1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
|
/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995-2001 Spencer Kimball, Peter Mattis, and others
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <string.h>
#include <glib-object.h>
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "gimp-transform-utils.h"
#include "gimpcoords.h"
#include "gimpcoords-interpolate.h"
#define EPSILON 1e-6
void
gimp_transform_get_rotate_center (gint x,
gint y,
gint width,
gint height,
gboolean auto_center,
gdouble *center_x,
gdouble *center_y)
{
g_return_if_fail (center_x != NULL);
g_return_if_fail (center_y != NULL);
if (auto_center)
{
*center_x = (gdouble) x + (gdouble) width / 2.0;
*center_y = (gdouble) y + (gdouble) height / 2.0;
}
}
void
gimp_transform_get_flip_axis (gint x,
gint y,
gint width,
gint height,
GimpOrientationType flip_type,
gboolean auto_center,
gdouble *axis)
{
g_return_if_fail (axis != NULL);
if (auto_center)
{
switch (flip_type)
{
case GIMP_ORIENTATION_HORIZONTAL:
*axis = ((gdouble) x + (gdouble) width / 2.0);
break;
case GIMP_ORIENTATION_VERTICAL:
*axis = ((gdouble) y + (gdouble) height / 2.0);
break;
default:
g_return_if_reached ();
break;
}
}
}
void
gimp_transform_matrix_flip (GimpMatrix3 *matrix,
GimpOrientationType flip_type,
gdouble axis)
{
g_return_if_fail (matrix != NULL);
switch (flip_type)
{
case GIMP_ORIENTATION_HORIZONTAL:
gimp_matrix3_translate (matrix, - axis, 0.0);
gimp_matrix3_scale (matrix, -1.0, 1.0);
gimp_matrix3_translate (matrix, axis, 0.0);
break;
case GIMP_ORIENTATION_VERTICAL:
gimp_matrix3_translate (matrix, 0.0, - axis);
gimp_matrix3_scale (matrix, 1.0, -1.0);
gimp_matrix3_translate (matrix, 0.0, axis);
break;
case GIMP_ORIENTATION_UNKNOWN:
break;
}
}
void
gimp_transform_matrix_flip_free (GimpMatrix3 *matrix,
gdouble x1,
gdouble y1,
gdouble x2,
gdouble y2)
{
gdouble angle;
g_return_if_fail (matrix != NULL);
angle = atan2 (y2 - y1, x2 - x1);
gimp_matrix3_identity (matrix);
gimp_matrix3_translate (matrix, -x1, -y1);
gimp_matrix3_rotate (matrix, -angle);
gimp_matrix3_scale (matrix, 1.0, -1.0);
gimp_matrix3_rotate (matrix, angle);
gimp_matrix3_translate (matrix, x1, y1);
}
void
gimp_transform_matrix_rotate (GimpMatrix3 *matrix,
GimpRotationType rotate_type,
gdouble center_x,
gdouble center_y)
{
gdouble angle = 0;
switch (rotate_type)
{
case GIMP_ROTATE_DEGREES90:
angle = G_PI_2;
break;
case GIMP_ROTATE_DEGREES180:
angle = G_PI;
break;
case GIMP_ROTATE_DEGREES270:
angle = - G_PI_2;
break;
}
gimp_transform_matrix_rotate_center (matrix, center_x, center_y, angle);
}
void
gimp_transform_matrix_rotate_rect (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
gdouble angle)
{
gdouble center_x;
gdouble center_y;
g_return_if_fail (matrix != NULL);
center_x = (gdouble) x + (gdouble) width / 2.0;
center_y = (gdouble) y + (gdouble) height / 2.0;
gimp_matrix3_translate (matrix, -center_x, -center_y);
gimp_matrix3_rotate (matrix, angle);
gimp_matrix3_translate (matrix, +center_x, +center_y);
}
void
gimp_transform_matrix_rotate_center (GimpMatrix3 *matrix,
gdouble center_x,
gdouble center_y,
gdouble angle)
{
g_return_if_fail (matrix != NULL);
gimp_matrix3_translate (matrix, -center_x, -center_y);
gimp_matrix3_rotate (matrix, angle);
gimp_matrix3_translate (matrix, +center_x, +center_y);
}
void
gimp_transform_matrix_scale (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
gdouble t_x,
gdouble t_y,
gdouble t_width,
gdouble t_height)
{
gdouble scale_x = 1.0;
gdouble scale_y = 1.0;
g_return_if_fail (matrix != NULL);
if (width > 0)
scale_x = t_width / (gdouble) width;
if (height > 0)
scale_y = t_height / (gdouble) height;
gimp_matrix3_identity (matrix);
gimp_matrix3_translate (matrix, -x, -y);
gimp_matrix3_scale (matrix, scale_x, scale_y);
gimp_matrix3_translate (matrix, t_x, t_y);
}
void
gimp_transform_matrix_shear (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
GimpOrientationType orientation,
gdouble amount)
{
gdouble center_x;
gdouble center_y;
g_return_if_fail (matrix != NULL);
if (width == 0)
width = 1;
if (height == 0)
height = 1;
center_x = (gdouble) x + (gdouble) width / 2.0;
center_y = (gdouble) y + (gdouble) height / 2.0;
gimp_matrix3_identity (matrix);
gimp_matrix3_translate (matrix, -center_x, -center_y);
if (orientation == GIMP_ORIENTATION_HORIZONTAL)
gimp_matrix3_xshear (matrix, amount / height);
else
gimp_matrix3_yshear (matrix, amount / width);
gimp_matrix3_translate (matrix, +center_x, +center_y);
}
void
gimp_transform_matrix_perspective (GimpMatrix3 *matrix,
gint x,
gint y,
gint width,
gint height,
gdouble t_x1,
gdouble t_y1,
gdouble t_x2,
gdouble t_y2,
gdouble t_x3,
gdouble t_y3,
gdouble t_x4,
gdouble t_y4)
{
GimpMatrix3 trafo;
gdouble scalex;
gdouble scaley;
g_return_if_fail (matrix != NULL);
scalex = scaley = 1.0;
if (width > 0)
scalex = 1.0 / (gdouble) width;
if (height > 0)
scaley = 1.0 / (gdouble) height;
gimp_matrix3_translate (matrix, -x, -y);
gimp_matrix3_scale (matrix, scalex, scaley);
/* Determine the perspective transform that maps from
* the unit cube to the transformed coordinates
*/
{
gdouble dx1, dx2, dx3, dy1, dy2, dy3;
dx1 = t_x2 - t_x4;
dx2 = t_x3 - t_x4;
dx3 = t_x1 - t_x2 + t_x4 - t_x3;
dy1 = t_y2 - t_y4;
dy2 = t_y3 - t_y4;
dy3 = t_y1 - t_y2 + t_y4 - t_y3;
/* Is the mapping affine? */
if ((dx3 == 0.0) && (dy3 == 0.0))
{
trafo.coeff[0][0] = t_x2 - t_x1;
trafo.coeff[0][1] = t_x4 - t_x2;
trafo.coeff[0][2] = t_x1;
trafo.coeff[1][0] = t_y2 - t_y1;
trafo.coeff[1][1] = t_y4 - t_y2;
trafo.coeff[1][2] = t_y1;
trafo.coeff[2][0] = 0.0;
trafo.coeff[2][1] = 0.0;
}
else
{
gdouble det1, det2;
det1 = dx3 * dy2 - dy3 * dx2;
det2 = dx1 * dy2 - dy1 * dx2;
trafo.coeff[2][0] = (det2 == 0.0) ? 1.0 : det1 / det2;
det1 = dx1 * dy3 - dy1 * dx3;
trafo.coeff[2][1] = (det2 == 0.0) ? 1.0 : det1 / det2;
trafo.coeff[0][0] = t_x2 - t_x1 + trafo.coeff[2][0] * t_x2;
trafo.coeff[0][1] = t_x3 - t_x1 + trafo.coeff[2][1] * t_x3;
trafo.coeff[0][2] = t_x1;
trafo.coeff[1][0] = t_y2 - t_y1 + trafo.coeff[2][0] * t_y2;
trafo.coeff[1][1] = t_y3 - t_y1 + trafo.coeff[2][1] * t_y3;
trafo.coeff[1][2] = t_y1;
}
trafo.coeff[2][2] = 1.0;
}
gimp_matrix3_mult (&trafo, matrix);
}
/* modified gaussian algorithm
* solves a system of linear equations
*
* Example:
* 1x + 2y + 4z = 25
* 2x + 1y = 4
* 3x + 5y + 2z = 23
* Solution: x=1, y=2, z=5
*
* Input:
* matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 }
* s = 3 (Number of variables)
* Output:
* return value == TRUE (TRUE, if there is a single unique solution)
* solution == { 1,2,5 } (if the return value is FALSE, the content
* of solution is of no use)
*/
static gboolean
mod_gauss (gdouble matrix[],
gdouble solution[],
gint s)
{
gint p[s]; /* row permutation */
gint i, j, r, temp;
gdouble q;
gint t = s + 1;
for (i = 0; i < s; i++)
{
p[i] = i;
}
for (r = 0; r < s; r++)
{
/* make sure that (r,r) is not 0 */
if (fabs (matrix[p[r] * t + r]) <= EPSILON)
{
/* we need to permutate rows */
for (i = r + 1; i <= s; i++)
{
if (i == s)
{
/* if this happens, the linear system has zero or
* more than one solutions.
*/
return FALSE;
}
if (fabs (matrix[p[i] * t + r]) > EPSILON)
break;
}
temp = p[r];
p[r] = p[i];
p[i] = temp;
}
/* make (r,r) == 1 */
q = 1.0 / matrix[p[r] * t + r];
matrix[p[r] * t + r] = 1.0;
for (j = r + 1; j < t; j++)
{
matrix[p[r] * t + j] *= q;
}
/* make that all entries in column r are 0 (except (r,r)) */
for (i = 0; i < s; i++)
{
if (i == r)
continue;
for (j = r + 1; j < t ; j++)
{
matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r];
}
/* we don't need to execute the following line
* since we won't access this element again:
*
* matrix[p[i] * t + r] = 0.0;
*/
}
}
for (i = 0; i < s; i++)
{
solution[i] = matrix[p[i] * t + s];
}
return TRUE;
}
/* multiplies 'matrix' by the matrix that transforms a set of 4 'input_points'
* to corresponding 'output_points', if such matrix exists, and is valid (i.e.,
* keeps the output points in front of the camera).
*
* returns TRUE if successful.
*/
gboolean
gimp_transform_matrix_generic (GimpMatrix3 *matrix,
const GimpVector2 input_points[4],
const GimpVector2 output_points[4])
{
GimpMatrix3 trafo;
gdouble coeff[8 * 9];
gboolean negative = -1;
gint i;
gboolean result = TRUE;
g_return_val_if_fail (matrix != NULL, FALSE);
g_return_val_if_fail (input_points != NULL, FALSE);
g_return_val_if_fail (output_points != NULL, FALSE);
/* find the matrix that transforms 'input_points' to 'output_points', whose
* (3, 3) coefficient is 1, by solving a system of linear equations whose
* solution is the remaining 8 coefficients.
*/
for (i = 0; i < 4; i++)
{
coeff[i * 9 + 0] = input_points[i].x;
coeff[i * 9 + 1] = input_points[i].y;
coeff[i * 9 + 2] = 1.0;
coeff[i * 9 + 3] = 0.0;
coeff[i * 9 + 4] = 0.0;
coeff[i * 9 + 5] = 0.0;
coeff[i * 9 + 6] = -input_points[i].x * output_points[i].x;
coeff[i * 9 + 7] = -input_points[i].y * output_points[i].x;
coeff[i * 9 + 8] = output_points[i].x;
coeff[(i + 4) * 9 + 0] = 0.0;
coeff[(i + 4) * 9 + 1] = 0.0;
coeff[(i + 4) * 9 + 2] = 0.0;
coeff[(i + 4) * 9 + 3] = input_points[i].x;
coeff[(i + 4) * 9 + 4] = input_points[i].y;
coeff[(i + 4) * 9 + 5] = 1.0;
coeff[(i + 4) * 9 + 6] = -input_points[i].x * output_points[i].y;
coeff[(i + 4) * 9 + 7] = -input_points[i].y * output_points[i].y;
coeff[(i + 4) * 9 + 8] = output_points[i].y;
}
/* if there is no solution, bail */
if (! mod_gauss (coeff, (gdouble *) trafo.coeff, 8))
return FALSE;
trafo.coeff[2][2] = 1.0;
/* make sure that none of the input points maps to a point at infinity, and
* that all output points are on the same side of the camera.
*/
for (i = 0; i < 4; i++)
{
gdouble w;
gboolean neg;
w = trafo.coeff[2][0] * input_points[i].x +
trafo.coeff[2][1] * input_points[i].y +
trafo.coeff[2][2];
if (fabs (w) <= EPSILON)
result = FALSE;
neg = (w < 0.0);
if (negative < 0)
{
negative = neg;
}
else if (neg != negative)
{
result = FALSE;
break;
}
}
/* if the output points are all behind the camera, negate the matrix, which
* would map the input points to the corresponding points in front of the
* camera.
*/
if (negative > 0)
{
gint r;
gint c;
for (r = 0; r < 3; r++)
{
for (c = 0; c < 3; c++)
{
trafo.coeff[r][c] = -trafo.coeff[r][c];
}
}
}
/* append the transformation to 'matrix' */
gimp_matrix3_mult (&trafo, matrix);
return result;
}
gboolean
gimp_transform_polygon_is_convex (gdouble x1,
gdouble y1,
gdouble x2,
gdouble y2,
gdouble x3,
gdouble y3,
gdouble x4,
gdouble y4)
{
gdouble z1, z2, z3, z4;
/* We test if the transformed polygon is convex. if z1 and z2 have
* the same sign as well as z3 and z4 the polygon is convex.
*/
z1 = ((x2 - x1) * (y4 - y1) -
(x4 - x1) * (y2 - y1));
z2 = ((x4 - x1) * (y3 - y1) -
(x3 - x1) * (y4 - y1));
z3 = ((x4 - x2) * (y3 - y2) -
(x3 - x2) * (y4 - y2));
z4 = ((x3 - x2) * (y1 - y2) -
(x1 - x2) * (y3 - y2));
return (z1 * z2 > 0) && (z3 * z4 > 0);
}
/* transforms the polygon or polyline, whose vertices are given by 'vertices',
* by 'matrix', performing clipping by the near plane. 'closed' indicates
* whether the vertices represent a polygon ('closed == TRUE') or a polyline
* ('closed == FALSE').
*
* returns the transformed vertices in 't_vertices', and their count in
* 'n_t_vertices'. the minimal possible number of transformed vertices is 0,
* which happens when the entire input is clipped. in general, the maximal
* possible number of transformed vertices is '3 * n_vertices / 2' (rounded
* down), however, for convex polygons the number is 'n_vertices + 1', and for
* a single line segment ('n_vertices == 2' and 'closed == FALSE') the number
* is 2.
*
* 't_vertices' may not alias 'vertices', except when transforming a single
* line segment.
*/
void
gimp_transform_polygon (const GimpMatrix3 *matrix,
const GimpVector2 *vertices,
gint n_vertices,
gboolean closed,
GimpVector2 *t_vertices,
gint *n_t_vertices)
{
GimpVector3 curr;
gboolean curr_visible;
gint i;
g_return_if_fail (matrix != NULL);
g_return_if_fail (vertices != NULL);
g_return_if_fail (n_vertices >= 0);
g_return_if_fail (t_vertices != NULL);
g_return_if_fail (n_t_vertices != NULL);
*n_t_vertices = 0;
if (n_vertices == 0)
return;
curr.x = matrix->coeff[0][0] * vertices[0].x +
matrix->coeff[0][1] * vertices[0].y +
matrix->coeff[0][2];
curr.y = matrix->coeff[1][0] * vertices[0].x +
matrix->coeff[1][1] * vertices[0].y +
matrix->coeff[1][2];
curr.z = matrix->coeff[2][0] * vertices[0].x +
matrix->coeff[2][1] * vertices[0].y +
matrix->coeff[2][2];
curr_visible = (curr.z >= GIMP_TRANSFORM_NEAR_Z);
for (i = 0; i < n_vertices; i++)
{
if (curr_visible)
{
t_vertices[(*n_t_vertices)++] = (GimpVector2) { curr.x / curr.z,
curr.y / curr.z };
}
if (i < n_vertices - 1 || closed)
{
GimpVector3 next;
gboolean next_visible;
gint j = (i + 1) % n_vertices;
next.x = matrix->coeff[0][0] * vertices[j].x +
matrix->coeff[0][1] * vertices[j].y +
matrix->coeff[0][2];
next.y = matrix->coeff[1][0] * vertices[j].x +
matrix->coeff[1][1] * vertices[j].y +
matrix->coeff[1][2];
next.z = matrix->coeff[2][0] * vertices[j].x +
matrix->coeff[2][1] * vertices[j].y +
matrix->coeff[2][2];
next_visible = (next.z >= GIMP_TRANSFORM_NEAR_Z);
if (next_visible != curr_visible)
{
gdouble ratio = (curr.z - GIMP_TRANSFORM_NEAR_Z) / (curr.z - next.z);
t_vertices[(*n_t_vertices)++] =
(GimpVector2) { (curr.x + (next.x - curr.x) * ratio) / GIMP_TRANSFORM_NEAR_Z,
(curr.y + (next.y - curr.y) * ratio) / GIMP_TRANSFORM_NEAR_Z };
}
curr = next;
curr_visible = next_visible;
}
}
}
/* same as gimp_transform_polygon(), but using GimpCoords as the vertex type,
* instead of GimpVector2.
*/
void
gimp_transform_polygon_coords (const GimpMatrix3 *matrix,
const GimpCoords *vertices,
gint n_vertices,
gboolean closed,
GimpCoords *t_vertices,
gint *n_t_vertices)
{
GimpVector3 curr;
gboolean curr_visible;
gint i;
g_return_if_fail (matrix != NULL);
g_return_if_fail (vertices != NULL);
g_return_if_fail (n_vertices >= 0);
g_return_if_fail (t_vertices != NULL);
g_return_if_fail (n_t_vertices != NULL);
*n_t_vertices = 0;
if (n_vertices == 0)
return;
curr.x = matrix->coeff[0][0] * vertices[0].x +
matrix->coeff[0][1] * vertices[0].y +
matrix->coeff[0][2];
curr.y = matrix->coeff[1][0] * vertices[0].x +
matrix->coeff[1][1] * vertices[0].y +
matrix->coeff[1][2];
curr.z = matrix->coeff[2][0] * vertices[0].x +
matrix->coeff[2][1] * vertices[0].y +
matrix->coeff[2][2];
curr_visible = (curr.z >= GIMP_TRANSFORM_NEAR_Z);
for (i = 0; i < n_vertices; i++)
{
if (curr_visible)
{
t_vertices[*n_t_vertices] = vertices[i];
t_vertices[*n_t_vertices].x = curr.x / curr.z;
t_vertices[*n_t_vertices].y = curr.y / curr.z;
(*n_t_vertices)++;
}
if (i < n_vertices - 1 || closed)
{
GimpVector3 next;
gboolean next_visible;
gint j = (i + 1) % n_vertices;
next.x = matrix->coeff[0][0] * vertices[j].x +
matrix->coeff[0][1] * vertices[j].y +
matrix->coeff[0][2];
next.y = matrix->coeff[1][0] * vertices[j].x +
matrix->coeff[1][1] * vertices[j].y +
matrix->coeff[1][2];
next.z = matrix->coeff[2][0] * vertices[j].x +
matrix->coeff[2][1] * vertices[j].y +
matrix->coeff[2][2];
next_visible = (next.z >= GIMP_TRANSFORM_NEAR_Z);
if (next_visible != curr_visible)
{
gdouble ratio = (curr.z - GIMP_TRANSFORM_NEAR_Z) / (curr.z - next.z);
gimp_coords_mix (1.0 - ratio, &vertices[i],
ratio, &vertices[j],
&t_vertices[*n_t_vertices]);
t_vertices[*n_t_vertices].x = (curr.x + (next.x - curr.x) * ratio) /
GIMP_TRANSFORM_NEAR_Z;
t_vertices[*n_t_vertices].y = (curr.y + (next.y - curr.y) * ratio) /
GIMP_TRANSFORM_NEAR_Z;
(*n_t_vertices)++;
}
curr = next;
curr_visible = next_visible;
}
}
}
/* returns the value of the polynomial 'poly', of degree 'degree', at 'x'. the
* coefficients of 'poly' should be specified in descending-degree order.
*/
static gdouble
polynomial_eval (const gdouble *poly,
gint degree,
gdouble x)
{
gdouble y = poly[0];
gint i;
for (i = 1; i <= degree; i++)
y = y * x + poly[i];
return y;
}
/* derives the polynomial 'poly', of degree 'degree'.
*
* returns the derivative in 'result'.
*/
static void
polynomial_derive (const gdouble *poly,
gint degree,
gdouble *result)
{
while (degree)
*result++ = *poly++ * degree--;
}
/* finds the real odd-multiplicity root of the polynomial 'poly', of degree
* 'degree', inside the range '(x1, x2)'.
*
* returns TRUE if such a root exists, and stores its value in '*root'.
*
* 'poly' shall be monotonic in the range '(x1, x2)'.
*/
static gboolean
polynomial_odd_root (const gdouble *poly,
gint degree,
gdouble x1,
gdouble x2,
gdouble *root)
{
gdouble y1;
gdouble y2;
gint i;
y1 = polynomial_eval (poly, degree, x1);
y2 = polynomial_eval (poly, degree, x2);
if (y1 * y2 > -EPSILON)
{
/* the two endpoints have the same sign, or one of them is zero. there's
* no root inside the range.
*/
return FALSE;
}
else if (y1 > 0.0)
{
gdouble t;
/* if the first endpoint is positive, swap the endpoints, so that the
* first endpoint is always negative, and the second endpoint is always
* positive.
*/
t = x1;
x1 = x2;
x2 = t;
}
/* approximate the root using binary search */
for (i = 0; i < 53; i++)
{
gdouble x = (x1 + x2) / 2.0;
gdouble y = polynomial_eval (poly, degree, x);
if (y > 0.0)
x2 = x;
else
x1 = x;
}
*root = (x1 + x2) / 2.0;
return TRUE;
}
/* finds the real odd-multiplicity roots of the polynomial 'poly', of degree
* 'degree', inside the range '(x1, x2)'.
*
* returns the roots in 'roots', in ascending order, and their count in
* 'n_roots'.
*/
static void
polynomial_odd_roots (const gdouble *poly,
gint degree,
gdouble x1,
gdouble x2,
gdouble *roots,
gint *n_roots)
{
*n_roots = 0;
/* find the real degree of the polynomial (skip any leading coefficients that
* are 0)
*/
for (; degree && fabs (*poly) < EPSILON; poly++, degree--);
#define ADD_ROOT(root) \
do \
{ \
gdouble r = (root); \
\
if (r > x1 && r < x2) \
roots[(*n_roots)++] = r; \
} \
while (FALSE)
switch (degree)
{
/* constant case */
case 0:
break;
/* linear case */
case 1:
ADD_ROOT (-poly[1] / poly[0]);
break;
/* quadratic case */
case 2:
{
gdouble s = SQR (poly[1]) - 4 * poly[0] * poly[2];
if (s > EPSILON)
{
s = sqrt (s);
if (poly[0] < 0.0)
s = -s;
ADD_ROOT ((-poly[1] - s) / (2.0 * poly[0]));
ADD_ROOT ((-poly[1] + s) / (2.0 * poly[0]));
}
break;
}
/* general case */
default:
{
gdouble deriv[degree];
gdouble deriv_roots[degree - 1];
gint n_deriv_roots;
gdouble a;
gdouble b;
gint i;
/* find the odd roots of the derivative, i.e., the local extrema of the
* polynomial
*/
polynomial_derive (poly, degree, deriv);
polynomial_odd_roots (deriv, degree - 1, x1, x2,
deriv_roots, &n_deriv_roots);
/* search for roots between each consecutive pair of extrema, including
* the endpoints
*/
a = x1;
for (i = 0; i <= n_deriv_roots; i++)
{
if (i < n_deriv_roots)
b = deriv_roots[i];
else
b = x2;
*n_roots += polynomial_odd_root (poly, degree, a, b,
&roots[*n_roots]);
a = b;
}
break;
}
}
#undef ADD_ROOT
}
/* clips the cubic bezier segment, defined by the four control points 'bezier',
* to the halfplane 'ax + by + c >= 0'.
*
* returns the clipped set of bezier segments in 'c_bezier', and their count in
* 'n_c_bezier'. the minimal possible number of clipped segments is 0, which
* happens when the entire segment is clipped. the maximal possible number of
* clipped segments is 2.
*
* if the first clipped segment is an initial segment of 'bezier', sets
* '*start_in' to TRUE, otherwise to FALSE. if the last clipped segment is a
* final segment of 'bezier', sets '*end_in' to TRUE, otherwise to FALSE.
*
* 'c_bezier' may not alias 'bezier'.
*/
static void
clip_bezier (const GimpCoords bezier[4],
gdouble a,
gdouble b,
gdouble c,
GimpCoords c_bezier[2][4],
gint *n_c_bezier,
gboolean *start_in,
gboolean *end_in)
{
gdouble dot[4];
gdouble poly[4];
gdouble roots[5];
gint n_roots;
gint n_positive;
gint i;
n_positive = 0;
for (i = 0; i < 4; i++)
{
dot[i] = a * bezier[i].x + b * bezier[i].y + c;
n_positive += (dot[i] >= 0.0);
}
if (n_positive == 0)
{
/* all points are out -- the entire segment is out */
*n_c_bezier = 0;
*start_in = FALSE;
*end_in = FALSE;
return;
}
else if (n_positive == 4)
{
/* all points are in -- the entire segment is in */
memcpy (c_bezier[0], bezier, sizeof (GimpCoords[4]));
*n_c_bezier = 1;
*start_in = TRUE;
*end_in = TRUE;
return;
}
/* find the points of intersection of the segment with the 'ax + by + c = 0'
* line
*/
poly[0] = dot[3] - 3.0 * dot[2] + 3.0 * dot[1] - dot[0];
poly[1] = 3.0 * (dot[2] - 2.0 * dot[1] + dot[0]);
poly[2] = 3.0 * (dot[1] - dot[0]);
poly[3] = dot[0];
roots[0] = 0.0;
polynomial_odd_roots (poly, 3, 0.0, 1.0, roots + 1, &n_roots);
roots[++n_roots] = 1.0;
/* construct the list of segments that are inside the halfplane */
*n_c_bezier = 0;
*start_in = (polynomial_eval (poly, 3, roots[1] / 2.0) > 0.0);
*end_in = (*start_in + n_roots + 1) % 2;
for (i = ! *start_in; i < n_roots; i += 2)
{
gdouble t0 = roots[i];
gdouble t1 = roots[i + 1];
gimp_coords_interpolate_bezier_at (bezier, t0,
&c_bezier[*n_c_bezier][0],
&c_bezier[*n_c_bezier][1]);
gimp_coords_interpolate_bezier_at (bezier, t1,
&c_bezier[*n_c_bezier][3],
&c_bezier[*n_c_bezier][2]);
gimp_coords_mix (1.0, &c_bezier[*n_c_bezier][0],
(t1 - t0) / 3.0, &c_bezier[*n_c_bezier][1],
&c_bezier[*n_c_bezier][1]);
gimp_coords_mix (1.0, &c_bezier[*n_c_bezier][3],
(t0 - t1) / 3.0, &c_bezier[*n_c_bezier][2],
&c_bezier[*n_c_bezier][2]);
(*n_c_bezier)++;
}
}
/* transforms the cubic bezier segment, defined by the four control points
* 'bezier', by 'matrix', subdividing it as necessary to avoid diverging too
* much from the real transformed curve. at most 'depth' subdivisions are
* performed.
*
* appends the transformed sequence of bezier segments to 't_beziers'.
*
* 'bezier' shall be fully clipped to the near plane.
*/
static void
transform_bezier_coords (const GimpMatrix3 *matrix,
const GimpCoords bezier[4],
GQueue *t_beziers,
gint depth)
{
GimpCoords *t_bezier;
gint n;
/* check if we need to split the segment */
if (depth > 0)
{
GimpVector2 v[4];
GimpVector2 c[2];
GimpVector2 b;
gint i;
for (i = 0; i < 4; i++)
v[i] = (GimpVector2) { bezier[i].x, bezier[i].y };
gimp_vector2_sub (&c[0], &v[1], &v[0]);
gimp_vector2_sub (&c[1], &v[2], &v[3]);
gimp_vector2_sub (&b, &v[3], &v[0]);
gimp_vector2_mul (&b, 1.0 / gimp_vector2_inner_product (&b, &b));
for (i = 0; i < 2; i++)
{
/* split the segment if one of the control points is too far from the
* line connecting the anchors
*/
if (fabs (gimp_vector2_cross_product (&c[i], &b).x) > 0.5)
{
GimpCoords mid_position;
GimpCoords mid_velocity;
GimpCoords sub[4];
gimp_coords_interpolate_bezier_at (bezier, 0.5,
&mid_position, &mid_velocity);
/* first half */
sub[0] = bezier[0];
sub[3] = mid_position;
gimp_coords_mix (0.5, &sub[0],
0.5, &bezier[1],
&sub[1]);
gimp_coords_mix (1.0, &sub[3],
-1.0 / 6.0, &mid_velocity,
&sub[2]);
transform_bezier_coords (matrix, sub, t_beziers, depth - 1);
/* second half */
sub[0] = mid_position;
sub[3] = bezier[3];
gimp_coords_mix (1.0, &sub[0],
+1.0 / 6.0, &mid_velocity,
&sub[1]);
gimp_coords_mix (0.5, &sub[3],
0.5, &bezier[2],
&sub[2]);
transform_bezier_coords (matrix, sub, t_beziers, depth - 1);
return;
}
}
}
/* transform the segment by transforming each of the individual points. note
* that, for non-affine transforms, this is only an approximation of the real
* transformed curve, but due to subdivision it should be good enough.
*/
t_bezier = g_new (GimpCoords, 4);
/* note that while the segments themselves are clipped to the near plane,
* their control points may still get transformed behind the camera. we
* therefore clip the control points to the near plane as well, which is not
* too meaningful, but avoids erroneously transforming them behind the
* camera.
*/
gimp_transform_polygon_coords (matrix, bezier, 2, FALSE,
t_bezier, &n);
gimp_transform_polygon_coords (matrix, bezier + 2, 2, FALSE,
t_bezier + 2, &n);
g_queue_push_tail (t_beziers, t_bezier);
}
/* transforms the cubic bezier segment, defined by the four control points
* 'bezier', by 'matrix', performing clipping by the near plane and subdividing
* as necessary.
*
* returns the transformed set of bezier-segment sequences in 't_beziers', as
* GQueues of GimpCoords[4] bezier-segments, and the number of sequences in
* 'n_t_beziers'. the minimal possible number of transformed sequences is 0,
* which happens when the entire segment is clipped. the maximal possible
* number of transformed sequences is 2. each sequence has at least one
* segment.
*
* if the first transformed segment is an initial segment of 'bezier', sets
* '*start_in' to TRUE, otherwise to FALSE. if the last transformed segment is
* a final segment of 'bezier', sets '*end_in' to TRUE, otherwise to FALSE.
*/
void
gimp_transform_bezier_coords (const GimpMatrix3 *matrix,
const GimpCoords bezier[4],
GQueue *t_beziers[2],
gint *n_t_beziers,
gboolean *start_in,
gboolean *end_in)
{
GimpCoords c_bezier[2][4];
gint i;
g_return_if_fail (matrix != NULL);
g_return_if_fail (bezier != NULL);
g_return_if_fail (t_beziers != NULL);
g_return_if_fail (n_t_beziers != NULL);
g_return_if_fail (start_in != NULL);
g_return_if_fail (end_in != NULL);
/* if the matrix is affine, transform the easy way */
if (gimp_matrix3_is_affine (matrix))
{
GimpCoords *t_bezier;
t_beziers[0] = g_queue_new ();
*n_t_beziers = 1;
t_bezier = g_new (GimpCoords, 1);
g_queue_push_tail (t_beziers[0], t_bezier);
for (i = 0; i < 4; i++)
{
t_bezier[i] = bezier[i];
gimp_matrix3_transform_point (matrix,
bezier[i].x, bezier[i].y,
&t_bezier[i].x, &t_bezier[i].y);
}
return;
}
/* clip the segment to the near plane */
clip_bezier (bezier,
matrix->coeff[2][0],
matrix->coeff[2][1],
matrix->coeff[2][2] - GIMP_TRANSFORM_NEAR_Z,
c_bezier, n_t_beziers,
start_in, end_in);
/* transform each of the resulting segments */
for (i = 0; i < *n_t_beziers; i++)
{
t_beziers[i] = g_queue_new ();
transform_bezier_coords (matrix, c_bezier[i], t_beziers[i], 3);
}
}
|