1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2010 Zoltán Vörös
*/
#include <math.h>
#include <string.h>
#include "py/runtime.h"
#include "linalg_tools.h"
/*
* The following function inverts a matrix, whose entries are given in the input array
* The function has no dependencies beyond micropython itself (for the definition of mp_float_t),
* and can be used independent of ulab.
*/
bool linalg_invert_matrix(mp_float_t *data, size_t N) {
// returns true, of the inversion was successful,
// false, if the matrix is singular
// initially, this is the unit matrix: the contents of this matrix is what
// will be returned after all the transformations
mp_float_t *unit = m_new(mp_float_t, N*N);
mp_float_t elem = 1.0;
// initialise the unit matrix
memset(unit, 0, sizeof(mp_float_t)*N*N);
for(size_t m=0; m < N; m++) {
memcpy(&unit[m * (N+1)], &elem, sizeof(mp_float_t));
}
for(size_t m=0; m < N; m++){
// this could be faster with ((c < epsilon) && (c > -epsilon))
if(MICROPY_FLOAT_C_FUN(fabs)(data[m * (N+1)]) < LINALG_EPSILON) {
//look for a line to swap
size_t m1 = m + 1;
for(; m1 < N; m1++) {
if(!(MICROPY_FLOAT_C_FUN(fabs)(data[m1*N + m]) < LINALG_EPSILON)) {
for(size_t m2=0; m2 < N; m2++) {
mp_float_t swapVal = data[m*N+m2];
data[m*N+m2] = data[m1*N+m2];
data[m1*N+m2] = swapVal;
swapVal = unit[m*N+m2];
unit[m*N+m2] = unit[m1*N+m2];
unit[m1*N+m2] = swapVal;
}
break;
}
}
if (m1 >= N) {
m_del(mp_float_t, unit, N*N);
return false;
}
}
for(size_t n=0; n < N; n++) {
if(m != n){
elem = data[N * n + m] / data[m * (N+1)];
for(size_t k=0; k < N; k++) {
data[N * n + k] -= elem * data[N * m + k];
unit[N * n + k] -= elem * unit[N * m + k];
}
}
}
}
for(size_t m=0; m < N; m++) {
elem = data[m * (N+1)];
for(size_t n=0; n < N; n++) {
data[N * m + n] /= elem;
unit[N * m + n] /= elem;
}
}
memcpy(data, unit, sizeof(mp_float_t)*N*N);
m_del(mp_float_t, unit, N * N);
return true;
}
/*
* The following function calculates the eigenvalues and eigenvectors of a symmetric
* real matrix, whose entries are given in the input array.
* The function has no dependencies beyond micropython itself (for the definition of mp_float_t),
* and can be used independent of ulab.
*/
size_t linalg_jacobi_rotations(mp_float_t *array, mp_float_t *eigvectors, size_t S) {
// eigvectors should be a 0-array; start out with the unit matrix
for(size_t m=0; m < S; m++) {
eigvectors[m * (S+1)] = 1.0;
}
mp_float_t largest, w, t, c, s, tau, aMk, aNk, vm, vn;
size_t M, N;
size_t iterations = JACOBI_MAX * S * S;
do {
iterations--;
// find the pivot here
M = 0;
N = 0;
largest = 0.0;
for(size_t m=0; m < S-1; m++) { // -1: no need to inspect last row
for(size_t n=m+1; n < S; n++) {
w = MICROPY_FLOAT_C_FUN(fabs)(array[m * S + n]);
if((largest < w) && (LINALG_EPSILON < w)) {
M = m;
N = n;
largest = w;
}
}
}
if(M + N == 0) { // all entries are smaller than epsilon, there is not much we can do...
break;
}
// at this point, we have the pivot, and it is the entry (M, N)
// now we have to find the rotation angle
w = (array[N * S + N] - array[M * S + M]) / (MICROPY_FLOAT_CONST(2.0)*array[M * S + N]);
// The following if/else chooses the smaller absolute value for the tangent
// of the rotation angle. Going with the smaller should be numerically stabler.
if(w > 0) {
t = MICROPY_FLOAT_C_FUN(sqrt)(w*w + MICROPY_FLOAT_CONST(1.0)) - w;
} else {
t = MICROPY_FLOAT_CONST(-1.0)*(MICROPY_FLOAT_C_FUN(sqrt)(w*w + MICROPY_FLOAT_CONST(1.0)) + w);
}
s = t / MICROPY_FLOAT_C_FUN(sqrt)(t*t + MICROPY_FLOAT_CONST(1.0)); // the sine of the rotation angle
c = MICROPY_FLOAT_CONST(1.0) / MICROPY_FLOAT_C_FUN(sqrt)(t*t + MICROPY_FLOAT_CONST(1.0)); // the cosine of the rotation angle
tau = (MICROPY_FLOAT_CONST(1.0)-c)/s; // this is equal to the tangent of the half of the rotation angle
// at this point, we have the rotation angles, so we can transform the matrix
// first the two diagonal elements
// a(M, M) = a(M, M) - t*a(M, N)
array[M * S + M] = array[M * S + M] - t * array[M * S + N];
// a(N, N) = a(N, N) + t*a(M, N)
array[N * S + N] = array[N * S + N] + t * array[M * S + N];
// after the rotation, the a(M, N), and a(N, M) entries should become zero
array[M * S + N] = array[N * S + M] = MICROPY_FLOAT_CONST(0.0);
// then all other elements in the column
for(size_t k=0; k < S; k++) {
if((k == M) || (k == N)) {
continue;
}
aMk = array[M * S + k];
aNk = array[N * S + k];
// a(M, k) = a(M, k) - s*(a(N, k) + tau*a(M, k))
array[M * S + k] -= s * (aNk + tau * aMk);
// a(N, k) = a(N, k) + s*(a(M, k) - tau*a(N, k))
array[N * S + k] += s * (aMk - tau * aNk);
// a(k, M) = a(M, k)
array[k * S + M] = array[M * S + k];
// a(k, N) = a(N, k)
array[k * S + N] = array[N * S + k];
}
// now we have to update the eigenvectors
// the rotation matrix, R, multiplies from the right
// R is the unit matrix, except for the
// R(M,M) = R(N, N) = c
// R(N, M) = s
// (M, N) = -s
// entries. This means that only the Mth, and Nth columns will change
for(size_t m=0; m < S; m++) {
vm = eigvectors[m * S + M];
vn = eigvectors[m * S + N];
// the new value of eigvectors(m, M)
eigvectors[m * S + M] = c * vm - s * vn;
// the new value of eigvectors(m, N)
eigvectors[m * S + N] = s * vm + c * vn;
}
} while(iterations > 0);
return iterations;
}
|