File: optimize.c

package info (click to toggle)
giac 1.9.0.93%2Bdfsg2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 117,732 kB
  • sloc: cpp: 404,272; ansic: 205,462; python: 30,548; javascript: 28,788; makefile: 17,997; yacc: 2,690; lex: 2,464; sh: 705; perl: 314; lisp: 216; asm: 62; java: 41; xml: 36; sed: 16; csh: 7; pascal: 6
file content (414 lines) | stat: -rw-r--r-- 16,991 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

/*
 * This file is part of the micropython-ulab project,
 *
 * https://github.com/v923z/micropython-ulab
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2020 Jeff Epler for Adafruit Industries
 *               2020 Scott Shawcroft for Adafruit Industries
 *               2020-2021 Zoltán Vörös
 *               2020 Taku Fukada
*/

#include <math.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/misc.h"

#include "../../ndarray.h"
#include "../../ulab.h"
#include "../../ulab_tools.h"
#include "optimize.h"

const mp_obj_float_t xtolerance = {{&mp_type_float}, MICROPY_FLOAT_CONST(2.4e-7)};
const mp_obj_float_t rtolerance = {{&mp_type_float}, MICROPY_FLOAT_CONST(0.0)};

static mp_float_t optimize_python_call(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t x, mp_obj_t *fargs, uint8_t nparams) {
    // Helper function for calculating the value of f(x, a, b, c, ...),
    // where f is defined in python. Takes a float, returns a float.
    // The array of mp_obj_t type must be supplied, as must the number of parameters (a, b, c...) in nparams
    fargs[0] = mp_obj_new_float(x);
    return mp_obj_get_float(type->MP_TYPE_CALL(fun, nparams+1, 0, fargs));
}

#if ULAB_SCIPY_OPTIMIZE_HAS_BISECT
//| def bisect(
//|     fun: Callable[[float], float],
//|     a: float,
//|     b: float,
//|     *,
//|     xtol: float = 2.4e-7,
//|     maxiter: int = 100
//| ) -> float:
//|     """
//|     :param callable f: The function to bisect
//|     :param float a: The left side of the interval
//|     :param float b: The right side of the interval
//|     :param float xtol: The tolerance value
//|     :param float maxiter: The maximum number of iterations to perform
//|
//|     Find a solution (zero) of the function ``f(x)`` on the interval
//|     (``a``..``b``) using the bisection method.  The result is accurate to within
//|     ``xtol`` unless more than ``maxiter`` steps are required."""
//|     ...
//|

STATIC mp_obj_t optimize_bisect(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // Simple bisection routine
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_xtol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
        { MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100} },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    mp_obj_t fun = args[0].u_obj;
    const mp_obj_type_t *type = mp_obj_get_type(fun);
    if(mp_type_get_call_slot(type) == NULL) {
        mp_raise_TypeError(translate("first argument must be a function"));
    }
    mp_float_t xtol = mp_obj_get_float(args[3].u_obj);
    mp_obj_t *fargs = m_new(mp_obj_t, 1);
    mp_float_t left, right;
    mp_float_t x_mid;
    mp_float_t a = mp_obj_get_float(args[1].u_obj);
    mp_float_t b = mp_obj_get_float(args[2].u_obj);
    left = optimize_python_call(type, fun, a, fargs, 0);
    right = optimize_python_call(type, fun, b, fargs, 0);
    if(left * right > 0) {
        mp_raise_ValueError(translate("function has the same sign at the ends of interval"));
    }
    mp_float_t rtb = left < MICROPY_FLOAT_CONST(0.0) ? a : b;
    mp_float_t dx = left < MICROPY_FLOAT_CONST(0.0) ? b - a : a - b;
    if(args[4].u_int < 0) {
        mp_raise_ValueError(translate("maxiter should be > 0"));
    }
    for(uint16_t i=0; i < args[4].u_int; i++) {
        dx *= MICROPY_FLOAT_CONST(0.5);
        x_mid = rtb + dx;
        if(optimize_python_call(type, fun, x_mid, fargs, 0) < MICROPY_FLOAT_CONST(0.0)) {
            rtb = x_mid;
        }
        if(MICROPY_FLOAT_C_FUN(fabs)(dx) < xtol) break;
    }
    return mp_obj_new_float(rtb);
}

MP_DEFINE_CONST_FUN_OBJ_KW(optimize_bisect_obj, 3, optimize_bisect);
#endif

#if ULAB_SCIPY_OPTIMIZE_HAS_FMIN
//| def fmin(
//|     fun: Callable[[float], float],
//|     x0: float,
//|     *,
//|     xatol: float = 2.4e-7,
//|     fatol: float = 2.4e-7,
//|     maxiter: int = 200
//| ) -> float:
//|     """
//|     :param callable f: The function to bisect
//|     :param float x0: The initial x value
//|     :param float xatol: The absolute tolerance value
//|     :param float fatol: The relative tolerance value
//|
//|     Find a minimum of the function ``f(x)`` using the downhill simplex method.
//|     The located ``x`` is within ``fxtol`` of the actual minimum, and ``f(x)``
//|     is within ``fatol`` of the actual minimum unless more than ``maxiter``
//|     steps are requried."""
//|     ...
//|

STATIC mp_obj_t optimize_fmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // downhill simplex method in 1D
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_xatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
        { MP_QSTR_fatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
        { MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 200} },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    mp_obj_t fun = args[0].u_obj;
    const mp_obj_type_t *type = mp_obj_get_type(fun);
    if(mp_type_get_call_slot(type) == NULL) {
        mp_raise_TypeError(translate("first argument must be a function"));
    }

    // parameters controlling convergence conditions
    mp_float_t xatol = mp_obj_get_float(args[2].u_obj);
    mp_float_t fatol = mp_obj_get_float(args[3].u_obj);
    if(args[4].u_int <= 0) {
        mp_raise_ValueError(translate("maxiter must be > 0"));
    }
    uint16_t maxiter = (uint16_t)args[4].u_int;

    mp_float_t x0 = mp_obj_get_float(args[1].u_obj);
    mp_float_t x1 = MICROPY_FLOAT_C_FUN(fabs)(x0) > OPTIMIZE_EPSILON ? (MICROPY_FLOAT_CONST(1.0) + OPTIMIZE_NONZDELTA) * x0 : OPTIMIZE_ZDELTA;
    mp_obj_t *fargs = m_new(mp_obj_t, 1);
    mp_float_t f0 = optimize_python_call(type, fun, x0, fargs, 0);
    mp_float_t f1 = optimize_python_call(type, fun, x1, fargs, 0);
    if(f1 < f0) {
        SWAP(mp_float_t, x0, x1);
        SWAP(mp_float_t, f0, f1);
    }
    for(uint16_t i=0; i < maxiter; i++) {
        uint8_t shrink = 0;
        f0 = optimize_python_call(type, fun, x0, fargs, 0);
        f1 = optimize_python_call(type, fun, x1, fargs, 0);

        // reflection
        mp_float_t xr = (MICROPY_FLOAT_CONST(1.0) + OPTIMIZE_ALPHA) * x0 - OPTIMIZE_ALPHA * x1;
        mp_float_t fr = optimize_python_call(type, fun, xr, fargs, 0);
        if(fr < f0) { // expansion
            mp_float_t xe = (1 + OPTIMIZE_ALPHA * OPTIMIZE_BETA) * x0 - OPTIMIZE_ALPHA * OPTIMIZE_BETA * x1;
            mp_float_t fe = optimize_python_call(type, fun, xe, fargs, 0);
            if(fe < fr) {
                x1 = xe;
                f1 = fe;
            } else {
                x1 = xr;
                f1 = fr;
            }
        } else {
            if(fr < f1) { // contraction
                mp_float_t xc = (1 + OPTIMIZE_GAMMA * OPTIMIZE_ALPHA) * x0 - OPTIMIZE_GAMMA * OPTIMIZE_ALPHA * x1;
                mp_float_t fc = optimize_python_call(type, fun, xc, fargs, 0);
                if(fc < fr) {
                    x1 = xc;
                    f1 = fc;
                } else {
                    shrink = 1;
                }
            } else { // inside contraction
                mp_float_t xc = (MICROPY_FLOAT_CONST(1.0) - OPTIMIZE_GAMMA) * x0 + OPTIMIZE_GAMMA * x1;
                mp_float_t fc = optimize_python_call(type, fun, xc, fargs, 0);
                if(fc < f1) {
                    x1 = xc;
                    f1 = fc;
                } else {
                    shrink = 1;
                }
            }
            if(shrink == 1) {
                x1 = x0 + OPTIMIZE_DELTA * (x1 - x0);
                f1 = optimize_python_call(type, fun, x1, fargs, 0);
            }
            if((MICROPY_FLOAT_C_FUN(fabs)(f1 - f0) < fatol) ||
                (MICROPY_FLOAT_C_FUN(fabs)(x1 - x0) < xatol)) {
                break;
            }
            if(f1 < f0) {
                SWAP(mp_float_t, x0, x1);
                SWAP(mp_float_t, f0, f1);
            }
        }
    }
    return mp_obj_new_float(x0);
}

MP_DEFINE_CONST_FUN_OBJ_KW(optimize_fmin_obj, 2, optimize_fmin);
#endif

#if ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
static void optimize_jacobi(const mp_obj_type_t *type, mp_obj_t fun, mp_float_t *x, mp_float_t *y, uint16_t len, mp_float_t *params, uint8_t nparams, mp_float_t *jacobi, mp_float_t *grad) {
    /* Calculates the Jacobian and the gradient of the cost function
     *
     * The entries in the Jacobian are
     * J(m, n) = de_m/da_n,
     *
     * where
     *
     * e_m = (f(x_m, a1, a2, ...) - y_m)/sigma_m is the error at x_m,
     *
     * and
     *
     * a1, a2, ..., a_n are the free parameters
     */
    mp_obj_t *fargs0 = m_new(mp_obj_t, lenp+1);
    mp_obj_t *fargs1 = m_new(mp_obj_t, lenp+1);
    for(uint8_t p=0; p < nparams; p++) {
        fargs0[p+1] = mp_obj_new_float(params[p]);
        fargs1[p+1] = mp_obj_new_float(params[p]);
    }
    for(uint8_t p=0; p < nparams; p++) {
        mp_float_t da = params[p] != MICROPY_FLOAT_CONST(0.0) ? (MICROPY_FLOAT_CONST(1.0) + APPROX_NONZDELTA) * params[p] : APPROX_ZDELTA;
        fargs1[p+1] = mp_obj_new_float(params[p] + da);
        grad[p] = MICROPY_FLOAT_CONST(0.0);
        for(uint16_t i=0; i < len; i++) {
            mp_float_t f0 = optimize_python_call(type, fun, x[i], fargs0, nparams);
            mp_float_t f1 = optimize_python_call(type, fun, x[i], fargs1, nparams);
            jacobi[i*nparamp+p] = (f1 - f0) / da;
            grad[p] += (f0 - y[i]) * jacobi[i*nparamp+p];
        }
        fargs1[p+1] = fargs0[p+1]; // set back to the original value
    }
}

static void optimize_delta(mp_float_t *jacobi, mp_float_t *grad, uint16_t len, uint8_t nparams, mp_float_t lambda) {
    //
}

mp_obj_t optimize_curve_fit(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // Levenberg-Marquardt non-linear fit
    // The implementation follows the introductory discussion in Mark Tanstrum's paper, https://arxiv.org/abs/1201.5885
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_p0, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = mp_const_none } },
        { MP_QSTR_xatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
        { MP_QSTR_fatol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&xtolerance)} },
        { MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = mp_const_none} },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    mp_obj_t fun = args[0].u_obj;
    const mp_obj_type_t *type = mp_obj_get_type(fun);
    if(mp_type_get_call_slot(type) == NULL) {
        mp_raise_TypeError(translate("first argument must be a function"));
    }

    mp_obj_t x_obj = args[1].u_obj;
    mp_obj_t y_obj = args[2].u_obj;
    mp_obj_t p0_obj = args[3].u_obj;
    if(!ndarray_object_is_array_like(x_obj) || !ndarray_object_is_array_like(y_obj)) {
        mp_raise_TypeError(translate("data must be iterable"));
    }
    if(!ndarray_object_is_nditerable(p0_obj)) {
        mp_raise_TypeError(translate("initial values must be iterable"));
    }
    size_t len = (size_t)mp_obj_get_int(mp_obj_len_maybe(x_obj));
    uint8_t lenp = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(p0_obj));
    if(len != (uint16_t)mp_obj_get_int(mp_obj_len_maybe(y_obj))) {
        mp_raise_ValueError(translate("data must be of equal length"));
    }

    mp_float_t *x = m_new(mp_float_t, len);
    fill_array_iterable(x, x_obj);
    mp_float_t *y = m_new(mp_float_t, len);
    fill_array_iterable(y, y_obj);
    mp_float_t *p0 = m_new(mp_float_t, lenp);
    fill_array_iterable(p0, p0_obj);
    mp_float_t *grad = m_new(mp_float_t, len);
    mp_float_t *jacobi = m_new(mp_float_t, len*len);
    mp_obj_t *fargs = m_new(mp_obj_t, lenp+1);

    m_del(mp_float_t, p0, lenp);
    // parameters controlling convergence conditions
    //mp_float_t xatol = mp_obj_get_float(args[2].u_obj);
    //mp_float_t fatol = mp_obj_get_float(args[3].u_obj);

    // this has finite binary representation; we will multiply/divide by 4
    //mp_float_t lambda = 0.0078125;

    //linalg_invert_matrix(mp_float_t *data, size_t N)

    m_del(mp_float_t, x, len);
    m_del(mp_float_t, y, len);
    m_del(mp_float_t, grad, len);
    m_del(mp_float_t, jacobi, len*len);
    m_del(mp_obj_t, fargs, lenp+1);
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_KW(optimize_curve_fit_obj, 2, optimize_curve_fit);
#endif

#if ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
//| def newton(
//|     fun: Callable[[float], float],
//|     x0: float,
//|     *,
//|     xtol: float = 2.4e-7,
//|     rtol: float = 0.0,
//|     maxiter: int = 50
//| ) -> float:
//|     """
//|     :param callable f: The function to bisect
//|     :param float x0: The initial x value
//|     :param float xtol: The absolute tolerance value
//|     :param float rtol: The relative tolerance value
//|     :param float maxiter: The maximum number of iterations to perform
//|
//|     Find a solution (zero) of the function ``f(x)`` using Newton's Method.
//|     The result is accurate to within ``xtol * rtol * |f(x)|`` unless more than
//|     ``maxiter`` steps are requried."""
//|     ...
//|

static mp_obj_t optimize_newton(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // this is actually the secant method, as the first derivative of the function
    // is not accepted as an argument. The function whose root we want to solve for
    // must depend on a single variable without parameters, i.e., f(x)
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_PTR(&xtolerance) } },
        { MP_QSTR_rtol, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_PTR(&rtolerance) } },
        { MP_QSTR_maxiter, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 50 } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    mp_obj_t fun = args[0].u_obj;
    const mp_obj_type_t *type = mp_obj_get_type(fun);
    if(mp_type_get_call_slot(type) == NULL) {
        mp_raise_TypeError(translate("first argument must be a function"));
    }
    mp_float_t x = mp_obj_get_float(args[1].u_obj);
    mp_float_t tol = mp_obj_get_float(args[2].u_obj);
    mp_float_t rtol = mp_obj_get_float(args[3].u_obj);
    mp_float_t dx, df, fx;
    dx = x > MICROPY_FLOAT_CONST(0.0) ? OPTIMIZE_EPS * x : -OPTIMIZE_EPS * x;
    mp_obj_t *fargs = m_new(mp_obj_t, 1);
    if(args[4].u_int <= 0) {
        mp_raise_ValueError(translate("maxiter must be > 0"));
    }
    for(uint16_t i=0; i < args[4].u_int; i++) {
        fx = optimize_python_call(type, fun, x, fargs, 0);
        df = (optimize_python_call(type, fun, x + dx, fargs, 0) - fx) / dx;
        dx = fx / df;
        x -= dx;
        if(MICROPY_FLOAT_C_FUN(fabs)(dx) < (tol + rtol * MICROPY_FLOAT_C_FUN(fabs)(x))) break;
    }
    return mp_obj_new_float(x);
}

MP_DEFINE_CONST_FUN_OBJ_KW(optimize_newton_obj, 2, optimize_newton);
#endif

static const mp_rom_map_elem_t ulab_scipy_optimize_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_optimize) },
    #if ULAB_SCIPY_OPTIMIZE_HAS_BISECT
        { MP_OBJ_NEW_QSTR(MP_QSTR_bisect), (mp_obj_t)&optimize_bisect_obj },
    #endif
    #if ULAB_SCIPY_OPTIMIZE_HAS_CURVE_FIT
        { MP_OBJ_NEW_QSTR(MP_QSTR_curve_fit), (mp_obj_t)&optimize_curve_fit_obj },
    #endif
    #if ULAB_SCIPY_OPTIMIZE_HAS_FMIN
        { MP_OBJ_NEW_QSTR(MP_QSTR_fmin), (mp_obj_t)&optimize_fmin_obj },
    #endif
    #if ULAB_SCIPY_OPTIMIZE_HAS_NEWTON
        { MP_OBJ_NEW_QSTR(MP_QSTR_newton), (mp_obj_t)&optimize_newton_obj },
    #endif
};

static MP_DEFINE_CONST_DICT(mp_module_ulab_scipy_optimize_globals, ulab_scipy_optimize_globals_table);

mp_obj_module_t ulab_scipy_optimize_module = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_optimize_globals,
};