1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/** @file check_inifcns.cpp
*
* This test routine applies assorted tests on initially known higher level
* functions. */
/*
* GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "checks.h"
/* Some tests on the sine trigonometric function. */
static unsigned inifcns_check_sin(void)
{
unsigned result = 0;
bool errorflag = false;
// sin(n*Pi) == 0?
errorflag = false;
for (int n=-10; n<=10; ++n) {
if (sin(n*Pi).eval() != numeric(0) ||
!sin(n*Pi).eval().info(info_flags::integer))
errorflag = true;
}
if (errorflag) {
// we don't count each of those errors
clog << "sin(n*Pi) with integer n does not always return exact 0"
<< endl;
++result;
}
// sin((n+1/2)*Pi) == {+|-}1?
errorflag = false;
for (int n=-10; n<=10; ++n) {
if (!sin((n+numeric(1,2))*Pi).eval().info(info_flags::integer) ||
!(sin((n+numeric(1,2))*Pi).eval() == numeric(1) ||
sin((n+numeric(1,2))*Pi).eval() == numeric(-1)))
errorflag = true;
}
if (errorflag) {
clog << "sin((n+1/2)*Pi) with integer n does not always return exact {+|-}1"
<< endl;
++result;
}
// compare sin((q*Pi).evalf()) with sin(q*Pi).eval().evalf() at various
// points. E.g. if sin(Pi/10) returns something symbolic this should be
// equal to sqrt(5)/4-1/4. This routine will spot programming mistakes
// of this kind:
errorflag = false;
ex argument;
numeric epsilon(double(1e-8));
for (int n=-340; n<=340; ++n) {
argument = n*Pi/60;
if (abs(sin(evalf(argument))-evalf(sin(argument)))>epsilon) {
clog << "sin(" << argument << ") returns "
<< sin(argument) << endl;
errorflag = true;
}
}
if (errorflag)
++result;
return result;
}
/* Simple tests on the cosine trigonometric function. */
static unsigned inifcns_check_cos(void)
{
unsigned result = 0;
bool errorflag;
// cos((n+1/2)*Pi) == 0?
errorflag = false;
for (int n=-10; n<=10; ++n) {
if (cos((n+numeric(1,2))*Pi).eval() != numeric(0) ||
!cos((n+numeric(1,2))*Pi).eval().info(info_flags::integer))
errorflag = true;
}
if (errorflag) {
clog << "cos((n+1/2)*Pi) with integer n does not always return exact 0"
<< endl;
++result;
}
// cos(n*Pi) == 0?
errorflag = false;
for (int n=-10; n<=10; ++n) {
if (!cos(n*Pi).eval().info(info_flags::integer) ||
!(cos(n*Pi).eval() == numeric(1) ||
cos(n*Pi).eval() == numeric(-1)))
errorflag = true;
}
if (errorflag) {
clog << "cos(n*Pi) with integer n does not always return exact {+|-}1"
<< endl;
++result;
}
// compare cos((q*Pi).evalf()) with cos(q*Pi).eval().evalf() at various
// points. E.g. if cos(Pi/12) returns something symbolic this should be
// equal to 1/4*(1+1/3*sqrt(3))*sqrt(6). This routine will spot
// programming mistakes of this kind:
errorflag = false;
ex argument;
numeric epsilon(double(1e-8));
for (int n=-340; n<=340; ++n) {
argument = n*Pi/60;
if (abs(cos(evalf(argument))-evalf(cos(argument)))>epsilon) {
clog << "cos(" << argument << ") returns "
<< cos(argument) << endl;
errorflag = true;
}
}
if (errorflag)
++result;
return result;
}
/* Simple tests on the tangent trigonometric function. */
static unsigned inifcns_check_tan(void)
{
unsigned result = 0;
bool errorflag;
// compare tan((q*Pi).evalf()) with tan(q*Pi).eval().evalf() at various
// points. E.g. if tan(Pi/12) returns something symbolic this should be
// equal to 2-sqrt(3). This routine will spot programming mistakes of
// this kind:
errorflag = false;
ex argument;
numeric epsilon(double(1e-8));
for (int n=-340; n<=340; ++n) {
if (!(n%30) && (n%60)) // skip poles
++n;
argument = n*Pi/60;
if (abs(tan(evalf(argument))-evalf(tan(argument)))>epsilon) {
clog << "tan(" << argument << ") returns "
<< tan(argument) << endl;
errorflag = true;
}
}
if (errorflag)
++result;
return result;
}
/* Simple tests on the dilogarithm function. */
static unsigned inifcns_check_Li2(void)
{
// NOTE: this can safely be removed once CLN supports dilogarithms and
// checks them itself.
unsigned result = 0;
bool errorflag;
// check the relation Li2(z^2) == 2 * (Li2(z) + Li2(-z)) numerically, which
// should hold in the entire complex plane:
errorflag = false;
ex argument;
numeric epsilon(double(1e-16));
for (int n=0; n<200; ++n) {
argument = numeric(20.0*rand()/(RAND_MAX+1.0)-10.0)
+ numeric(20.0*rand()/(RAND_MAX+1.0)-10.0)*I;
if (abs(Li2(pow(argument,2))-2*Li2(argument)-2*Li2(-argument)) > epsilon) {
clog << "Li2(z) at z==" << argument
<< " failed to satisfy Li2(z^2)==2*(Li2(z)+Li2(-z))" << endl;
errorflag = true;
}
}
if (errorflag)
++result;
return result;
}
unsigned check_inifcns(void)
{
unsigned result = 0;
cout << "checking consistency of symbolic functions" << flush;
clog << "---------consistency of symbolic functions:" << endl;
result += inifcns_check_sin(); cout << '.' << flush;
result += inifcns_check_cos(); cout << '.' << flush;
result += inifcns_check_tan(); cout << '.' << flush;
result += inifcns_check_Li2(); cout << '.' << flush;
if (!result) {
cout << " passed " << endl;
clog << "(no output)" << endl;
} else {
cout << " failed " << endl;
}
return result;
}
|