File: algorithms.c

package info (click to toggle)
gimp 2.2.13-1etch4
  • links: PTS
  • area: main
  • in suites: etch
  • size: 94,832 kB
  • ctags: 47,113
  • sloc: ansic: 524,858; xml: 36,798; lisp: 9,870; sh: 9,409; makefile: 7,923; python: 2,674; perl: 2,589; yacc: 520; lex: 334
file content (601 lines) | stat: -rw-r--r-- 17,904 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
/* $Id: algorithms.c,v 1.12 2004/02/01 13:22:08 mitch Exp $
 * Contains routines for generating mazes, somewhat intertwined with 
 * Gimp plug-in-maze specific stuff.
 *
 * Kevin Turner <acapnotic@users.sourceforge.net>
 * http://gimp-plug-ins.sourceforge.net/maze/
 */
 
/* mazegen code from rec.games.programmer's maze-faq:
 * * maz.c - generate a maze
 * *
 * * algorithm posted to rec.games.programmer by jallen@ic.sunysb.edu
 * * program cleaned and reorganized by mzraly@ldbvax.dnet.lotus.com
 * *
 * * don't make people pay for this, or I'll jump up and down and
 * * yell and scream and embarass you in front of your friends...
 */

/* I've put a HTMLized version of the FAQ up at 
 * http://www.poboxes.com/kevint/gimp/maze-faq/maze-faq.html
 */

/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#ifndef SOLO_COMPILE
#include "config.h"
#endif

#include <stdlib.h>
#include "maze.h"
#include "libgimp/gimp.h"
#include "libgimp/gimpui.h"
#include "libgimp/stdplugins-intl.h"

extern MazeValues mvals;
extern GRand     *gr;

void      mazegen(gint     pos,
		  gchar   *maz,
		  gint     x,
		  gint     y,
		  gint     rnd);
void      mazegen_tileable(gint     pos,
			   gchar   *maz,
			   gint     x,
			   gint     y,
			   gint     rnd);
void      prim(gint pos,
	       gchar *maz, 
	       guint x, 
	       guint y);
void      prim_tileable(gchar *maz, 
			guint x, 
			guint y);

#define ABSMOD(A,B) ( ((A) < 0) ? (((B) + (A)) % (B)) : ((A) % (B)) )

/* Since we are using a 1D array on 2D space, we need to do our own
   calculations.  (Ok, so there are ways of doing dynamically allocated
   2D arrays, but we started this way, so let's stick with it. */

/* The difference between CELL_* and WALL_* is that cell moves two spaces,
   while wall moves one. */

/* Macros assume that x and y will be defined where they are used. */
/* A return of -1 means "no such place, don't go there". */
#define CELL_UP(POS) ((POS) < (x*2) ? -1 : (POS) - x - x)
#define CELL_DOWN(POS) ((POS) >= x*(y-2) ? -1 : (POS) + x + x)
#define CELL_LEFT(POS) (((POS) % x) <= 1 ? -1 : (POS) - 2)
#define CELL_RIGHT(POS) (((POS) % x) >= (x - 2) ? -1 : (POS) + 2)

/* With walls, we don't need to check for boundaries, since we are
   assured that there *is* a valid cell on the other side of the
   wall. */
#define WALL_UP(POS) ((POS) - x)
#define WALL_DOWN(POS) ((POS) + x)
#define WALL_LEFT(POS) ((POS) - 1)
#define WALL_RIGHT(POS) ((POS) + 1)

/***** For tileable mazes *****/

#define CELL_UP_TILEABLE(POS) ((POS) < (x*2) ? x*(y-2)+(POS) : (POS) - x - x)
#define CELL_DOWN_TILEABLE(POS) ((POS) >= x*(y-2) ? (POS) - x*(y-2) : (POS) + x + x)
#define CELL_LEFT_TILEABLE(POS) (((POS) % x) <= 1 ? (POS) + x - 2 : (POS) - 2)
#define CELL_RIGHT_TILEABLE(POS) (((POS) % x) >= (x - 2) ? (POS) + 2 - x : (POS) + 2)         
/* Up and left need checks, but down and right should never have to
   wrap on an even sized maze. */
#define WALL_UP_TILEABLE(POS) ((POS) < x ? x*(y-1)+(POS) : (POS) - x)
#define WALL_DOWN_TILEABLE(POS) ((POS) + x)
#define WALL_LEFT_TILEABLE(POS) (((POS) % x) == 0 ? (POS) + x - 1 : (POS) - 1)
#define WALL_RIGHT_TILEABLE(POS) ((POS) + 1)

/* Down and right with checks.
#define WALL_DOWN_TILEABLE(POS) ((POS) >= x*(y-1) ? (POS) - x * (y-1) : (POS) + x)
#define WALL_RIGHT_TILEABLE(POS) (((POS) % x) == (x - 1) ? (POS) + 1 - x : (POS) + 1)
*/

/* The Incredible Recursive Maze Generation Routine */
/* Ripped from rec.programmers.games maze-faq       */
/* Modified and commented by me, Kevin Turner. */
void
mazegen(gint pos, gchar *maz, gint x, gint y, gint rnd)
{
    gchar d, i;
    gint c=0, j=1;

    /* Punch a hole here...  */
    maz[pos] = IN;

    /* If there is a wall two rows above us, bit 1 is 1. */
    while((d= (pos <= (x * 2) ? 0 : (maz[pos - x - x ] ? 0 : 1))
	  /* If there is a wall two rows below us, bit 2 is 1. */
	  | (pos >= x * (y - 2) ? 0 : (maz[pos + x + x] ? 0 : 2))
	  /* If there is a wall two columns to the right, bit 3 is 1. */
	  | (pos % x == x - 2 ? 0 : (maz[pos + 2] ? 0 : 4))
	  /* If there is a wall two colums to the left, bit 4 is 1.  */
	  | ((pos % x == 1 ) ? 0 : (maz[pos-2] ? 0 : 8)))) {

	/* Note if all bits are 0, d is false, we don't do this
	   while loop, we don't call ourselves again, so this branch
           is done.  */

	/* I see what this loop does (more or less), but I don't know
	   _why_ it does it this way...  I also haven't figured out exactly
	   which values of multiple will work and which won't.  */
	do {
	    rnd = (rnd * mvals.multiple + mvals.offset);
	    i = 3 & (rnd / d);
	    if (++c > 100) {  /* Break and try to salvage something */
		i=99;         /* if it looks like we're going to be */
		break;        /* here forever...                    */
	    }
	} while ( !(d & ( 1 << i) ) );
	/* ...While there's *not* a wall in direction i. */
        /* (stop looping when there is) */

	switch (i) {  /* This is simple enough. */
	case 0:       /* Go in the direction we just figured . . . */
	    j= -x;   
	    break;
	case 1:
	    j = x;
	    break;
	case 2:
	    j=1;
	    break;
	case 3:
	    j= -1;
	    break;
	case 99:
	    return;  /* Hey neat, broken mazes! */
	    break;     /* (Umm... Wow... Yeah, neat.) */
	default:
	     g_warning("maze: mazegen: Going in unknown direction.\n"
		       "i: %d, d: %d, seed: %d, mw: %d, mh: %d, mult: %d, offset: %d\n",
		       i, d,mvals.seed, x, y, mvals.multiple, mvals.offset);
	    break;
	}

	/* And punch a hole there. */
	maz[pos + j] = 1;

        /* Now, start again just past where we punched the hole... */
	mazegen(pos + 2 * j, maz, x, y, rnd);

    } /* End while(d=...) Loop */

    /* This routine is quite quick, even for rather large mazes.
       For that reason, it doesn't need a progress bar. */
    return;
}

/* Tileable mazes are my creation, based on the routine above. */
void
mazegen_tileable(gint pos, gchar *maz, gint x, gint y, gint rnd)
{
    gchar d, i;
    gint c=0, npos=2;

    /* Punch a hole here...  */
    maz[pos] = IN;

    /* If there is a wall two rows above us, bit 1 is 1. */
    while((d= (maz[CELL_UP_TILEABLE(pos)] ? 0 : 1)
	  /* If there is a wall two rows below us, bit 2 is 1. */
	  | (maz[CELL_DOWN_TILEABLE(pos)] ? 0 : 2)
	  /* If there is a wall two columns to the right, bit 3 is 1. */
	  | (maz[CELL_RIGHT_TILEABLE(pos)] ? 0 : 4)
	  /* If there is a wall two colums to the left, bit 4 is 1.  */
	  | (maz[CELL_LEFT_TILEABLE(pos)] ? 0 : 8))) {

	 /* Note if all bits are 0, d is false, we don't do this
	   while loop, we don't call ourselves again, so this branch
           is done.  */

	/* I see what this loop does (more or less), but I don't know
	   _why_ it does it this way...  I also haven't figured out exactly
	   which values of multiple will work and which won't.  */
	do {
	    rnd = (rnd * mvals.multiple + mvals.offset);
	    i = 3 & (rnd / d);
	    if (++c > 100) {  /* Break and try to salvage something */
		i=99;         /* if it looks like we're going to be */
		break;        /* here forever...                    */
	    }
	} while ( !(d & ( 1 << i) ) );
	/* ...While there's *not* a wall in direction i. */
        /* (stop looping when there is) */

	switch (i) {  /* This is simple enough. */
	case 0:       /* Go in the direction we just figured . . . */
	     maz[WALL_UP_TILEABLE(pos)]=IN;
	     npos = CELL_UP_TILEABLE(pos);
	     break;
	case 1:
	     maz[WALL_DOWN_TILEABLE(pos)]=IN;
	     npos = CELL_DOWN_TILEABLE(pos); 
	     break;
	case 2:
	     maz[WALL_RIGHT_TILEABLE(pos)]=IN;
	     npos = CELL_RIGHT_TILEABLE(pos);
	     break;
	case 3:
	     maz[WALL_LEFT_TILEABLE(pos)]=IN;
	     npos = CELL_LEFT_TILEABLE(pos);
	     break;
	case 99:
	     return;  /* Hey neat, broken mazes! */
	     break;     /* (Umm... Wow... Yeah, neat.) */
	default:
	     g_warning("maze: mazegen_tileable: Going in unknown direction.\n"
		       "i: %d, d: %d, seed: %d, mw: %d, mh: %d, mult: %d, offset: %d\n",
		       i, d,mvals.seed, x, y, mvals.multiple, mvals.offset);
	     break;
	}

        /* Now, start again just past where we punched the hole... */
	mazegen_tileable(npos, maz, x, y, rnd);

    } /* End while(d=...) Loop */

    return;
}

#if 0
static void
print_glist(gpointer data, gpointer user_data)
{
     g_print("%d ",(guint)data);
}
#endif

/* This function (as well as prim_tileable) make use of the somewhat
   unclean practice of storing ints as pointers.  I've been informed
   that this may cause problems with 64-bit stuff.  However, hopefully
   it will be okay, since the only values stored are positive.  If it
   does break, let me know, and I'll go cry in a corner for a while
   before I get up the strength to re-code it. */
void
prim(gint pos, gchar *maz, guint x, guint y)
{
     GSList *front_cells=NULL;
     guint current;
     gint up, down, left, right; /* Not unsigned, because macros return -1. */
     guint progress=0, max_progress;
     char d, i;
     guint c=0;
     gint rnd = mvals.seed;

     g_rand_set_seed (gr, rnd);

     gimp_progress_init (_("Constructing maze using Prim's Algorithm..."));

     /* OUT is zero, so we should be already initalized. */

     max_progress=x*y/4;

     /* Starting position has already been determined by the calling function. */

     maz[pos]=IN;

     /* For now, repeating everything four times seems manageable.  But when 
	Gimp is extended to drawings in n-dimensional space instead of 2D,
        this will require a bit of a re-write. */
     /* Add frontier. */
     up=CELL_UP(pos);
     down=CELL_DOWN(pos);
     left=CELL_LEFT(pos);
     right=CELL_RIGHT(pos);

     if (up >= 0) {
	  maz[up]=FRONTIER;
	  front_cells=g_slist_append(front_cells,GINT_TO_POINTER(up));
     }
     if (down >= 0) {
	  maz[down]=FRONTIER;
	  front_cells=g_slist_append(front_cells,GINT_TO_POINTER(down));
     }
     if (left >= 0) {
	  maz[left]=FRONTIER;
	  front_cells=g_slist_append(front_cells,GINT_TO_POINTER(left));
     }
     if (right >= 0) {
	  maz[right]=FRONTIER;
	  front_cells=g_slist_append(front_cells,GINT_TO_POINTER(right));
     }

     /* While frontier is not empty do the following... */
     while(g_slist_length(front_cells) > 0) {

	  /* Remove one cell at random from frontier and place it in IN. */
	  current = g_rand_int_range (gr, 0, g_slist_length(front_cells));
	  pos = GPOINTER_TO_INT(g_slist_nth(front_cells,current)->data);

	  front_cells=g_slist_remove(front_cells,GINT_TO_POINTER(pos));
	  maz[pos]=IN;

	  /* If the cell has any neighbors in OUT, remove them from
             OUT and place them in FRONTIER. */

	  up=CELL_UP(pos);
	  down=CELL_DOWN(pos);
	  left=CELL_LEFT(pos);
	  right=CELL_RIGHT(pos);

	  d=0;
	  if (up>=0) {
	       switch (maz[up]) {
	       case OUT:
		    maz[up]=FRONTIER;
		    front_cells=g_slist_prepend(front_cells,
						GINT_TO_POINTER(up)); 
	       break;
	       case IN:
		    d=1;
		    break;
	       default:
		    ;
	       }
	  }
	  if (down>=0) {
	       switch (maz[down]) {
	       case OUT:
		    maz[down]=FRONTIER;
		    front_cells=g_slist_prepend(front_cells,
						GINT_TO_POINTER(down)); 
		    break;
	       case IN:
		    d=d|2;
		    break;
	       default:
		    ;
	       }
	  }
	  if (left>=0) {
	       switch (maz[left]) {
	       case OUT:
		    maz[left]=FRONTIER;
		    front_cells=g_slist_prepend(front_cells,
						GINT_TO_POINTER(left)); 
		    break;
	       case IN:
		    d=d|4;
		    break;
	       default:
		    ;
	       }
	  }
	  if (right>=0) {
	       switch (maz[right]) {
	       case OUT:
		    maz[right]=FRONTIER;
		    front_cells=g_slist_prepend(front_cells,
						GINT_TO_POINTER(right)); 
		    break;
	       case IN:
		    d=d|8;
		    break;
	       default:
		    ;
	       }	       
	  }

	  /* The cell is guaranteed to have at least one neighbor in
	     IN (otherwise it would not have been in FRONTIER); pick
	     one such neighbor at random and connect it to the new
	     cell (ie knock out a wall).  */

	  if (!d) {
	       g_warning("maze: prim: Lack of neighbors.\n"
			 "seed: %d, mw: %d, mh: %d, mult: %d, offset: %d\n",
			 mvals.seed, x, y, mvals.multiple, mvals.offset);
	       break;	   
	  }

	  c=0;
	  do {
	       rnd = (rnd * mvals.multiple + mvals.offset);
	       i = 3 & (rnd / d);
	       if (++c > 100) {  /* Break and try to salvage something */
		    i=99;         /* if it looks like we're going to be */
		    break;        /* here forever...                    */
	       }
	  } while ( !(d & ( 1 << i) ) );
	  
	  switch (i) {
	  case 0:
	       maz[WALL_UP(pos)]=IN;
	       break;
	  case 1:
	       maz[WALL_DOWN(pos)]=IN;
	       break;
	  case 2:
	       maz[WALL_LEFT(pos)]=IN;
	       break;
	  case 3:
	       maz[WALL_RIGHT(pos)]=IN;
	       break;
	  case 99:
	       break;
	  default:
	       g_warning("maze: prim: Going in unknown direction.\n"
			 "i: %d, d: %d, seed: %d, mw: %d, mh: %d, mult: %d, offset: %d\n",
			 i, d, mvals.seed, x, y, mvals.multiple, mvals.offset);
	  }

	  if (progress++ % PRIMS_PROGRESS_UPDATE)
	       gimp_progress_update ((double) progress / (double) max_progress);

     } /* while front_cells */

     g_slist_free(front_cells);
} /* prim */

void
prim_tileable(gchar *maz, guint x, guint y)
{
     GSList *front_cells=NULL;
     guint current, pos;
     guint up, down, left, right;
     guint progress=0, max_progress;
     char d, i;
     guint c=0;
     gint rnd = mvals.seed;

     g_rand_set_seed (gr, rnd);

     gimp_progress_init (_("Constructing tileable maze using Prim's Algorithm..."));

     /* OUT is zero, so we should be already initalized. */

     max_progress=x*y/4;

     /* Pick someplace to start. */

     pos = x * 2 * g_rand_int_range (gr, 0, y/2) + 2 * g_rand_int_range(gr, 0, x/2);

     maz[pos]=IN;

     /* Add frontier. */
     up=CELL_UP_TILEABLE(pos);
     down=CELL_DOWN_TILEABLE(pos);
     left=CELL_LEFT_TILEABLE(pos);
     right=CELL_RIGHT_TILEABLE(pos);

     maz[up]=maz[down]=maz[left]=maz[right]=FRONTIER;

     front_cells=g_slist_append(front_cells,GINT_TO_POINTER(up));
     front_cells=g_slist_append(front_cells,GINT_TO_POINTER(down));
     front_cells=g_slist_append(front_cells,GINT_TO_POINTER(left));
     front_cells=g_slist_append(front_cells,GINT_TO_POINTER(right));
 
     /* While frontier is not empty do the following... */
     while(g_slist_length(front_cells) > 0) {

	  /* Remove one cell at random from frontier and place it in IN. */
	  current = g_rand_int_range (gr, 0, g_slist_length(front_cells));
	  pos = GPOINTER_TO_UINT(g_slist_nth(front_cells,current)->data);

	  front_cells=g_slist_remove(front_cells,GUINT_TO_POINTER(pos));
	  maz[pos]=IN;

	  /* If the cell has any neighbors in OUT, remove them from
             OUT and place them in FRONTIER. */

	  up=CELL_UP_TILEABLE(pos);
	  down=CELL_DOWN_TILEABLE(pos);
	  left=CELL_LEFT_TILEABLE(pos);
	  right=CELL_RIGHT_TILEABLE(pos);

	  d=0;
	  switch (maz[up]) {
	  case OUT:
	       maz[up]=FRONTIER;
	       front_cells=g_slist_append(front_cells,GINT_TO_POINTER(up));
	       break;
	  case IN:
	       d=1;
	       break;
	  default:
	       ;
	  }
	  switch (maz[down]) {
	  case OUT:
	       maz[down]=FRONTIER;
	       front_cells=g_slist_append(front_cells,GINT_TO_POINTER(down));
	       break;
	  case IN:
	       d=d|2;
	       break;
	  default:
	       ;
	  }
	  switch (maz[left]) {
	  case OUT:
	       maz[left]=FRONTIER;
	       front_cells=g_slist_append(front_cells,GINT_TO_POINTER(left));
	       break;
	  case IN:
	       d=d|4;
	       break;
	  default:
	       ;
	  }
	  switch (maz[right]) {
	  case OUT:
	       maz[right]=FRONTIER;
	       front_cells=g_slist_append(front_cells,GINT_TO_POINTER(right));
	       break;
	  case IN:
	       d=d|8;
	       break;
	  default:
	       ;
	  }	       

	  /* The cell is guaranteed to have at least one neighbor in
	     IN (otherwise it would not have been in FRONTIER); pick
	     one such neighbor at random and connect it to the new
	     cell (ie knock out a wall).  */

	  if (!d) {
	       g_warning("maze: prim's tileable: Lack of neighbors.\n"
			 "seed: %d, mw: %d, mh: %d, mult: %d, offset: %d\n",
			 mvals.seed, x, y, mvals.multiple, mvals.offset);
	       break;	   
	  }

	  c=0;
	  do {
	       rnd = (rnd * mvals.multiple + mvals.offset);
	       i = 3 & (rnd / d);
	       if (++c > 100) {  /* Break and try to salvage something */
		    i=99;         /* if it looks like we're going to be */
		    break;        /* here forever...                    */
	       }
	  } while ( !(d & ( 1 << i) ) );
	  
	  switch (i) {
	  case 0:
	       maz[WALL_UP_TILEABLE(pos)]=IN;
	       break;
	  case 1:
	       maz[WALL_DOWN_TILEABLE(pos)]=IN;
	       break;
	  case 2:
	       maz[WALL_LEFT_TILEABLE(pos)]=IN;
	       break;
	  case 3:
	       maz[WALL_RIGHT_TILEABLE(pos)]=IN;
	       break;
	  case 99:
	       break;
	  default:
	       g_warning("maze: prim's tileable: Going in unknown direction.\n"
			 "i: %d, d: %d, seed: %d, mw: %d, mh: %d, mult: %d, offset: %d\n",
			 i, d, mvals.seed, x, y, mvals.multiple, mvals.offset);
	  }

	  if (progress++ % PRIMS_PROGRESS_UPDATE)
	       gimp_progress_update ((double) progress / (double) max_progress);

     } /* while front_cells */

     g_slist_free(front_cells);
}