1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019-2021 Zoltán Vörös
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"
#include "../ulab.h"
#include "../ulab_tools.h"
#include "transform.h"
#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_DOT
//| def dot(m1: ulab.numpy.ndarray, m2: ulab.numpy.ndarray) -> Union[ulab.numpy.ndarray, _float]:
//| """
//| :param ~ulab.numpy.ndarray m1: a matrix, or a vector
//| :param ~ulab.numpy.ndarray m2: a matrix, or a vector
//|
//| Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned."""
//| ...
//|
mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) {
// TODO: should the results be upcast?
// This implements 2D operations only!
if(!mp_obj_is_type(_m1, &ulab_ndarray_type) || !mp_obj_is_type(_m2, &ulab_ndarray_type)) {
mp_raise_TypeError(translate("arguments must be ndarrays"));
}
ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1);
ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2);
uint8_t *array1 = (uint8_t *)m1->array;
uint8_t *array2 = (uint8_t *)m2->array;
mp_float_t (*func1)(void *) = ndarray_get_float_function(m1->dtype);
mp_float_t (*func2)(void *) = ndarray_get_float_function(m2->dtype);
if(m1->shape[ULAB_MAX_DIMS - 1] != m2->shape[ULAB_MAX_DIMS - m2->ndim]) {
mp_raise_ValueError(translate("dimensions do not match"));
}
uint8_t ndim = MIN(m1->ndim, m2->ndim);
size_t shape1 = m1->ndim == 2 ? m1->shape[ULAB_MAX_DIMS - m1->ndim] : 1;
size_t shape2 = m2->ndim == 2 ? m2->shape[ULAB_MAX_DIMS - 1] : 1;
size_t *shape = NULL;
if(ndim == 2) { // matrix times matrix -> matrix
shape = ndarray_shape_vector(0, 0, shape1, shape2);
} else { // matrix times vector -> vector, vector times vector -> vector (size 1)
shape = ndarray_shape_vector(0, 0, 0, shape1);
}
ndarray_obj_t *results = ndarray_new_dense_ndarray(ndim, shape, NDARRAY_FLOAT);
mp_float_t *rarray = (mp_float_t *)results->array;
for(size_t i=0; i < shape1; i++) { // rows of m1
for(size_t j=0; j < shape2; j++) { // columns of m2
mp_float_t dot = 0.0;
for(size_t k=0; k < m1->shape[ULAB_MAX_DIMS - 1]; k++) {
// (i, k) * (k, j)
dot += func1(array1) * func2(array2);
array1 += m1->strides[ULAB_MAX_DIMS - 1];
array2 += m2->strides[ULAB_MAX_DIMS - m2->ndim];
}
*rarray++ = dot;
array1 -= m1->strides[ULAB_MAX_DIMS - 1] * m1->shape[ULAB_MAX_DIMS - 1];
array2 -= m2->strides[ULAB_MAX_DIMS - m2->ndim] * m2->shape[ULAB_MAX_DIMS - m2->ndim];
array2 += m2->strides[ULAB_MAX_DIMS - 1];
}
array1 += m1->strides[ULAB_MAX_DIMS - m1->ndim];
array2 = m2->array;
}
if((m1->ndim * m2->ndim) == 1) { // return a scalar, if product of two vectors
return mp_obj_new_float(*(--rarray));
} else {
return MP_OBJ_FROM_PTR(results);
}
}
MP_DEFINE_CONST_FUN_OBJ_2(transform_dot_obj, transform_dot);
#endif
#endif
|