1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/* spline.c: spline and spline list (represented as arrays) manipulation.
*
* Copyright (C) 1992 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <assert.h>
#include <glib.h>
#include "global.h"
#include "bounding-box.h"
#include "spline.h"
#include "vector.h"
/* Return a new spline structure, initialized with (recognizable)
garbage. */
spline_type
new_spline (void)
{
real_coordinate_type coord = { -100.0, -100.0 };
spline_type spline;
START_POINT (spline)
= CONTROL1 (spline)
= CONTROL2 (spline)
= END_POINT (spline)
= coord;
SPLINE_DEGREE (spline) = -1;
SPLINE_LINEARITY (spline) = 0;
return spline;
}
/* Print a spline in human-readable form. */
void
print_spline (FILE *f, spline_type s)
{
if (SPLINE_DEGREE (s) == LINEAR)
fprintf (f, "(%.3f,%.3f)--(%.3f,%.3f).\n",
START_POINT (s).x, START_POINT (s).y,
END_POINT (s).x, END_POINT (s).y);
else if (SPLINE_DEGREE (s) == CUBIC)
fprintf (f, "(%.3f,%.3f)..ctrls(%.3f,%.3f)&(%.3f,%.3f)..(%.3f,%.3f).\n",
START_POINT (s).x, START_POINT (s).y,
CONTROL1 (s).x, CONTROL1 (s).y,
CONTROL2 (s).x, CONTROL2 (s).y,
END_POINT (s).x, END_POINT (s).y);
else
{
/* FATAL1 ("print_spline: strange degree (%d)", SPLINE_DEGREE (s)); */
}
}
/* Evaluate the spline S at a given T value. This is an implementation
of de Casteljau's algorithm. See Schneider's thesis (reference in
../limn/README), p.37. The variable names are taken from there. */
real_coordinate_type
evaluate_spline (spline_type s, real t)
{
spline_type V[4]; /* We need degree+1 splines, but assert degree <= 3. */
unsigned i, j;
real one_minus_t = 1.0 - t;
polynomial_degree degree = SPLINE_DEGREE (s);
for (i = 0; i <= degree; i++)
V[0].v[i] = s.v[i];
for (j = 1; j <= degree; j++)
for (i = 0; i <= degree - j; i++)
{
#if defined (__GNUC__)
real_coordinate_type t1 = Pmult_scalar (V[j - 1].v[i], one_minus_t);
real_coordinate_type t2 = Pmult_scalar (V[j - 1].v[i + 1], t);
V[j].v[i] = Padd (t1, t2);
#else
/* HB: the above is really nice, but is there any other compiler
* supporting this ??
*/
real_coordinate_type t1;
real_coordinate_type t2;
t1.x = V[j - 1].v[i].x * one_minus_t;
t1.y = V[j - 1].v[i].y * one_minus_t;
t2.x = V[j - 1].v[i + 1].x * t;
t2.y = V[j - 1].v[i + 1].y * t;
V[j].v[i].x = t1.x + t2.x;
V[j].v[i].y = t1.y + t2.y;
#endif
}
return V[degree].v[0];
}
/* Return a new, empty, spline list. */
spline_list_type *
new_spline_list (void)
{
spline_list_type *answer = g_new (spline_list_type, 1);
SPLINE_LIST_DATA (*answer) = NULL;
SPLINE_LIST_LENGTH (*answer) = 0;
return answer;
}
/* Return a new spline list with SPLINE as the first element. */
spline_list_type *
init_spline_list (spline_type spline)
{
spline_list_type *answer = g_new (spline_list_type, 1);
SPLINE_LIST_DATA (*answer) = g_new (spline_type, 1);
SPLINE_LIST_ELT (*answer, 0) = spline;
SPLINE_LIST_LENGTH (*answer) = 1;
return answer;
}
/* Free the storage in a spline list. We don't have to free the
elements, since they are arrays in automatic storage. And we don't
want to free the list if it was empty. */
void
free_spline_list (spline_list_type *spline_list)
{
if (SPLINE_LIST_DATA (*spline_list) != NULL)
safe_free ((address *) &(SPLINE_LIST_DATA (*spline_list)));
}
/* Append the spline S to the list SPLINE_LIST. */
void
append_spline (spline_list_type *l, spline_type s)
{
assert (l != NULL);
SPLINE_LIST_LENGTH (*l)++;
SPLINE_LIST_DATA (*l) = g_realloc (SPLINE_LIST_DATA (*l),
SPLINE_LIST_LENGTH (*l) * sizeof (spline_type));
LAST_SPLINE_LIST_ELT (*l) = s;
}
/* Tack the elements in the list S2 onto the end of S1.
S2 is not changed. */
void
concat_spline_lists (spline_list_type *s1, spline_list_type s2)
{
unsigned this_spline;
unsigned new_length;
assert (s1 != NULL);
new_length = SPLINE_LIST_LENGTH (*s1) + SPLINE_LIST_LENGTH (s2);
SPLINE_LIST_DATA (*s1) = g_realloc(SPLINE_LIST_DATA (*s1),new_length * sizeof(spline_type));
for (this_spline = 0; this_spline < SPLINE_LIST_LENGTH (s2); this_spline++)
SPLINE_LIST_ELT (*s1, SPLINE_LIST_LENGTH (*s1)++)
= SPLINE_LIST_ELT (s2, this_spline);
}
/* Return a new, empty, spline list array. */
spline_list_array_type
new_spline_list_array (void)
{
spline_list_array_type answer;
SPLINE_LIST_ARRAY_DATA (answer) = NULL;
SPLINE_LIST_ARRAY_LENGTH (answer) = 0;
return answer;
}
/* Free the storage in a spline list array. We don't
want to free the list if it is empty. */
void
free_spline_list_array (spline_list_array_type *spline_list_array)
{
unsigned this_list;
for (this_list = 0;
this_list < SPLINE_LIST_ARRAY_LENGTH (*spline_list_array);
this_list++)
free_spline_list (&SPLINE_LIST_ARRAY_ELT (*spline_list_array, this_list));
if (SPLINE_LIST_ARRAY_DATA (*spline_list_array) != NULL)
safe_free ((address *) &(SPLINE_LIST_ARRAY_DATA (*spline_list_array)));
}
/* Append the spline S to the list SPLINE_LIST_ARRAY. */
void
append_spline_list (spline_list_array_type *l, spline_list_type s)
{
SPLINE_LIST_ARRAY_LENGTH (*l)++;
SPLINE_LIST_ARRAY_DATA (*l) = g_realloc(SPLINE_LIST_ARRAY_DATA (*l),(SPLINE_LIST_ARRAY_LENGTH (*l))*sizeof(spline_list_type));
LAST_SPLINE_LIST_ARRAY_ELT (*l) = s;
}
|