1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
* 2020 Scott Shawcroft for Adafruit Industries
* 2020 Taku Fukada
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/binary.h"
#include "py/obj.h"
#include "py/objarray.h"
#include "fft.h"
//| """Frequency-domain functions"""
//|
//| import ulab.numpy
//| def fft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
//| :return tuple (r, c): The real and complex parts of the FFT
//|
//| Perform a Fast Fourier Transform from the time domain into the frequency domain
//|
//| See also ~ulab.extras.spectrum, which computes the magnitude of the fft,
//| rather than separately returning its real and imaginary parts."""
//| ...
//|
static mp_obj_t fft_fft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_FFT);
} else {
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_FFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_fft_obj, 1, 2, fft_fft);
//| def ifft(r: ulab.numpy.ndarray, c: Optional[ulab.numpy.ndarray] = None) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]:
//| """
//| :param ulab.numpy.ndarray r: A 1-dimension array of values whose size is a power of 2
//| :param ulab.numpy.ndarray c: An optional 1-dimension array of values whose size is a power of 2, giving the complex part of the value
//| :return tuple (r, c): The real and complex parts of the inverse FFT
//|
//| Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain"""
//| ...
//|
static mp_obj_t fft_ifft(size_t n_args, const mp_obj_t *args) {
if(n_args == 2) {
return fft_fft_ifft_spectrogram(n_args, args[0], args[1], FFT_IFFT);
} else {
return fft_fft_ifft_spectrogram(n_args, args[0], mp_const_none, FFT_IFFT);
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(fft_ifft_obj, 1, 2, fft_ifft);
STATIC const mp_rom_map_elem_t ulab_fft_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_fft) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_fft), (mp_obj_t)&fft_fft_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ifft), (mp_obj_t)&fft_ifft_obj },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ulab_fft_globals, ulab_fft_globals_table);
mp_obj_module_t ulab_fft_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals,
};
|