File: ulab_create.c

package info (click to toggle)
giac 1.9.0.93%2Bdfsg2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 117,732 kB
  • sloc: cpp: 404,272; ansic: 205,462; python: 30,548; javascript: 28,788; makefile: 17,997; yacc: 2,690; lex: 2,464; sh: 705; perl: 314; lisp: 216; asm: 62; java: 41; xml: 36; sed: 16; csh: 7; pascal: 6
file content (568 lines) | stat: -rw-r--r-- 22,994 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
 * This file is part of the micropython-ulab project,
 *
 * https://github.com/v923z/micropython-ulab
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2020 Jeff Epler for Adafruit Industries
 *               2019-2021 Zoltán Vörös
 *               2020 Taku Fukada
*/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"

#include "ulab.h"
#include "ulab_create.h"

#if ULAB_NUMPY_HAS_ONES | ULAB_NUMPY_HAS_ZEROS | ULAB_NUMPY_HAS_FULL | ULAB_NUMPY_HAS_EMPTY
static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t value) {
    if(!mp_obj_is_int(oshape) && !mp_obj_is_type(oshape, &mp_type_tuple) && !mp_obj_is_type(oshape, &mp_type_list)) {
        mp_raise_TypeError(translate("input argument must be an integer, a tuple, or a list"));
    }
    ndarray_obj_t *ndarray = NULL;
    if(mp_obj_is_int(oshape)) {
        size_t n = mp_obj_get_int(oshape);
        ndarray = ndarray_new_linear_array(n, dtype);
    } else if(mp_obj_is_type(oshape, &mp_type_tuple) || mp_obj_is_type(oshape, &mp_type_list)) {
        uint8_t len = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(oshape));
        if(len > ULAB_MAX_DIMS) {
            mp_raise_TypeError(translate("too many dimensions"));
        }
        size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
        memset(shape, 0, ULAB_MAX_DIMS * sizeof(size_t));
        size_t i = 0;
        mp_obj_iter_buf_t iter_buf;
        mp_obj_t item, iterable = mp_getiter(oshape, &iter_buf);
        while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION){
            shape[ULAB_MAX_DIMS - len + i] = (size_t)mp_obj_get_int(item);
            i++;
        }
        ndarray = ndarray_new_dense_ndarray(len, shape, dtype);
    }
    if(value != mp_const_none) {
        if(dtype == NDARRAY_BOOL) {
            dtype = NDARRAY_UINT8;
            if(mp_obj_is_true(value)) {
                value = mp_obj_new_int(1);
            } else {
                value = mp_obj_new_int(0);
            }
        }
        for(size_t i=0; i < ndarray->len; i++) {
            ndarray_set_value(dtype, ndarray->array, i, value);
        }
    }
    // if zeros calls the function, we don't have to do anything
    return MP_OBJ_FROM_PTR(ndarray);
}
#endif

#if ULAB_NUMPY_HAS_ARANGE | ULAB_NUMPY_HAS_LINSPACE
static ndarray_obj_t *create_linspace_arange(mp_float_t start, mp_float_t step, size_t len, uint8_t dtype) {
    mp_float_t value = start;

    ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);
    if(ndarray->boolean == NDARRAY_BOOLEAN) {
        uint8_t *array = (uint8_t *)ndarray->array;
        for(size_t i=0; i < len; i++, value += step) {
            *array++ = value == MICROPY_FLOAT_CONST(0.0) ? 0 : 1;
        }
    } else if(dtype == NDARRAY_UINT8) {
        ARANGE_LOOP(uint8_t, ndarray, len, step);
    } else if(dtype == NDARRAY_INT8) {
        ARANGE_LOOP(int8_t, ndarray, len, step);
    } else if(dtype == NDARRAY_UINT16) {
        ARANGE_LOOP(uint16_t, ndarray, len, step);
    } else if(dtype == NDARRAY_INT16) {
        ARANGE_LOOP(int16_t, ndarray, len, step);
    } else {
        ARANGE_LOOP(mp_float_t, ndarray, len, step);
    }
    return ndarray;
}
#endif

#if ULAB_NUMPY_HAS_ARANGE
mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
    uint8_t dtype = NDARRAY_FLOAT;
    mp_float_t start, stop, step;
    if(n_args == 1) {
        start = 0.0;
        stop = mp_obj_get_float(args[0].u_obj);
        step = 1.0;
        if(mp_obj_is_int(args[0].u_obj)) dtype = NDARRAY_INT16;
    } else if(n_args == 2) {
        start = mp_obj_get_float(args[0].u_obj);
        stop = mp_obj_get_float(args[1].u_obj);
        step = 1.0;
        if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj)) dtype = NDARRAY_INT16;
    } else if(n_args == 3) {
        start = mp_obj_get_float(args[0].u_obj);
        stop = mp_obj_get_float(args[1].u_obj);
        step = mp_obj_get_float(args[2].u_obj);
        if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj) && mp_obj_is_int(args[2].u_obj)) dtype = NDARRAY_INT16;
    } else {
        mp_raise_TypeError(translate("wrong number of arguments"));
    }
    if((MICROPY_FLOAT_C_FUN(fabs)(stop) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(start) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(step) > 32768)) {
        dtype = NDARRAY_FLOAT;
    }
    if(args[3].u_obj != mp_const_none) {
        dtype = (uint8_t)mp_obj_get_int(args[3].u_obj);
    }
    ndarray_obj_t *ndarray;
    if((stop - start)/step < 0) {
        ndarray = ndarray_new_linear_array(0, dtype);
    } else {
        size_t len = (size_t)(MICROPY_FLOAT_C_FUN(ceil)((stop - start)/step));
        ndarray = create_linspace_arange(start, step, len, dtype);
    }
    return MP_OBJ_FROM_PTR(ndarray);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_arange_obj, 1, create_arange);
#endif

#if ULAB_NUMPY_HAS_CONCATENATE
mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_axis, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    if(!mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) {
        mp_raise_TypeError(translate("first argument must be a tuple of ndarrays"));
    }
    int8_t axis = (int8_t)args[1].u_int;
    size_t *shape = m_new(size_t, ULAB_MAX_DIMS);
    memset(shape, 0, sizeof(size_t)*ULAB_MAX_DIMS);
    mp_obj_tuple_t *ndarrays = MP_OBJ_TO_PTR(args[0].u_obj);

    // first check, whether the arrays are compatible
    ndarray_obj_t *_ndarray = MP_OBJ_TO_PTR(ndarrays->items[0]);
    uint8_t dtype = _ndarray->dtype;
    uint8_t ndim = _ndarray->ndim;
    if(axis < 0) {
        axis += ndim;
    }
    if((axis < 0) || (axis >= ndim)) {
        mp_raise_ValueError(translate("wrong axis specified"));
    }
    // shift axis
    axis = ULAB_MAX_DIMS - ndim + axis;
    for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
        shape[j] = _ndarray->shape[j];
    }

    for(uint8_t i=1; i < ndarrays->len; i++) {
        _ndarray = MP_OBJ_TO_PTR(ndarrays->items[i]);
        // check, whether the arrays are compatible
        if((dtype != _ndarray->dtype) || (ndim != _ndarray->ndim)) {
            mp_raise_ValueError(translate("input arrays are not compatible"));
        }
        for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) {
            if(j == axis) {
                shape[j] += _ndarray->shape[j];
            } else {
                if(shape[j] != _ndarray->shape[j]) {
                    mp_raise_ValueError(translate("input arrays are not compatible"));
                }
            }
        }
    }

    ndarray_obj_t *target = ndarray_new_dense_ndarray(ndim, shape, dtype);
    uint8_t *tpos = (uint8_t *)target->array;
    uint8_t *tarray;

    for(uint8_t p=0; p < ndarrays->len; p++) {
        // reset the pointer along the axis
        ndarray_obj_t *source = MP_OBJ_TO_PTR(ndarrays->items[p]);
        uint8_t *sarray = (uint8_t *)source->array;
        tarray = tpos;

        #if ULAB_MAX_DIMS > 3
        size_t i = 0;
        do {
        #endif
            #if ULAB_MAX_DIMS > 2
            size_t j = 0;
            do {
            #endif
                #if ULAB_MAX_DIMS > 1
                size_t k = 0;
                do {
                #endif
                    size_t l = 0;
                    do {
                        memcpy(tarray, sarray, source->itemsize);
                        tarray += target->strides[ULAB_MAX_DIMS - 1];
                        sarray += source->strides[ULAB_MAX_DIMS - 1];
                        l++;
                    } while(l < source->shape[ULAB_MAX_DIMS - 1]);
                #if ULAB_MAX_DIMS > 1
                    tarray -= target->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
                    tarray += target->strides[ULAB_MAX_DIMS - 2];
                    sarray -= source->strides[ULAB_MAX_DIMS - 1] * source->shape[ULAB_MAX_DIMS-1];
                    sarray += source->strides[ULAB_MAX_DIMS - 2];
                    k++;
                } while(k < source->shape[ULAB_MAX_DIMS - 2]);
                #endif
            #if ULAB_MAX_DIMS > 2
                tarray -= target->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
                tarray += target->strides[ULAB_MAX_DIMS - 3];
                sarray -= source->strides[ULAB_MAX_DIMS - 2] * source->shape[ULAB_MAX_DIMS-2];
                sarray += source->strides[ULAB_MAX_DIMS - 3];
                j++;
            } while(j < source->shape[ULAB_MAX_DIMS - 3]);
            #endif
        #if ULAB_MAX_DIMS > 3
            tarray -= target->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
            tarray += target->strides[ULAB_MAX_DIMS - 4];
            sarray -= source->strides[ULAB_MAX_DIMS - 3] * source->shape[ULAB_MAX_DIMS-3];
            sarray += source->strides[ULAB_MAX_DIMS - 4];
            i++;
        } while(i < source->shape[ULAB_MAX_DIMS - 4]);
        #endif
        if(p < ndarrays->len - 1) {
            tpos += target->strides[axis] * source->shape[axis];
        }
    }
    return MP_OBJ_FROM_PTR(target);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_concatenate_obj, 1, create_concatenate);
#endif

#if ULAB_MAX_DIMS > 1
#if ULAB_NUMPY_HAS_DIAG
mp_obj_t create_diag(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) {
        mp_raise_TypeError(translate("input must be an ndarray"));
    }
    ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj);
    if(source->ndim == 1) { // return a rank-2 tensor with the prescribed diagonal
        ndarray_obj_t *target = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, source->len, source->len), source->dtype);
        uint8_t *sarray = (uint8_t *)source->array;
        uint8_t *tarray = (uint8_t *)target->array;
        for(size_t i=0; i < source->len; i++) {
            memcpy(tarray, sarray, source->itemsize);
            sarray += source->strides[ULAB_MAX_DIMS - 1];
            tarray += (source->len + 1) * target->itemsize;
        }
        return MP_OBJ_FROM_PTR(target);
    }
    if(source->ndim > 2) {
        mp_raise_TypeError(translate("input must be a tensor of rank 2"));
    }
    int32_t k = args[1].u_int;
    size_t len = 0;
    uint8_t *sarray = (uint8_t *)source->array;
    if(k < 0) { // move the pointer "vertically"
        if(-k < (int32_t)source->shape[ULAB_MAX_DIMS - 2]) {
            sarray -= k * source->strides[ULAB_MAX_DIMS - 2];
            len = MIN(source->shape[ULAB_MAX_DIMS - 2] + k, source->shape[ULAB_MAX_DIMS - 1]);
        }
    } else { // move the pointer "horizontally"
        if(k < (int32_t)source->shape[ULAB_MAX_DIMS - 1]) {
            sarray += k * source->strides[ULAB_MAX_DIMS - 1];
            len = MIN(source->shape[ULAB_MAX_DIMS - 1] - k, source->shape[ULAB_MAX_DIMS - 2]);
        }
    }

    if(len == 0) {
        mp_raise_ValueError(translate("offset is too large"));
    }

    ndarray_obj_t *target = ndarray_new_linear_array(len, source->dtype);
    uint8_t *tarray = (uint8_t *)target->array;

    for(size_t i=0; i < len; i++) {
        memcpy(tarray, sarray, source->itemsize);
        sarray += source->strides[ULAB_MAX_DIMS - 2];
        sarray += source->strides[ULAB_MAX_DIMS - 1];
        tarray += source->itemsize;
    }
    return MP_OBJ_FROM_PTR(target);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_diag_obj, 1, create_diag);
#endif /* ULAB_NUMPY_HAS_DIAG */

#if ULAB_NUMPY_HAS_EYE
mp_obj_t create_eye(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_INT, { .u_int = 0 } },
        { MP_QSTR_M, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_k, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = 0 } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    size_t n = args[0].u_int, m;
    size_t k = args[2].u_int > 0 ? (size_t)args[2].u_int : (size_t)(-args[2].u_int);
    uint8_t dtype = args[3].u_int;
    if(args[1].u_rom_obj == mp_const_none) {
        m = n;
    } else {
        m = mp_obj_get_int(args[1].u_rom_obj);
    }
    ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(2, ndarray_shape_vector(0, 0, n, m), dtype);
    if(dtype == NDARRAY_BOOL) {
       dtype = NDARRAY_UINT8;
   }
    mp_obj_t one = mp_obj_new_int(1);
    size_t i = 0;
    if((args[2].u_int >= 0)) {
        while(k < m) {
            ndarray_set_value(dtype, ndarray->array, i*m+k, one);
            k++;
            i++;
        }
    } else {
        while(k < n) {
            ndarray_set_value(dtype, ndarray->array, k*m+i, one);
            k++;
            i++;
        }
    }
    return MP_OBJ_FROM_PTR(ndarray);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_eye_obj, 1, create_eye);
#endif /* ULAB_NUMPY_HAS_EYE */
#endif /* ULAB_MAX_DIMS > 1 */

#if ULAB_NUMPY_HAS_FULL
mp_obj_t create_full(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    uint8_t dtype = args[2].u_int;

    return create_zeros_ones_full(args[0].u_obj, dtype, args[1].u_obj);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_full_obj, 0, create_full);
#endif


#if ULAB_NUMPY_HAS_LINSPACE
mp_obj_t create_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
        { MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
        { MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_false } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    if(args[2].u_int < 2) {
        mp_raise_ValueError(translate("number of points must be at least 2"));
    }
    size_t len = (size_t)args[2].u_int;
    mp_float_t start, step;
    start = mp_obj_get_float(args[0].u_obj);
    uint8_t typecode = args[5].u_int;
    if(args[3].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj)-start)/(len-1);
    else step = (mp_obj_get_float(args[1].u_obj)-start)/len;
    ndarray_obj_t *ndarray = create_linspace_arange(start, step, len, typecode);
    if(args[4].u_obj == mp_const_false) {
        return MP_OBJ_FROM_PTR(ndarray);
    } else {
        mp_obj_t tuple[2];
        tuple[0] = ndarray;
        tuple[1] = mp_obj_new_float(step);
        return mp_obj_new_tuple(2, tuple);
    }
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_linspace_obj, 2, create_linspace);
#endif

#if ULAB_NUMPY_HAS_LOGSPACE
const mp_obj_float_t create_float_const_ten = {{&mp_type_float}, MICROPY_FLOAT_CONST(10.0)};

mp_obj_t create_logspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_num, MP_ARG_INT, { .u_int = 50 } },
        { MP_QSTR_base, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_PTR(&create_float_const_ten) } },
        { MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = mp_const_true } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    if(args[2].u_int < 2) {
        mp_raise_ValueError(translate("number of points must be at least 2"));
    }
    size_t len = (size_t)args[2].u_int;
    mp_float_t start, step, quotient;
    start = mp_obj_get_float(args[0].u_obj);
    uint8_t dtype = args[5].u_int;
    mp_float_t base = mp_obj_get_float(args[3].u_obj);
    if(args[4].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj) - start)/(len - 1);
    else step = (mp_obj_get_float(args[1].u_obj) - start) / len;
    quotient = MICROPY_FLOAT_C_FUN(pow)(base, step);
    ndarray_obj_t *ndarray = ndarray_new_linear_array(len, dtype);

    mp_float_t value = MICROPY_FLOAT_C_FUN(pow)(base, start);
    if(ndarray->dtype == NDARRAY_UINT8) {
        uint8_t *array = (uint8_t *)ndarray->array;
        if(ndarray->boolean) {
            memset(array, 1, len);
        } else {
            for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint8_t)value;
        }
    } else if(ndarray->dtype == NDARRAY_INT8) {
        int8_t *array = (int8_t *)ndarray->array;
        for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int8_t)value;
    } else if(ndarray->dtype == NDARRAY_UINT16) {
        uint16_t *array = (uint16_t *)ndarray->array;
        for(size_t i=0; i < len; i++, value *= quotient) *array++ = (uint16_t)value;
    } else if(ndarray->dtype == NDARRAY_INT16) {
        int16_t *array = (int16_t *)ndarray->array;
        for(size_t i=0; i < len; i++, value *= quotient) *array++ = (int16_t)value;
    } else {
        mp_float_t *array = (mp_float_t *)ndarray->array;
        for(size_t i=0; i < len; i++, value *= quotient) *array++ = value;
    }
    return MP_OBJ_FROM_PTR(ndarray);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_logspace_obj, 2, create_logspace);
#endif

#if ULAB_NUMPY_HAS_ONES

mp_obj_t create_ones(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    uint8_t dtype = args[1].u_int;
    mp_obj_t one = mp_obj_new_int(1);
    return create_zeros_ones_full(args[0].u_obj, dtype, one);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_ones_obj, 0, create_ones);
#endif

#if ULAB_NUMPY_HAS_ZEROS

mp_obj_t create_zeros(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_obj = MP_OBJ_NULL } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, { .u_int = NDARRAY_FLOAT } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    uint8_t dtype = args[1].u_int;
    return create_zeros_ones_full(args[0].u_obj, dtype, mp_const_none);
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_zeros_obj, 0, create_zeros);
#endif

#if ULAB_NUMPY_HAS_FROMBUFFER
mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, { .u_rom_obj = mp_const_none } },
        { MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(NDARRAY_FLOAT) } },
        { MP_QSTR_count, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(-1) } },
        { MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_OBJ, { .u_rom_obj = MP_ROM_INT(0) } },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    uint8_t dtype = mp_obj_get_int(args[1].u_obj);
    size_t offset = mp_obj_get_int(args[3].u_obj);

    mp_buffer_info_t bufinfo;
    if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) {
        size_t sz = 1;
        if(dtype != NDARRAY_BOOL) { // mp_binary_get_size doesn't work with Booleans
            sz = mp_binary_get_size('@', dtype, NULL);
        }
        if(bufinfo.len < offset) {
            mp_raise_ValueError(translate("offset must be non-negative and no greater than buffer length"));
        }
        size_t len = (bufinfo.len - offset) / sz;
        if((len * sz) != (bufinfo.len - offset)) {
            mp_raise_ValueError(translate("buffer size must be a multiple of element size"));
        }
        if(mp_obj_get_int(args[2].u_obj) > 0) {
            size_t count = mp_obj_get_int(args[2].u_obj);
            if(len < count) {
                mp_raise_ValueError(translate("buffer is smaller than requested size"));
            } else {
                len = count;
            }
        }
        ndarray_obj_t *ndarray = m_new_obj(ndarray_obj_t);
        ndarray->base.type = &ulab_ndarray_type;
        ndarray->dtype = dtype == NDARRAY_BOOL ? NDARRAY_UINT8 : dtype;
        ndarray->boolean = dtype == NDARRAY_BOOL ? NDARRAY_BOOLEAN : NDARRAY_NUMERIC;
        ndarray->ndim = 1;
        ndarray->len = len;
        ndarray->itemsize = sz;
        ndarray->shape[ULAB_MAX_DIMS - 1] = len;
        ndarray->strides[ULAB_MAX_DIMS - 1] = sz;

        uint8_t *buffer = bufinfo.buf;
        ndarray->array = buffer + offset;
        return MP_OBJ_FROM_PTR(ndarray);
    }
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_KW(create_frombuffer_obj, 1, create_frombuffer);
#endif