1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// Giac integration test file: "0 Independent test suites\Apostol Problems.txt"
// "nock" means we do not check the antiderivative
I:=i;
lst:=[
// Joel Moses - Symbolic Integration Ph.D. Thesis (1967)
// Chapter 2 - How SIN differs from SAINT
[cot(x)^4,x,3,x+cot(x)-1/3*cot(x)^3],
[1/(x^4*(1+x^2)),x,3,(-1/3)/x^3+1/x+arctan(x)],
[(x+x^2)/sqrt(x),x,2,2/3*x^(3/2)+2/5*x^(5/2)],
[cos(x),x,1,sin(x)],
[exp(x^2)*x,x,1,1/2*exp(x^2)],
[sec(x)^2*tan(x),x,2,1/2*sec(x)^2],
[x*sqrt(1+x^2),x,1,1/3*(1+x^2)^(3/2)],
[exp(x)*sin(x),x,1,-1/2*exp(x)*cos(x)+1/2*exp(x)*sin(x)],
// Chapter 3 - SCHATCHEN - A Matching Program for Algebraic Expressions
[cos(x)*csc(x)^2/sin(x)^2,x,2,-1/3*csc(x)^3],
// Chapter 4 - The First Stage of Sin
[sin(exp(x)),x,2,Si(exp(x))],
[sin(y)/y,y,1,Si(y)],
[exp(x)+sin(x),x,3,exp(x)-cos(x)],
[exp(x^2)+2*exp(x^2)*x^2,x,4,exp(x^2)*x],
[(exp(x)+x)^2,x,5,-2*exp(x)+1/2*exp(2*x)+2*exp(x)*x+1/3*x^3],
[2*exp(x)+exp(2*x)+x^2,x,3,2*exp(x)+1/2*exp(2*x)+1/3*x^3],
[cos(x)*sin(x),x,2,1/2*sin(x)^2],
[exp(x^2)*x,x,1,1/2*exp(x^2)],
[x*sqrt(1+x^2),x,1,1/3*(1+x^2)^(3/2)],
[exp(x)/(1+exp(x)),x,2,log(1+exp(x))],
[x^(3/2),x,1,2/5*x^(5/2)],
[cos(3+2*x),x,1,1/2*sin(3+2*x)],
[2*exp(2*x)*y*z,x,2,exp(2*x)*y*z],
[exp(x)*cos(exp(x))^2*sin(exp(x)),x,3,-1/3*cos(exp(x))^3],
// Chapter 4 - The Second Stage of Sin
[x*sqrt(1+x),x,2,-2/3*(1+x)^(3/2)+2/5*(1+x)^(5/2)],
[1/(-1+x^4),x,3,-1/2*arctan(x)-1/2*arctanh(x)],
// Method 1) Elementary function of exponentials
[exp(x)/(2+3*exp(2*x)),x,2,arctan(exp(x)*sqrt(3/2))/sqrt(6)],
[exp(2*x)/(A+B*exp(4*x)),x,2,1/2*arctan(exp(2*x)*sqrt(B)/sqrt(A))/(sqrt(A)*sqrt(B))],
[exp(1+x)/(1+exp(x)),x,3,E*log(1+exp(x))],
[(10*E)^x,x,1,(10*E)^x/(1+log(10))],
// Method 2) Substitution for an integral power
[x^3*sin(x^2),x,3,-1/2*x^2*cos(x^2)+1/2*sin(x^2)],
[x^7/(1+x^12),x,7,-1/12*log(1+x^4)+1/24*log(1-x^4+x^8)-1/4*arctan((1-2*x^4)/sqrt(3))/sqrt(3)],
[x^(3*a)*sin(x^(2*a)),x,3,1/4*I*x^(1+3*a)*GAMMA(1/2*(3+1/a),-I*x^(2*a))/(a*(-I*x^(2*a))^(1/2*(1+3*a)/a))-1/4*I*x^(1+3*a)*GAMMA(1/2*(3+1/a),I*x^(2*a))/(a*(I*x^(2*a))^(1/2*(1+3*a)/a))],
// Method 3) Substitution for a rational root of a linear function of x
[cos(sqrt(x)),x,3,2*cos(sqrt(x))+2*sin(sqrt(x))*sqrt(x)],
[x*sqrt(1+x),x,2,-2/3*(1+x)^(3/2)+2/5*(1+x)^(5/2)],
[1/(x^(1/3)+x^(1/2)),x,4,6*x^(1/6)-3*x^(1/3)-6*log(1+x^(1/6))+2*sqrt(x)],
[sqrt((1+x)/(3+2*x)),x,4,-1/2*arcsinh(sqrt(2)*sqrt(1+x))/sqrt(2)+1/2*sqrt(1+x)*sqrt(3+2*x)],
// Method 4) Binomial - Chebyschev
[x^4/(1-x^2)^(5/2),x,3,1/3*x^3/(1-x^2)^(3/2)+arcsin(x)-x/sqrt(1-x^2)],
[x^(1/2)*(1+x)^(5/2),x,6,5/24*x^(3/2)*(1+x)^(3/2)+1/4*x^(3/2)*(1+x)^(5/2)-5/64*arcsinh(sqrt(x))+5/32*x^(3/2)*sqrt(1+x)+5/64*sqrt(x)*sqrt(1+x)],
// Method 5) Arctrigonometric substitutions
[x^4/(1-x^2)^(5/2),x,3,1/3*x^3/(1-x^2)^(3/2)+arcsin(x)-x/sqrt(1-x^2)],
[sqrt(A^2+B^2-B^2*y^2)/(1-y^2),y,5,B*arctan(B*y/sqrt(A^2+B^2-B^2*y^2))+A*arctanh(A*y/sqrt(A^2+B^2-B^2*y^2))],
// Method 6) Elementary function of trigonometric functions
[sin(x)^2,x,2,1/2*x-1/2*cos(x)*sin(x)],
[sqrt(A^2+B^2*sin(x)^2)/sin(x),x,6,-B*arctan(B*cos(x)/sqrt(A^2+B^2*sin(x)^2))-A*arctanh(A*cos(x)/sqrt(A^2+B^2*sin(x)^2)),-B*arctan(B*cos(x)/sqrt(A^2+B^2-B^2*cos(x)^2))-A*arctanh(A*cos(x)/sqrt(A^2+B^2-B^2*cos(x)^2))],
[1/(1+cos(x)),x,1,sin(x)/(1+cos(x))],
// Method 7) Rational function times an exponential
[exp(x)*x,x,2,-exp(x)+exp(x)*x],
[exp(x)*x/(1+x)^2,x,1,exp(x)/(1+x)],
[exp(x^2)*(1+2*x^2),x,5,exp(x^2)*x],
[exp(x^2),x,1,1/2*erfi(x)*sqrt(Pi)],
[exp(x)/x,x,1,Ei(x)],
// Method 8) Rational functions
[x/(1+x^3),x,6,-1/3*log(1+x)+1/6*log(1-x+x^2)-arctan((1-2*x)/sqrt(3))/sqrt(3)],
[1/(-1+x^6),x,10,-1/3*arctanh(x)-1/6*arctanh(x/(1+x^2))-1/2*arctan(x*sqrt(3)/(1-x^2))/sqrt(3),-1/3*arctanh(x)+1/12*log(1-x+x^2)-1/12*log(1+x+x^2)+1/2*arctan((1-2*x)/sqrt(3))/sqrt(3)-1/2*arctan((1+2*x)/sqrt(3))/sqrt(3)],
[1/(A^4-A^2*B^2+(-A^2+B^2)*x^2),x,1,arctanh(x/A)/(A*(A^2-B^2))],
// Method 9) Rational function times a log or arctrigonometric function
[x*log(x),x,1,-1/4*x^2+1/2*x^2*log(x)],
[x^2*arcsin(x),x,4,-1/9*(1-x^2)^(3/2)+1/3*x^3*arcsin(x)+1/3*sqrt(1-x^2)],
[1/(1+2*x+x^2),x,2,(-1)/(1+x)],
// Method 10) Rational function times an elementary function of log(a+b x)
[log(x)/(1+log(x))^2,x,7,x/(1+log(x))],
[1/(x*(1+log(x)^2)),x,2,arctan(log(x))],
[1/log(x),x,1,Li(x)],
// Method 11) Expansion of the integrand
[x*(cos(x)+sin(x)),x,6,cos(x)-x*cos(x)+sin(x)+x*sin(x)],
[(exp(x)+x)/exp(x),x,4,(-1)/exp(x)+x-x/exp(x)],
[(1+exp(x))^2*x,x,6,-2*exp(x)-1/4*exp(2*x)+2*exp(x)*x+1/2*exp(2*x)*x+1/2*x^2],
// Chapter 4 - The Third Stage of Sin
[x*cos(x),x,2,cos(x)+x*sin(x)],
[cos(sqrt(x)),x,3,2*cos(sqrt(x))+2*sin(sqrt(x))*sqrt(x)],
// The Integration-by-Parts Methods
[x*cos(x),x,2,cos(x)+x*sin(x)],
[x*log(x)^2,x,2,1/4*x^2-1/2*x^2*log(x)+1/2*x^2*log(x)^2],
// The Derivative-divides Method
[cos(x)*(1+sin(x)^3),x,2,sin(x)+1/4*sin(x)^4],
[1/(x*(1+log(x)^2)),x,2,arctan(log(x))],
[1/((1+arcsin(x)^2)*sqrt(1-x^2)),x,2,arctan(arcsin(x))],
[sin(x)/(cos(x)+sin(x)),x,2,1/2*x-1/2*log(cos(x)+sin(x))],
// An Example of SIN's Performance
[-sqrt(A^2+B^2*(1-y^2))/(1-y^2),y,6,-B*arctan(B*y/sqrt(A^2+B^2-B^2*y^2))-A*arctanh(A*y/sqrt(A^2+B^2-B^2*y^2))],
[(-A^2-B^2)*cos(z)^2/(B*(1-(A^2+B^2)*sin(z)^2/B^2)),z,5,-B*z-A*arctanh(A*tan(z)/B)],
[(-A^2-B^2)/(B*(1+w^2)^2*(1-(A^2+B^2)*w^2/(B^2*(1+w^2)))),w,6,-B*arctan(w)-A*arctanh(A*w/B)],
[-B*(A^2+B^2)/((1+w^2)*(B^2-A^2*w^2)),w,4,-B*arctan(w)-A*arctanh(A*w/B)],
// SAINT and SIN solutions of the same problem
[x^4/(1-x^2)^(5/2),x,3,1/3*x^3/(1-x^2)^(3/2)+arcsin(x)-x/sqrt(1-x^2)],
[sin(y)^4/cos(y)^4,y,3,y-tan(y)+1/3*tan(y)^3],
[z^4/(1+z^2),z,3,-z+1/3*z^3+arctan(z)],
// Chapter 5 - The Edge Heuristic
[exp(x^2)*(1+2*x^2),x,5,exp(x^2)*x],
[exp(x^2)*(1+4*x^2+x^3+5*x^4+2*x^6)/(1+x^2)^2,x,10,exp(x^2)*x+1/2*exp(x^2)/(1+x^2)],
[exp(-1-x),x,1,-exp(-1-x)],
[(1/x+x)*log(x),x,5,-1/4*x^2+1/2*x^2*log(x)+1/2*log(x)^2],
[x/(1+x^4),x,2,1/2*arctan(x^2)],
[x^5/(1+x^4),x,3,1/2*x^2-1/2*arctan(x^2)],
[1/(1+tan(x)^2),x,3,1/2*x+1/2*cos(x)*sin(x)],
[x^4/(1-x^2)^(5/2),x,3,1/3*x^3/(1-x^2)^(3/2)+arcsin(x)-x/sqrt(1-x^2)],
[-x^2/(1-x^2)^(3/2),x,2,arcsin(x)-x/sqrt(1-x^2)],
[exp(x)*sin(x),x,1,-1/2*exp(x)*cos(x)+1/2*exp(x)*sin(x)],
// Appendix C - Slagle's Thesis Integration Problems
[1/x,x,1,log(x)],
[sec(2*t)/(1+sec(t)^2+3*tan(t)),t,4,-1/12*log(cos(t)-sin(t))-1/4*log(cos(t)+sin(t))+1/3*log(2*cos(t)+sin(t))+(-1/2)/(1+tan(t))],
[1/sec(x)^2,x,2,1/2*x+1/2*cos(x)*sin(x)],
[(1+x^2)/sqrt(x),x,2,2/5*x^(5/2)+2*sqrt(x)],
[x/sqrt(5+2*x+x^2),x,3,-arcsinh(1/2*(1+x))+sqrt(5+2*x+x^2)],
[cos(x)*sin(x)^2,x,2,1/3*sin(x)^3],
[exp(x)/(1+exp(x)),x,2,log(1+exp(x))],
[exp(2*x)/(1+exp(x)),x,3,exp(x)-log(1+exp(x))],
[1/(1-cos(x)),x,1,-sin(x)/(1-cos(x))],
[sec(x)^2*tan(x),x,2,1/2*sec(x)^2],
[x*log(x),x,1,-1/4*x^2+1/2*x^2*log(x)],
[cos(x)*sin(x),x,2,1/2*sin(x)^2],
[(1+x)/sqrt(2*x-x^2),x,3,-2*arcsin(1-x)-sqrt(2*x-x^2)],
[2*exp(x)/(2+3*exp(2*x)),x,3,arctan(exp(x)*sqrt(3/2))*sqrt(2/3)],
[x^4/(1-x^2)^(5/2),x,3,1/3*x^3/(1-x^2)^(3/2)+arcsin(x)-x/sqrt(1-x^2)],
[exp(6*x)/(1+exp(4*x)),x,3,1/2*exp(2*x)-1/2*arctan(exp(2*x))],
[log(2+3*x^2),x,3,-2*x+x*log(2+3*x^2)+2*arctan(x*sqrt(3/2))*sqrt(2/3)],
// Appendix D - MacIntosh Integration Problems
[1/(r*sqrt(-a^2+2*H*r^2)),x,1,x/(r*sqrt(-a^2+2*H*r^2))],
[1/(r*sqrt(-a^2-e^2+2*H*r^2)),x,1,x/(r*sqrt(-a^2-e^2+2*H*r^2))],
[1/(r*sqrt(-a^2+2*H*r^2-2*K*r^4)),x,1,x/(r*sqrt(-a^2+2*H*r^2-2*K*r^4))],
[1/(r*sqrt(-a^2-e^2+2*H*r^2-2*K*r^4)),x,1,x/(r*sqrt(-a^2-e^2+2*H*r^2-2*K*r^4))],
[1/(r*sqrt(-a^2-2*K*r+2*H*r^2)),x,1,x/(r*sqrt(-a^2-2*r*(K-H*r)))],
[1/(r*sqrt(-a^2-e^2-2*K*r+2*H*r^2)),x,1,x/(r*sqrt(-a^2-e^2-2*K*r+2*H*r^2))],
[r/sqrt(-a^2+2*E*r^2),x,1,r*x/sqrt(-a^2+2*E*r^2)],
[r/sqrt(-a^2-e^2+2*E*r^2),x,1,r*x/sqrt(-a^2-e^2+2*E*r^2)],
[r/sqrt(-a^2+2*E*r^2-2*K*r^4),x,1,r*x/sqrt(-a^2+2*E*r^2-2*K*r^4)],
[r/sqrt(-a^2-e^2+2*E*r^2-2*K*r^4),x,1,r*x/sqrt(-a^2-e^2+2*E*r^2-2*K*r^4)],
[r/sqrt(-a^2-e^2-2*K*r+2*H*r^2),x,1,r*x/sqrt(-a^2-e^2-2*K*r+2*H*r^2)]
];
res:=[]:;
S:=182; S:=size(lst);
failint:=[]; failsimp:=[]; nock:=[]; ass:=[];
print("Integration independent test suites, Moses "+S);
file:=fopen("intindm.tst");
T0:=time();
for j from 0 to S-1 do
l:=eval(lst,1)[j];
f:=l[0]; v:=l[1]; hyp:=l[2]; print(f);
purge(unquote(v));
if (type(hyp)==string) expr(hyp); // eval assumption
print(j+1,f,v,hyp,about(unquote(v)));
try { g:=integrate(f,unquote(v)); } catch(err){ g:="integrate(err)"; }
s:=""+eval(g,1);
h:=false;
fail:=size(s.find("integrate("))>0 || hyp==x;
if (fail) failint.append(j+1);
if (hyp=="nock") nock.append(j+1);
if (hyp.type==string && size(hyp.find("assume("))>0) ass.append(j+1);
if (hyp!="nock" && !fail) h:=simplify(diff(g,unquote(v))-f); else print("nock");
purge(unquote(assumptions));
fgh:=""+eval([j+1,f,g,h],1);
if (eval(h,1)!=0) failsimp.append(j+1);
print(fgh);
//res.append([f,g,h]); print(res[size(res)-1]);
fprint(file,"",fgh);
od:;
fprint(file,"","Time:",time()-T0,", tests: ",S,", integration failures: ",size(failint),failint,", simplification failures: ",size(failsimp),failsimp,", not cheked: ",size(nock),nock,", assumptions: ",size(ass),ass);
fclose(file);
print("Integration independent test suites, Moses ","tests: ",S,", integration failures: ",size(failint),failint,", simplification failures: ",size(failsimp),failsimp,", not cheked: ",size(nock),nock,", assumptions: ",size(ass),ass);
//res;
|