1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*/
#include <math.h>
#include "py/runtime.h"
#include "../../ndarray.h"
#include "../../ulab_tools.h"
#include "fft_tools.h"
#ifndef MP_PI
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
#endif
#ifndef MP_E
#define MP_E MICROPY_FLOAT_CONST(2.71828182845904523536)
#endif
/*
* The following function takes two arrays, namely, the real and imaginary
* parts of a complex array, and calculates the Fourier transform in place.
*
* The function is basically a modification of four1 from Numerical Recipes,
* has no dependencies beyond micropython itself (for the definition of mp_float_t),
* and can be used independent of ulab.
*/
void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) {
size_t j, m, mmax, istep;
mp_float_t tempr, tempi;
mp_float_t wtemp, wr, wpr, wpi, wi, theta;
j = 0;
for(size_t i = 0; i < n; i++) {
if (j > i) {
SWAP(mp_float_t, real[i], real[j]);
SWAP(mp_float_t, imag[i], imag[j]);
}
m = n >> 1;
while (j >= m && m > 0) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 1;
while (n > mmax) {
istep = mmax << 1;
theta = MICROPY_FLOAT_CONST(-2.0)*isign*MP_PI/istep;
wtemp = MICROPY_FLOAT_C_FUN(sin)(MICROPY_FLOAT_CONST(0.5) * theta);
wpr = MICROPY_FLOAT_CONST(-2.0) * wtemp * wtemp;
wpi = MICROPY_FLOAT_C_FUN(sin)(theta);
wr = MICROPY_FLOAT_CONST(1.0);
wi = MICROPY_FLOAT_CONST(0.0);
for(m = 0; m < mmax; m++) {
for(size_t i = m; i < n; i += istep) {
j = i + mmax;
tempr = wr * real[j] - wi * imag[j];
tempi = wr * imag[j] + wi * real[j];
real[j] = real[i] - tempr;
imag[j] = imag[i] - tempi;
real[i] += tempr;
imag[i] += tempi;
}
wtemp = wr;
wr = wr*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
/*
* The following function is a helper interface to the python side.
* It has been factored out from fft.c, so that the same argument parsing
* routine can be called from scipy.signal.spectrogram.
*/
mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) {
if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
if(n_args == 2) {
if(!mp_obj_is_type(arg_im, &ulab_ndarray_type)) {
mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only"));
}
}
ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re);
#if ULAB_MAX_DIMS > 1
if(re->ndim != 1) {
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
size_t len = re->len;
// Check if input is of length of power of 2
if((len & (len-1)) != 0) {
mp_raise_ValueError(translate("input array length must be power of 2"));
}
ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_re = (mp_float_t *)out_re->array;
uint8_t *array = (uint8_t *)re->array;
mp_float_t (*func)(void *) = ndarray_get_float_function(re->dtype);
for(size_t i=0; i < len; i++) {
*data_re++ = func(array);
array += re->strides[ULAB_MAX_DIMS - 1];
}
data_re -= len;
ndarray_obj_t *out_im = ndarray_new_linear_array(len, NDARRAY_FLOAT);
mp_float_t *data_im = (mp_float_t *)out_im->array;
if(n_args == 2) {
ndarray_obj_t *im = MP_OBJ_TO_PTR(arg_im);
#if ULAB_MAX_DIMS > 1
if(im->ndim != 1) {
mp_raise_TypeError(translate("FFT is implemented for linear arrays only"));
}
#endif
if (re->len != im->len) {
mp_raise_ValueError(translate("real and imaginary parts must be of equal length"));
}
array = (uint8_t *)im->array;
func = ndarray_get_float_function(im->dtype);
for(size_t i=0; i < len; i++) {
*data_im++ = func(array);
array += im->strides[ULAB_MAX_DIMS - 1];
}
data_im -= len;
}
if((type == FFT_FFT) || (type == FFT_SPECTROGRAM)) {
fft_kernel(data_re, data_im, len, 1);
if(type == FFT_SPECTROGRAM) {
for(size_t i=0; i < len; i++) {
*data_re = MICROPY_FLOAT_C_FUN(sqrt)(*data_re * *data_re + *data_im * *data_im);
data_re++;
data_im++;
}
}
} else { // inverse transform
fft_kernel(data_re, data_im, len, -1);
// TODO: numpy accepts the norm keyword argument
for(size_t i=0; i < len; i++) {
*data_re++ /= len;
*data_im++ /= len;
}
}
if(type == FFT_SPECTROGRAM) {
return MP_OBJ_TO_PTR(out_re);
} else {
mp_obj_t tuple[2];
tuple[0] = out_re;
tuple[1] = out_im;
return mp_obj_new_tuple(2, tuple);
}
}
|