1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
/************************************/
/* ArcBall.c (c) Ken Shoemake, 1993 */
/* Modified by Tom Bech, 1996 */
/************************************/
#include "config.h"
#include <libgimp/gimp.h>
#include "arcball.h"
/* Gloval variables */
/* ================ */
Quat qOne = { 0, 0, 0, 1 };
static HVect center;
static double radius;
static Quat qNow, qDown, qDrag;
static HVect vNow, vDown, vFrom, vTo, vrFrom, vrTo;
static HMatrix mNow, mDown;
static unsigned int showResult, dragging;
static ConstraintSet sets[NSets];
static int setSizes[NSets];
static AxisSet axisSet;
static int axisIndex;
static HMatrix mId =
{
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 }
};
static double otherAxis[][4] =
{
{-0.48, 0.80, 0.36, 1}
};
/* Internal methods */
/* ================ */
static void Qt_ToMatrix(Quat q,HMatrix out);
static Quat Qt_Conj(Quat q);
static Quat Qt_Mul(Quat qL, Quat qR);
static Quat Qt_FromBallPoints(HVect from, HVect to);
static void Qt_ToBallPoints(Quat q, HVect *arcFrom, HVect *arcTo);
static HVect V3_(double x, double y, double z);
static double V3_Norm(HVect v);
static HVect V3_Unit(HVect v);
static HVect V3_Scale(HVect v, double s);
static HVect V3_Negate(HVect v);
/*
static HVect V3_Add(HVect v1, HVect v2);
*/
static HVect V3_Sub(HVect v1, HVect v2);
static double V3_Dot(HVect v1, HVect v2);
/*
static HVect V3_Cross(HVect v1, HVect v2);
static HVect V3_Bisect(HVect v0, HVect v1);
*/
static HVect MouseOnSphere(HVect mouse, HVect ballCenter, double ballRadius);
static HVect ConstrainToAxis(HVect loose, HVect axis);
static int NearestConstraintAxis(HVect loose, HVect *axes, int nAxes);
/* Establish reasonable initial values for controller. */
/* =================================================== */
void
ArcBall_Init (void)
{
int i;
center = qOne;
radius = 1.0;
vDown = vNow = qOne;
qDown = qNow = qOne;
for (i=15; i>=0; i--)
((double *)mNow)[i] = ((double *)mDown)[i] = ((double *)mId)[i];
showResult = dragging = FALSE;
axisSet = NoAxes;
sets[CameraAxes] = mId[X];
setSizes[CameraAxes] = 3;
sets[BodyAxes] = mDown[X];
setSizes[BodyAxes] = 3;
sets[OtherAxes] = otherAxis[X];
setSizes[OtherAxes] = 1;
}
/* Set the center and size of the controller. */
/* ========================================== */
void
ArcBall_Place (HVect Center,
double Radius)
{
center = Center;
radius = Radius;
}
/* Incorporate new mouse position. */
/* =============================== */
void
ArcBall_Mouse (HVect v_Now)
{
vNow = v_Now;
}
/* Choose a constraint set, or none. */
/* ================================= */
void
ArcBall_UseSet (AxisSet axis_Set)
{
if (!dragging) axisSet = axis_Set;
}
/* Using vDown, vNow, dragging, and axisSet, compute rotation etc. */
/* =============================================================== */
void
ArcBall_Update (void)
{
int setSize = setSizes[axisSet];
HVect *set = (HVect *)(sets[axisSet]);
vFrom = MouseOnSphere(vDown, center, radius);
vTo = MouseOnSphere(vNow, center, radius);
if (dragging)
{
if (axisSet!=NoAxes)
{
vFrom = ConstrainToAxis(vFrom, set[axisIndex]);
vTo = ConstrainToAxis(vTo, set[axisIndex]);
}
qDrag = Qt_FromBallPoints(vFrom, vTo);
qNow = Qt_Mul(qDrag, qDown);
}
else
{
if (axisSet!=NoAxes) axisIndex = NearestConstraintAxis(vTo, set, setSize);
}
Qt_ToBallPoints(qDown, &vrFrom, &vrTo);
Qt_ToMatrix(Qt_Conj(qNow), mNow); /* Gives transpose for GL. */
}
/* Return rotation matrix defined by controller use. */
/* ================================================= */
void
ArcBall_Value (HMatrix m_Now)
{
ArcBall_CopyMat (mNow, m_Now);
}
/* Extract rotation angles from matrix */
/* =================================== */
void
ArcBall_Values (double *alpha,
double *beta,
double *gamma)
{
if ((*beta=asin(-mNow[0][2]))!=0.0)
{
*gamma=atan2(mNow[1][2],mNow[2][2]);
*alpha=atan2(mNow[0][1],mNow[0][0]);
}
else
{
*gamma=atan2(mNow[1][0],mNow[1][1]);
*alpha=0.0;
}
}
/* Begin drag sequence. */
/* ==================== */
void
ArcBall_BeginDrag (void)
{
dragging = TRUE;
vDown = vNow;
}
/* Stop drag sequence. */
/* =================== */
void
ArcBall_EndDrag (void)
{
dragging = FALSE;
qDown = qNow;
ArcBall_CopyMat (mNow, mDown);
}
/*===================*/
/***** BallAux.c *****/
/*===================*/
/* Return quaternion product qL * qR. Note: order is important! */
/* To combine rotations, use the product Mul(qSecond, qFirst), */
/* which gives the effect of rotating by qFirst then qSecond. */
/* ============================================================= */
static Quat
Qt_Mul (Quat qL,
Quat qR)
{
Quat qq;
qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
return (qq);
}
/* Construct rotation matrix from (possibly non-unit) quaternion. */
/* Assumes matrix is used to multiply column vector on the left: */
/* vnew = mat vold. Works correctly for right-handed coordinate */
/* system and right-handed rotations. */
/* ============================================================== */
static void
Qt_ToMatrix (Quat q,
HMatrix out)
{
double Nq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0;
double xs = q.x*s, ys = q.y*s, zs = q.z*s;
double wx = q.w*xs, wy = q.w*ys, wz = q.w*zs;
double xx = q.x*xs, xy = q.x*ys, xz = q.x*zs;
double yy = q.y*ys, yz = q.y*zs, zz = q.z*zs;
out[X][X] = 1.0 - (yy + zz); out[Y][X] = xy + wz; out[Z][X] = xz - wy;
out[X][Y] = xy - wz; out[Y][Y] = 1.0 - (xx + zz); out[Z][Y] = yz + wx;
out[X][Z] = xz + wy; out[Y][Z] = yz - wx; out[Z][Z] = 1.0 - (xx + yy);
out[X][W] = out[Y][W] = out[Z][W] = out[W][X] = out[W][Y] = out[W][Z] = 0.0;
out[W][W] = 1.0;
}
/* Return conjugate of quaternion. */
/* =============================== */
static Quat
Qt_Conj (Quat q)
{
Quat qq;
qq.x = -q.x; qq.y = -q.y; qq.z = -q.z; qq.w = q.w;
return (qq);
}
/* Return vector formed from components */
/* ==================================== */
static HVect
V3_ (double x,
double y,
double z)
{
HVect v;
v.x = x; v.y = y; v.z = z; v.w = 0;
return (v);
}
/* Return norm of v, defined as sum of squares of components */
/* ========================================================= */
static double
V3_Norm (HVect v)
{
return ( v.x*v.x + v.y*v.y + v.z*v.z );
}
/* Return unit magnitude vector in direction of v */
/* ============================================== */
static HVect
V3_Unit (HVect v)
{
static HVect u = {0, 0, 0, 0};
double vlen = sqrt(V3_Norm(v));
if (vlen != 0.0) u.x = v.x/vlen; u.y = v.y/vlen; u.z = v.z/vlen;
return (u);
}
/* Return version of v scaled by s */
/* =============================== */
static HVect
V3_Scale (HVect v,
double s)
{
HVect u;
u.x = s*v.x; u.y = s*v.y; u.z = s*v.z; u.w = v.w;
return (u);
}
/* Return negative of v */
/* ==================== */
static HVect
V3_Negate (HVect v)
{
static HVect u = {0, 0, 0, 0};
u.x = -v.x; u.y = -v.y; u.z = -v.z;
return (u);
}
/* Return sum of v1 and v2 */
/* ======================= */
/*
static HVect
V3_Add (HVect v1,
HVect v2)
{
static HVect v = {0, 0, 0, 0};
v.x = v1.x+v2.x; v.y = v1.y+v2.y; v.z = v1.z+v2.z;
return (v);
}
*/
/* Return difference of v1 minus v2 */
/* ================================ */
static HVect
V3_Sub (HVect v1,
HVect v2)
{
static HVect v = {0, 0, 0, 0};
v.x = v1.x-v2.x; v.y = v1.y-v2.y; v.z = v1.z-v2.z;
return (v);
}
/* Halve arc between unit vectors v0 and v1. */
/* ========================================= */
/*
static HVect
V3_Bisect (HVect v0,
HVect v1)
{
HVect v = {0, 0, 0, 0};
double Nv;
v = V3_Add(v0, v1);
Nv = V3_Norm(v);
if (Nv < 1.0e-5) v = V3_(0, 0, 1);
else v = V3_Scale(v, 1/sqrt(Nv));
return (v);
}
*/
/* Return dot product of v1 and v2 */
/* =============================== */
static double
V3_Dot (HVect v1,
HVect v2)
{
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}
/* Return cross product, v1 x v2 */
/* ============================= */
/*
static HVect
V3_Cross (HVect v1,
HVect v2)
{
static HVect v = {0, 0, 0, 0};
v.x = v1.y*v2.z-v1.z*v2.y;
v.y = v1.z*v2.x-v1.x*v2.z;
v.z = v1.x*v2.y-v1.y*v2.x;
return (v);
}
*/
void
ArcBall_CopyMat (HMatrix inm,
HMatrix outm)
{
int x=0,y=0;
for (x=0;x<4;x++)
{
for (y=0;y<4;y++)
{
outm[y][x]=inm[y][x];
}
}
}
/*=====================================================*/
/**** BallMath.c - Essential routines for ArcBall. ****/
/*=====================================================*/
/* Convert window coordinates to sphere coordinates. */
/* ================================================= */
static HVect
MouseOnSphere (HVect mouse,
HVect ballCenter,
double ballRadius)
{
HVect ballMouse;
register double mag;
ballMouse.x = (mouse.x - ballCenter.x) / ballRadius;
ballMouse.y = (mouse.y - ballCenter.y) / ballRadius;
mag = ballMouse.x*ballMouse.x + ballMouse.y*ballMouse.y;
if (mag > 1.0)
{
register double scale = 1.0/sqrt(mag);
ballMouse.x *= scale; ballMouse.y *= scale;
ballMouse.z = 0.0;
}
else ballMouse.z = sqrt(1 - mag);
ballMouse.w = 0.0;
return (ballMouse);
}
/* Construct a unit quaternion from two points on unit sphere */
/* ========================================================== */
static Quat
Qt_FromBallPoints (HVect from,
HVect to)
{
Quat qu;
qu.x = from.y*to.z - from.z*to.y;
qu.y = from.z*to.x - from.x*to.z;
qu.z = from.x*to.y - from.y*to.x;
qu.w = from.x*to.x + from.y*to.y + from.z*to.z;
return (qu);
}
/* Convert a unit quaternion to two points on unit sphere */
/* ====================================================== */
static void
Qt_ToBallPoints (Quat q,
HVect *arcFrom,
HVect *arcTo)
{
double s;
s = sqrt(q.x*q.x + q.y*q.y);
if (s == 0.0) *arcFrom = V3_(0.0, 1.0, 0.0);
else *arcFrom = V3_(-q.y/s, q.x/s, 0.0);
arcTo->x = q.w*arcFrom->x - q.z*arcFrom->y;
arcTo->y = q.w*arcFrom->y + q.z*arcFrom->x;
arcTo->z = q.x*arcFrom->y - q.y*arcFrom->x;
if (q.w < 0.0) *arcFrom = V3_(-arcFrom->x, -arcFrom->y, 0.0);
}
/* Force sphere point to be perpendicular to axis. */
/* =============================================== */
static HVect
ConstrainToAxis (HVect loose,
HVect axis)
{
HVect onPlane;
register double norm;
onPlane = V3_Sub(loose, V3_Scale(axis, V3_Dot(axis, loose)));
norm = V3_Norm(onPlane);
if (norm > 0.0)
{
if (onPlane.z < 0.0) onPlane = V3_Negate(onPlane);
return ( V3_Scale(onPlane, 1/sqrt(norm)) );
}
/* else drop through */
/* ================= */
if (axis.z == 1) onPlane = V3_(1.0, 0.0, 0.0);
else onPlane = V3_Unit(V3_(-axis.y, axis.x, 0.0));
return (onPlane);
}
/* Find the index of nearest arc of axis set. */
/* ========================================== */
static int
NearestConstraintAxis (HVect loose,
HVect *axes,
int nAxes)
{
HVect onPlane;
register double max, dot;
register int i, nearest;
max = -1; nearest = 0;
for (i=0; i<nAxes; i++)
{
onPlane = ConstrainToAxis(loose, axes[i]);
dot = V3_Dot(onPlane, loose);
if (dot>max)
{
max = dot; nearest = i;
}
}
return (nearest);
}
|