0$ for $x$ in $(-\infty,\alpha)$ and $f'(x) <
  0$ for $x$ in $(\alpha,3)$.  So $f(x)$ is increasing on
  $(-\infty,\alpha)$ and decreasing on $(\alpha,3)$.

  \item
  Entering
  \xcasin{plotfunc(f(x),x)}
  returns
  \begin{center}
  \includegraphics[width=\textwidth]{xcas-ex1.png}
  \end{center}
  You can note that this matches up with the information from (4).

  \item
  To find the area, you can enter
  \xcasin{integrate(f(x),x,-1,2)}
  giving you
  \xcasout{8*\ln(4) - \frac{33}{4}}
\end{enumerate}  

\noindent
\textbf{Exercise 2.}\\
Let $f:\R \to \R$ by
\[ f(x) = \frac{\exp(x)^2 - \exp(x) + 1}{\exp(x)^3 + \exp(x)}\]
\begin{enumerate}
  \item
  Show that for all $x \in \R$, $P(x) = x^4 - 2x^3 + 2x^2 + 1 \ge 1$.
  \item
  Determine where $f(x)$ is increasing, where it is decreasing, and
  plot the graph.
  \item
  Find the equation of the tangent line to the graph of $f$ at $x=0$.
  \item
  Calculate $\int_0^x f(t) dt$ and $\lim_{x\to + \infty} \int_0^x f(t)dt$.
\end{enumerate}

\noindent
\texttt{Solutions.}\\
\begin{enumerate}
  \item
  Entering
  \xcasin{factor(x\^{}4 - 2*x\^{}3 + 2*x\^{}2)}
  gives you
  \xcasout{x^2*(x^2 - 2*x + 2)}
  Working on the second factor,
  \xcasin{canonical\_form(x\^{}2-2*x + 2)}
  gives you
  \xcasout{(x-1)^2 + 1}
  So
  \[ x^4 - 2x^3 + 2x^2 = x^2(x-1)^2 + x^2 \ge 0\]
  and so for all $x \in \R$,
  \[ P(x) = x^4 - 2x^3 + 2x^2 + 1 \ge 1.\]

  \item
  Define
  \xcasin{f(x) := (exp(x)\^{}2 - exp(x) + 1)/(exp(x)\^{}3 + exp(x))}
  Computing \texttt{diff(f(x),x)} returns an overly complicated
  expression, which can be simplified with \texttt{normal}.  
  \xcasin{normal(diff(f(x),x))}
  gives you
  \xcasout{\frac{-\exp(x)^4+2*\exp(x)^3-2*\exp(x)^2-1}{\exp(x)^5+2*\exp(x)^3+\exp(x)}}
  Since the denominator is strictly positive and the numerator is
  $-P(\exp(x))$ which is always negative, you can see that $f'(x)$ is
  always negative, and so $f(x)$ decreases for all $x$.
  
  To get more information about the graph, note that
  \xcasin{limit(f(x),x=+infinity)}
  gives you
  \xcasout{0}
  and
  \xcasin{limit(f(x),x=-infinity)}
  gives you
  \xcasout{+\infty}.
  Plotting the graph with
  \xcasin{plotfunc(f(x),x)}
  gives you
  \begin{center}
  \includegraphics[width=\textwidth]{xcas-ex2.png}
  \end{center}
  which matches with the previous information.

  \item
  Since
  \xcasin{f(0)}
  returns 
  \xcasout{\frac{1}{2}}
  the tangent line will pass through $x=0, y=1/2$.
  To define the function $f'$, enter
  \xcasin{fprime := unapply(normal(diff(f(x),x)),x)}
  Since 
  \xcasin{fprime(0)}
  returns
  \xcasout{-\frac{1}{2}}
  the tangent line has slope  $f'(0) = -1/2$.
  The tangent line is then
  \[ y = f'(0)*x + f(0)\]
  which is
  \[ y = -\frac{1}{2} x + \frac{1}{2}\]
  
  \item
  To evaluate the integral, set
  \xcasin{intf := int(f(t),t,0,x)}
  giving you
  \xcasout{-\frac{ln(2)-2}{2}+\frac{-2*x*\exp(x)+\ln(\exp(x)^2+1)*\exp(x)-2}{2*exp(x)}}
  which is the integral.  To find the limit, enter
  \xcasin{limit(intf,x=+infinity)}
  which gives you
  \xcasout{-\frac{\ln(2)}{2} + 1}
\end{enumerate}


\subsection{Integrals}

\noindent
\textbf{Exercise 1.}\\
Evaluate
\[\int_1^2 \frac{1}{x^3 + 1} dx\]
\noindent
\texttt{Solution.}\\
Using \texttt{normal} to simplify the result, the integral is
\xcasin{normal(int(1/(x\^{}3 + 1),x,1,2))}
giving you
\xcasout{\frac{\sqrt{3}}{18}*\pi-\frac{1}{3}*\ln(2)+\frac{1}{6}*\ln(3)}

\noindent
\textbf{Exercise 2.}\\
Do a partial fraction decomposition of $t^2/(1-t^4)$.  Then evaluate
$\int t^2/(1-t^4)dt$ and $\int \sin^2(x)/\cos(2x) dx$.

\noindent
\texttt{Solution.}\\
To find the partial fraction decomposition, enter
\xcasin{partfrac(t\^{}2/(1-t\^{}4))}
giving you a decomposition of
\xcasout{-\frac{1}{(t-1)*4} +\frac{1}{(t+1)*4}-\frac{1}{(t^2+1)*2}}

To find the first integral, you can enter
\xcasin{int(t\^{}2/(1-t\^{}4),t)}
If you were doing it by hand you'd want to use the partial fraction
decomposition; letting the computer do it, you could enter
\xcasin{int(-1/((t-1)*4) + 1/((t+1)*4) - 1/((t\^{}2+1)*2), t)}
Either way, you will get
\xcasout{\frac{\ln(|t+1|)}{4} - {\ln(|t-1|)}{4} -
\frac{\mbox{atan}(t)}{2}}

To evaluate the second integral, you could do some substitutions to
turn it into the first integral; first write everything in terms of
tangents with
\xcasin{trigtan(texpand((sin(x)\^{}2/cos(2*x))))}
giving you
\xcasout{-\frac{tan(x)^2}{tan(x)^2 - 1}}
Substituting $x = \arctan(x)$
\xcasin{subst(Int(-tan(x)\^{}2/(tan(x)\^{}2 - 1),x) x=atan(t))}
will give you
\xcasout{\int -\frac{t^2}{(1+t^2)* (t^2-1)} dt}
which is the first integral.  \texttt{Xcas} can also do it directly;
\xcasin{int(sin(x)\^{}2/cos(2*x),x)}
gives you the answer
\xcasout{2*\left(\frac{\ln(|\tan(x)+1|)}{8}-\frac{\ln(|tan(x)-1|)}{8}-\frac{x}{4}\right)}

\noindent
\textbf{Exercise 3.}\\
Evaluate the integrals $\int 1/t^2 dt$, $\int 1/(t*(t^2+1)) dt$ and 
$\int (t^2-t+1)/(t^4+t^2) dt$.

\noindent
\texttt{Solution.}\\
The first integral is
\xcasin{int(1/t\^{}2,t)}
which gives you
\xcasout{-\frac{1}{t}}
The second integral is
\xcasin{int(1/(t*(t\^{}2 + 1)),t)}
giving you
\xcasout{\ln(|t|) - \frac{\ln(t^2+1)}{2}}
For the third integral,
\xcasin{int((t\^{}2 - t + 1)/(t\^{}4 + t\^{}2),t)}
gives you
\xcasout{-\frac{1}{t} - \ln(|t|) + \frac{\ln(t^2 + 1)}{2}}

\subsection{Limits and series}

\noindent
\textbf{Exercise 1.}\\
Give a series expansion to order 7 centered at $x=0$ of $\sin(\sinh(x)) -
\sinh(\sin(x))$.

\noindent
\texttt{Solution.}\\
Entering
\xcasin{series(sin(sinh(x)) - sinh(sin(x)),x=0,7)}
gives you
\xcasout{-\frac{x^7}{45} + x^8*\text{order\_size}(x)}

\noindent
\textbf{Exercise 2.}\\
Give a series expansion to order 4 centered at $x=0$ of 
\[\frac{\ln(\cos(x))}{\exp(x+x^2)}\]

\noindent
\texttt{Solution.}\\
\texttt{Solution.}\\
Entering
\xcasin{series(ln(cos(x))/exp(x+x\^{}2),x=0,4)}
gives you
\xcasout{-\frac{x^2}{2}+\frac{x^3}{2}+\frac{x^4}{6}+x^5*\text{order\_size}(x)}

\subsection{Differential equations}

\noindent
\textbf{Exercise 1.}\\
Find the solutions of the differential equation
\[ x(x^2-1)y' + 2y = 0\]

\noindent
\texttt{Solution.}\\
Entering
\xcasin{desolve(x*(x\^{}2-1)*y' + 2*y = 0,y)}
gives you
\xcasout{\frac{c_0 * x^2}{x^2-1}}

\noindent
\textbf{Exercise 2.}\\
Find the solutions of the differential equation
\[ x(x^2-1)y' + 2y = x^2\]

\noindent
\texttt{Solution.}\\
Entering
\xcasin{desolve(x*(x\^{}-1)*y' + 2*y = x\^{}2,y)}
gives you
\xcasout{\frac{c_0 * x^2 + x^2*\ln(x)}{x^2-1}}


\subsection{Matrices}

\noindent
\textbf{Exercise 1.}\\
Let
\[ M_a = 
\begin{pmatrix}
2a-1 & a * 2a-1\\
a^2 + a - 2 & a^2 - 1 & a-1\\
a^2 + a - 1 & a^2 + a - 1 & a
\end{pmatrix}
\]
(a) For which values of $a$ is $M_a$ invertible? When $M_a$ is not
invertible, give its rank.\\
(b) Find the inverse of $M_2$.

\noindent
\texttt{Solution.}\\
Enter
\xcasin{M(a) := [[2*a-1, a,
2*a-1],[a\^{}2+a-2,a\^{}2-1,a-1],[a\^{}2+a-1,a\^{}2+1-a,a]]}

(a)  Recall that a matrix is invertible exactly when its determinant
is not zero.  Note that
\xcasin{det(M(a))}
is
\xcasout{2*a^4-2*a^3-2*a^2+2*a}
Since
\xcasin{solve(det(M(a))=0,a)}
returns 
\xcasout{[-1,0,1]}
the matrix $M$ is invertible for all $a$ except for $a=-1$, $a=0$ and
$a=1$.

For $a=-1$, the rank is
\xcasin{rank(M(1))}
which is
\xcasout{2}
For $a=0$, the rank is
\xcasin{rank(M(0))}
which is
\xcasout{2}
For $a=1$, the rank is
\xcasin{rank(M(1))}
which is
\xcasout{1}

(b) The inverse of $M_2$ is
\xcasin{inv(M(2))}
which is
\xcasout{
\begin{pmatrix}
1/12 & 11/12 & -7/12\\
-1/4 & -3/4 & 3/4 \\
5/12 & -5/12 & 1/12
\end{pmatrix}}

Note that we defined $M$ as
\xcasin{M := [[2*a-1, a,
2*a-1],[a\^{}2+a-2,a\^{}2-1,a-1],[a\^{}2+a-1,a\^{}2+1-a,a]]}
then instead of evaluating $M$ at various values of $a$, you would
have to do a substitution.  The inverse of $M_2$ would then be given by
\xcasin{inv(subst(M,a=2))}


\noindent
\textbf{Exercise 2.}\\
Let
\[ A =
\begin{pmatrix}
1 & 1 & a\\
1 & a & 1\\
a & 1 & 1
\end{pmatrix}
\]
For which values of $a$ is $A$ diagonalizable?

\noindent
\texttt{Solution.}\\
Enter
\xcasin{A := [[1,1,a],[1,a,1],[a,1,1]]}
This matrix will be diagonalizable exactly when it has three
independent eigenvectors.  If it has three distinct eigenvalues, then
it will have three independent eigenvectors.
To find the eigenvalues of $A$, enter
\xcasin{eigenvalues(A)}
which gives you
\xcasout{(-a + 1, a + 2, a - 1)}
These will be distinct for $a\not= 1$, so $A$ will be diagonalizable
for $a\not= 1$.  For $a=1$, there is a double eigenvalue of $0$, and
$A$ may or may not be diagonalizable.

If $A$ is a diagonalizable matrix, then the Jordan form is the
diagonal form.  If you enter
\xcasin{jordan(A)}
you will get
\xcasout{
%\left(
%\begin{pmatrix}
%1 & 1 & -1\\
%0 & 1 & 2\\
%-1 & 1 & -1
%\end{pmatrix}}
%,
\begin{pmatrix}
-a + 1 & 0 & 0\\
0 & a+2 & 0\\
0 & 0 & a-1
\end{pmatrix}
%\right)
}
The second matrix is the Jordan form (and the first matrix is the
transition matrix).  Since this is diagonal, the matrix $A$ is always
diagonalizable.

\section{True or false exercises}

For the following true/false questions, also explain why it is true or
false.

\begin{exo}{\rm
True or false:  The following commands display the exact value 2.
\begin{enumerate}
\itemf
\texttt{1+1:;}
\itemvv
\texttt{3-1}
\itemf
\texttt{1.5+1/2}
\itemvv
\texttt{4/2}
\itemvv
\texttt{sqrt(4)}
\itemf
\texttt{evalf(sqrt(4))}
\itemvv
\texttt{1\^{}(1+1)+1\^{}(1+1)}
\itemf
\texttt{(1+1)\^{}(1+1)}
\itemf
\texttt{1*1\^{}(1+1)}
\itemvv
\texttt{1+1*1\^{}1}
\itemvv
\texttt{(1+1)*1\^{}(1+1)}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false: The following commands assign the exact value $2$ to
the variable $c$.
\begin{enumerate}
\itemvv
\texttt{c:=2:;}
\itemvv
\texttt{c:=2}
\itemf
\texttt{c==2}
\itemf
\texttt{c=2}
\itemvv
\texttt{c:=4/2}
\itemf
\texttt{c:=3/1.5}
\itemvv
\texttt{c:=(2+2)/2}
\itemf
\texttt{c:=(2.0+2)/2}
\itemf
\texttt{c:=2a/a}
\itemf
\texttt{c:=(2*a)/a}
\itemvv
\texttt{c:=2*a/a}
\itemvv
\texttt{c:=1:; c:=2*c}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands assign a valid expression to
the variable $c$.
\begin{enumerate}
\itemvv
\texttt{c:=ab}
\itemvv
\texttt{c:=a*b}
\itemf
\texttt{c==a}
\itemvv
\texttt{c:= c==a}
\itemf
\texttt{c:=a+(a*b))/2}
\itemf
\texttt{c=a+a*b}
\itemvv
\texttt{c:=a/b}
\itemf
\texttt{c->a/b}
\itemvv
\texttt{a/b=>c}
\itemvv
\texttt{c:=a/0}
\itemvv
\texttt{c:=2*a/a}
\itemf
\texttt{c:=1: c:=2*c}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands assign the value $1$ to the
variable $b$.
\begin{enumerate}
\itemf
\texttt{a:=1:; b=a}
\itemvv
\texttt{a:=1:; b:=a}
\itemf
\texttt{a:=1:; b:='a':; a:=3:; b}
\itemf
\texttt{a:=1:; b:="a"}
\itemvv
\texttt{b:=a/a}
\itemvv
\texttt{b:=a\^{}0}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands return the exact value $2$.
\begin{enumerate}
\itemvv
\texttt{1/2\^{}-1}
\itemvv
\texttt{a:=2}
\itemvv
\texttt{2*a/a}
\itemf
\texttt{sqrt(4*a\^{}2)/a}
\itemf
\texttt{simplify(sqrt(4*a\^{}2)/a)}
\itemf
\texttt{sqrt(4*a\^{}4)/(a*a)}
\itemvv
\texttt{simplify(sqrt(4*a\^{}4)/(a*a))}
\itemf
\texttt{expand(sqrt(4*a\^{}4)/(a*a))}
\itemvv
\texttt{normal(sqrt(4*a\^{}4)/(a*a))}
\itemf
\texttt{ln(a\^{}2)/ln(a)}
\itemvv
\texttt{simplify(ln(a\^{}2)/ln(a))}
\itemf
\texttt{texpand(ln(a\^{}2)/ln(a))}
\itemvv
\texttt{normal(texpand(ln(a\^{}2)/ln(a)))}
\itemvv
\texttt{-ln(exp(-2))}
\itemf
\texttt{1/exp(-ln(2))}
\itemvv
\texttt{exp2pow(1/exp(-ln(2)))}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands define the function $f$ that
maps $x$ to $x^2$.
\begin{enumerate}
\itemvv
\texttt{f(x):=x\^{}2}
\itemvv
\texttt{f(a):=a\^{}2}
\itemf
\texttt{f := x\^{}2}
\itemf
\texttt{f(x):=a\^{}2}
\itemvv
\texttt{f := a->a\^{}2}
\itemf
\texttt{f(x):=evalf(x\^{}2)}
\itemf
\texttt{f(x):=simplify(x\^{}3/x)}
\itemf
\texttt{f(x):=simplify(x*x*a/a)}
\itemvv
\texttt{E:=x\^{}2:;f:=unapply(E,x)}
\itemvv
\texttt{f:=unapply(simplify(x\^{}3/x),x)}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands define the function $f$ that
maps the pair $(x,y)$ to $x*y$.
\begin{enumerate}
\itemf
\texttt{f:=x*y}
\itemf
\texttt{f:=x->x*y}
\itemvv
\texttt{f:=(a,b)->a*b}
\itemvv
\texttt{f(x,y):=x*y}
\itemf
\texttt{f(x,y):=xy}
\itemvv
\texttt{f:=((x,y)->x)*((x,y)->y)}
\itemf
\texttt{f:=(x->x)*(y->y)}
\itemvv
\texttt{f:=unapply(x*y,x,y)}
\itemvv
\texttt{E:=x*y:;f:=unapply(E,x,y)}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands define the function $f1$ which
maps $x$ to $2*x$.
\begin{enumerate}
\itemf
\texttt{f(x):=x\^{}2:; f1(x):=diff(f(x))}
\itemf
\texttt{f1:=diff(x\^{}2)}
\itemvv
\texttt{f1:=unapply(diff(x\^{}2),x)}
\itemvv
\texttt{f(x):=x\^{}2:; f1:=function\_diff(f)}
\itemf
\texttt{f(x):=x\^{}2:; f1:=diff(f)}
\itemf
\texttt{f(x):=x\^{}2:; f1:=diff(f(x))}
\itemvv
\texttt{f(x):=x\^{}2:; f1:=unapply(diff(f(x),x),x)}
\itemf
\texttt{f(x):=x\^{}2:; f1:=x->diff(f(x))}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands return the expression $2*x*y$.
\begin{enumerate}
\itemvv
\texttt{A:=diff(x\^{}2*y)}
\itemf
\texttt{A:=x->diff(x\^{}2*y)}
\itemvv
\texttt{A:=diff(x\^{}2*y,x)}
\itemf
\texttt{A:=diff(x\^{}2*y,y)}
\itemf
\texttt{A:=diff(x*y\^{}2,y)}
\itemvv
\texttt{A:=normal(diff(x*y\^{}2,y))}
\itemvv
\texttt{A:=normal(diff(x\^{}2*y\^{}2/2,x,y))}
\itemvv
\texttt{A:=normal(diff(diff(x\^{}2*y\^{}2/2,x),y))}
\end{enumerate}
}\end{exo}
%-----------------------------------------
\begin{exo}{\rm
True or false: The following commands display a rhombus.
\begin{enumerate}
\itemvv
\texttt{losange(1,i,pi/3)}
\itemf
\texttt{losange((1,0),(0,1),pi/3)}
\itemvv
\texttt{losange(point(1,0),point(0,1),pi/3)}
\itemf
\texttt{parallelogram(0,1,1+i)}
\itemvv
\texttt{parallelogram(0,1,1/2+i*sqrt(3)/2)}
\itemvv
\texttt{quadrilateral(0,1,3/2+i*sqrt(3)/2,1/2+i*sqrt(3)/2)}
\itemvv
\texttt{polygon(0,1,3/2+i*sqrt(3)/2,1/2+i*sqrt(3)/2)}
\itemf
\texttt{polygonplot(0,1,3/2+i*sqrt(3)/2,1/2+i*sqrt(3)/2)}
\itemf
\texttt{polygonplot([0,1,3/2,1/2],[0,0,sqrt(3)/2,sqrt(3)/2])}
\itemf
\texttt{open\_polygon(0,1,3/2+i*sqrt(3)/2,1/2+i*sqrt(3)/2)}
\itemvv
\texttt{open\_polygon(0,1,3/2+i*sqrt(3)/2,1/2+i*sqrt(3)/2,0)}
\end{enumerate}
}\end{exo}
%-----------------------------------------
\begin{exo}{\rm
True or false:  The following commands display the unit circle.
\begin{enumerate}
\itemvv
\texttt{circle(0,1)}
\itemf
\texttt{arc(-1,1,2*pi)}
\itemvv
\texttt{arc(-1,1,pi), arc(-1,1,-pi)}
\itemf
\texttt{plot(sqrt(1-x\^{}2))}
\itemvv
\texttt{plot(sqrt(1-x\^{}2)), plot(-sqrt(1-x\^{}2))}
\itemvv
\texttt{plotimplicit(x\^{}2+y\^{}2-1,x,y)}
\itemf
\texttt{plotparam(cos(t),sin(t))}
\itemvv
\texttt{plotparam(cos(t)+i*sin(t))}
\itemvv
\texttt{plotparam(cos(t)+i*sin(t),t)}
\itemvv
\texttt{plotparam(exp(i*t))}
\itemf
\texttt{plotparam(cos(t)+i*sin(t),t,0,pi)}
\itemvv
\texttt{plotparam(cos(t)+i*sin(t),t,0,2*pi)}
\itemvv
\texttt{plotpolar(1,t)}
\itemvv
\texttt{plotpolar(1,t,-pi,pi)}
\itemvv
\texttt{plotpolar(1,t,0,2*pi)}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
True or false:  The following commands return the list $[1,2,3,4,5]$.
\begin{enumerate}
\itemvv
\texttt{l:=[1,2,3,4,5]}
\itemf
\texttt{l:=op([1,2,3,4,5])}
\itemvv
\texttt{l:=nop(1,2,3,4,5)}
\itemf
\texttt{l:=seq(i,i=1..5)}
\itemf
\texttt{l:=seq(j=1..5)}
\itemf
\texttt{l:=seq(j,j=1..5)}
\itemf
\texttt{l:=seq(j,j,1..5)}
\itemvv
\texttt{l:=seq(j,j,1,5)}
\itemvv
\texttt{l:=seq(j,j,1,5,1)}
\itemvv
\texttt{l:=[seq(j,j=1..5)]}
\itemvv
\texttt{l:=nop(seq(j,j=1..5))}
\itemf
\texttt{l:=[k\$k=1..5]}
\itemvv
\texttt{l:=[k\$(k=1..5)]}
\itemf
\texttt{l:=[k+1\$(k=0..4)]}
\itemvv
\texttt{l:=[(k+1)\$(k=0..4)]}
\itemvv
\texttt{l:=cumSum([1\$5])}
\itemf
\texttt{l:=sort(5,2,3,1,4)}
\itemvv
\texttt{l:=sort([5,2,3,1,4])}
\itemf
\texttt{l:=makelist(k,1,5)}
\itemvv
\texttt{l:=makelist(x->x,1,5)}
\end{enumerate}
}\end{exo}

%--------------------------------------------------------------
\begin{exo}{\rm
True or false: The following commands return the list
$[1.0,0.5,0.25,0.125,0.0625]$.
\begin{enumerate}
\itemvv
\texttt{0.5\^{}[0,1,2,3,4]}
\itemf
\texttt{2\^{}(-[0,1,2,3,4])}
\itemvv
\texttt{2.0\^{}(-[0,1,2,3,4])}
\itemvv
\texttt{2\^{}-evalf([0,1,2,3,4])}
\itemvv
\texttt{evalf(2\^{}(-[0,1,2,3,4]))}
\itemf
\texttt{seq(2\^{}(-n),n=0..4)}
\itemvv
\texttt{evalf([seq(2\^{}(-n),n=0..4)])}
\itemf
\texttt{1/evalf(2\^{}n\$(n=0..4))}
\itemf
\texttt{evalf(2\^{}n\$(n=0..4))\^{}(-1)}
\itemvv
\texttt{[evalf(2\^{}n\$(n=0..4))]\^{}(-1)}
\itemvv
\texttt{evalf(nop(2\^{}n\$(n=0..4))\^{}(-1))}
\itemvv
\texttt{a:=[]:; (a:=append(a,0.5\^{}k))\$(k=0..4):; a}
\itemf
\texttt{makelist(k->2\^{}(-k),0,4)}
\itemvv
\texttt{f:=x->2.0\^{}(-x):; makelist(f,0,4)}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
Let $\ell$ be the list $[1,0,2,0,3]$.  True or false:  The following
commands return the integer $10203$.
\begin{enumerate}
\itemvv
\texttt{l*10\^{}[4,3,2,1,0]}
\itemf
\texttt{l*10\^{}[0,1,2,3,4]}
\itemvv
\texttt{revlist(l)*10\^{}[0,1,2,3,4]}
\itemvv
\texttt{l*seq(10\^{}n,n,4,0,-1)}
\itemvv
\texttt{expr(char(sum(l,48)))}
\itemvv
\texttt{l*nop(seq(10\^{}n,n=(4..0)))}
\itemvv
\texttt{l*10\^{}nop(j\$(j=4..0))}
\itemf
\texttt{l*10\^{}(j\$(j=4..0))}
\itemf
\texttt{l*10\^{}(j\$(j=4..0))}
\itemvv
\texttt{l*nop(10\^{}j)\$(j=4..0))}
\end{enumerate}
}\end{exo}
%--------------------------------------------------------------
\begin{exo}{\rm
Let $n$ be the integer $10203$.
True or false:  The following commands return the list of integers
$[1,0,2,0,3]$.
\begin{enumerate}
\itemf
\texttt{(floor(n/10\^{}k)-floor(n/10\^{}(k+1))*10)\$(k=4..0)}
\itemvv
\texttt{[(floor(n/10\^{}k)-floor(n/10\^{}(k+1))*10)\$(k=4..0)]}
\itemf
\texttt{seq(iquo(n,10\^{}k)-10*iquo(n,10\^{}(k+1)),k=4..0)}
\itemvv
\texttt{nop(seq(iquo(n,10\^{}k)-10*iquo(n,10\^{}(k+1)),k=4..0))}
\itemvv
\texttt{revlist(convert(n,base,10))}
\itemvv
\texttt{sum(asc(string(n)),-48)}
\itemf
\texttt{string(n)}
\itemf
\texttt{mid(string(n),k,1)\$(k=0..4)}
\itemf
\texttt{[mid(string(n),k,1)\$(k=0..4)]}
\itemvv
\texttt{[expr(mid(string(n),k,1))\$(k=0..4)]}
\end{enumerate}
}\end{exo}
%-----------------------------------------
\begin{exo}{\rm
The polynomial $P$ is defined by
\texttt{P:=X\^{}4+2*X\^{}2+3}.
True or false:  The following commands display the reverse polynomial
\texttt{3*X\^{}4+2*X\^{}2+1}.
\begin{enumerate}
\itemvv
\texttt{poly2symb(revlist(symb2poly(P)))}
\itemf
\texttt{X\^{}4*subst(P,X,1/X)}
\itemvv
\texttt{normal(X\^{}4*subst(P,X,1/X))}
\itemf
\texttt{normal(subst(P,X,1/X))}
\itemvv
\texttt{normal(subst(P/X\^{}4,X,1/X))}
\itemvv
\texttt{normal(X\^{}degree(P)*subst(P,X,1/X))}
\itemvv
\texttt{getNum(subst(P,X,1/X))}
\itemf
\texttt{f:=unapply(P,X):; part(f(1/X),1)}
\itemvv
\texttt{f:=unapply(P,X):; part(normal(f(1/X)),1)}
\end{enumerate}
}\end{exo}
%-----------------------------------------



\newpage

\printindex

\end{document}