1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Zoltán Vörös
* 2020 Diego Elio Pettenò
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "approx.h"
//| """Numerical approximation methods"""
//|
const mp_obj_float_t approx_trapz_dx = {{&mp_type_float}, MICROPY_FLOAT_CONST(1.0)};
#if ULAB_NUMPY_HAS_INTERP
//| def interp(
//| x: ulab.numpy.ndarray,
//| xp: ulab.numpy.ndarray,
//| fp: ulab.numpy.ndarray,
//| *,
//| left: Optional[_float] = None,
//| right: Optional[_float] = None
//| ) -> ulab.numpy.ndarray:
//| """
//| :param ulab.numpy.ndarray x: The x-coordinates at which to evaluate the interpolated values.
//| :param ulab.numpy.ndarray xp: The x-coordinates of the data points, must be increasing
//| :param ulab.numpy.ndarray fp: The y-coordinates of the data points, same length as xp
//| :param left: Value to return for ``x < xp[0]``, default is ``fp[0]``.
//| :param right: Value to return for ``x > xp[-1]``, default is ``fp[-1]``.
//|
//| Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x."""
//| ...
//|
STATIC mp_obj_t approx_interp(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_left, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
{ MP_QSTR_right, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *x = ndarray_from_mp_obj(args[0].u_obj, 0);
ndarray_obj_t *xp = ndarray_from_mp_obj(args[1].u_obj, 0); // xp must hold an increasing sequence of independent values
ndarray_obj_t *fp = ndarray_from_mp_obj(args[2].u_obj, 0);
if((xp->ndim != 1) || (fp->ndim != 1) || (xp->len < 2) || (fp->len < 2) || (xp->len != fp->len)) {
mp_raise_ValueError(translate("interp is defined for 1D iterables of equal length"));
}
ndarray_obj_t *y = ndarray_new_linear_array(x->len, NDARRAY_FLOAT);
mp_float_t left_value, right_value;
uint8_t *xparray = (uint8_t *)xp->array;
mp_float_t xp_left = ndarray_get_float_value(xparray, xp->dtype);
xparray += (xp->len-1) * xp->strides[ULAB_MAX_DIMS - 1];
mp_float_t xp_right = ndarray_get_float_value(xparray, xp->dtype);
uint8_t *fparray = (uint8_t *)fp->array;
if(args[3].u_obj == mp_const_none) {
left_value = ndarray_get_float_value(fparray, fp->dtype);
} else {
left_value = mp_obj_get_float(args[3].u_obj);
}
if(args[4].u_obj == mp_const_none) {
fparray += (fp->len-1) * fp->strides[ULAB_MAX_DIMS - 1];
right_value = ndarray_get_float_value(fparray, fp->dtype);
} else {
right_value = mp_obj_get_float(args[4].u_obj);
}
xparray = xp->array;
fparray = fp->array;
uint8_t *xarray = (uint8_t *)x->array;
mp_float_t *yarray = (mp_float_t *)y->array;
uint8_t *temp;
for(size_t i=0; i < x->len; i++, yarray++) {
mp_float_t x_value = ndarray_get_float_value(xarray, x->dtype);
xarray += x->strides[ULAB_MAX_DIMS - 1];
if(x_value < xp_left) {
*yarray = left_value;
} else if(x_value > xp_right) {
*yarray = right_value;
} else { // do the binary search here
mp_float_t xp_left_, xp_right_;
mp_float_t fp_left, fp_right;
size_t left_index = 0, right_index = xp->len - 1, middle_index;
while(right_index - left_index > 1) {
middle_index = left_index + (right_index - left_index) / 2;
temp = xparray + middle_index * xp->strides[ULAB_MAX_DIMS - 1];
mp_float_t xp_middle = ndarray_get_float_value(temp, xp->dtype);
if(x_value <= xp_middle) {
right_index = middle_index;
} else {
left_index = middle_index;
}
}
temp = xparray + left_index * xp->strides[ULAB_MAX_DIMS - 1];
xp_left_ = ndarray_get_float_value(temp, xp->dtype);
temp = xparray + right_index * xp->strides[ULAB_MAX_DIMS - 1];
xp_right_ = ndarray_get_float_value(temp, xp->dtype);
temp = fparray + left_index * fp->strides[ULAB_MAX_DIMS - 1];
fp_left = ndarray_get_float_value(temp, fp->dtype);
temp = fparray + right_index * fp->strides[ULAB_MAX_DIMS - 1];
fp_right = ndarray_get_float_value(temp, fp->dtype);
*yarray = fp_left + (x_value - xp_left_) * (fp_right - fp_left) / (xp_right_ - xp_left_);
}
}
return MP_OBJ_FROM_PTR(y);
}
MP_DEFINE_CONST_FUN_OBJ_KW(approx_interp_obj, 2, approx_interp);
#endif
#if ULAB_NUMPY_HAS_TRAPZ
//| def trapz(y: ulab.numpy.ndarray, x: Optional[ulab.numpy.ndarray] = None, dx: _float = 1.0) -> _float:
//| """
//| :param 1D ulab.numpy.ndarray y: the values of the dependent variable
//| :param 1D ulab.numpy.ndarray x: optional, the coordinates of the independent variable. Defaults to uniformly spaced values.
//| :param float dx: the spacing between sample points, if x=None
//|
//| Returns the integral of y(x) using the trapezoidal rule.
//| """
//| ...
//|
STATIC mp_obj_t approx_trapz(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_x, MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
{ MP_QSTR_dx, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&approx_trapz_dx)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
ndarray_obj_t *y = ndarray_from_mp_obj(args[0].u_obj, 0);
ndarray_obj_t *x;
mp_float_t mean = MICROPY_FLOAT_CONST(0.0);
if(y->len < 2) {
return mp_obj_new_float(mean);
}
if((y->ndim != 1)) {
mp_raise_ValueError(translate("trapz is defined for 1D iterables"));
}
mp_float_t (*funcy)(void *) = ndarray_get_float_function(y->dtype);
uint8_t *yarray = (uint8_t *)y->array;
size_t count = 1;
mp_float_t y1, y2, m;
if(args[1].u_obj != mp_const_none) {
x = ndarray_from_mp_obj(args[1].u_obj, 0); // x must hold an increasing sequence of independent values
if((x->ndim != 1) || (y->len != x->len)) {
mp_raise_ValueError(translate("trapz is defined for 1D arrays of equal length"));
}
mp_float_t (*funcx)(void *) = ndarray_get_float_function(x->dtype);
uint8_t *xarray = (uint8_t *)x->array;
mp_float_t x1, x2;
y1 = funcy(yarray);
yarray += y->strides[ULAB_MAX_DIMS - 1];
x1 = funcx(xarray);
xarray += x->strides[ULAB_MAX_DIMS - 1];
for(size_t i=1; i < y->len; i++) {
y2 = funcy(yarray);
yarray += y->strides[ULAB_MAX_DIMS - 1];
x2 = funcx(xarray);
xarray += x->strides[ULAB_MAX_DIMS - 1];
mp_float_t value = (x2 - x1) * (y2 + y1);
m = mean + (value - mean) / (mp_float_t)count;
mean = m;
x1 = x2;
y1 = y2;
count++;
}
} else {
mp_float_t dx = mp_obj_get_float(args[2].u_obj);
y1 = funcy(yarray);
yarray += y->strides[ULAB_MAX_DIMS - 1];
for(size_t i=1; i < y->len; i++) {
y2 = ndarray_get_float_index(y->array, y->dtype, i);
mp_float_t value = (y2 + y1);
m = mean + (value - mean) / (mp_float_t)count;
mean = m;
y1 = y2;
count++;
}
mean *= dx;
}
return mp_obj_new_float(MICROPY_FLOAT_CONST(0.5)*mean*(y->len-1));
}
MP_DEFINE_CONST_FUN_OBJ_KW(approx_trapz_obj, 1, approx_trapz);
#endif
|