1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/** @file check_lsolve.cpp
*
* These test routines do some simple checks on solving linear systems of
* symbolic equations. */
/*
* GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "checks.h"
#include <sstream>
static unsigned check_matrix_solve(unsigned m, unsigned n, unsigned p,
unsigned degree)
{
const symbol a("a");
matrix A(m,n);
matrix B(m,p);
// set the first min(m,n) rows of A and B
for (unsigned ro=0; (ro<m)&&(ro<n); ++ro) {
for (unsigned co=0; co<n; ++co)
A.set(ro,co,dense_univariate_poly(a,degree));
for (unsigned co=0; co<p; ++co)
B.set(ro,co,dense_univariate_poly(a,degree));
}
// repeat excessive rows of A and B to avoid excessive construction of
// overdetermined linear systems
for (unsigned ro=n; ro<m; ++ro) {
for (unsigned co=0; co<n; ++co)
A.set(ro,co,A(ro-1,co));
for (unsigned co=0; co<p; ++co)
B.set(ro,co,B(ro-1,co));
}
// create a vector of n*p symbols all named "xrc" where r and c are ints
vector<symbol> x;
matrix X(n,p);
for (unsigned i=0; i<n; ++i) {
for (unsigned j=0; j<p; ++j) {
ostringstream buf;
buf << "x" << i << j << ends;
x.push_back(symbol(buf.str()));
X.set(i,j,x[p*i+j]);
}
}
matrix sol(n,p);
// Solve the system A*X==B:
try {
sol = A.solve(X, B);
} catch (const exception & err) { // catch runtime_error
// Presumably, the coefficient matrix A was degenerate
string errwhat = err.what();
if (errwhat == "matrix::solve(): inconsistent linear system")
return 0;
else
clog << "caught exception: " << errwhat << endl;
throw;
}
// check the result with our original matrix:
bool errorflag = false;
for (unsigned ro=0; ro<m; ++ro) {
for (unsigned pco=0; pco<p; ++pco) {
ex e = 0;
for (unsigned co=0; co<n; ++co)
e += A(ro,co)*sol(co,pco);
if (!(e-B(ro,pco)).normal().is_zero())
errorflag = true;
}
}
if (errorflag) {
clog << "Our solve method claims that A*X==B, with matrices" << endl
<< "A == " << A << endl
<< "X == " << sol << endl
<< "B == " << B << endl;
return 1;
}
return 0;
}
static unsigned check_inifcns_lsolve(unsigned n)
{
unsigned result = 0;
for (int repetition=0; repetition<100; ++repetition) {
// create two size n vectors of symbols, one for the coefficients
// a[0],..,a[n], one for indeterminates x[0]..x[n]:
vector<symbol> a;
vector<symbol> x;
for (unsigned i=0; i<n; ++i) {
ostringstream buf;
buf << i << ends;
a.push_back(symbol(string("a")+buf.str()));
x.push_back(symbol(string("x")+buf.str()));
}
lst eqns; // equation list
lst vars; // variable list
ex sol; // solution
// Create a random linear system...
for (unsigned i=0; i<n; ++i) {
ex lhs = rand()%201-100;
ex rhs = rand()%201-100;
for (unsigned j=0; j<n; ++j) {
// ...with small coefficients to give degeneracy a chance...
lhs += a[j]*(rand()%21-10);
rhs += x[j]*(rand()%21-10);
}
eqns.append(lhs==rhs);
vars.append(x[i]);
}
// ...solve it...
sol = lsolve(eqns, vars);
// ...and check the solution:
if (sol.nops() == 0) {
// no solution was found
// is the coefficient matrix really, really, really degenerate?
matrix coeffmat(n,n);
for (unsigned ro=0; ro<n; ++ro)
for (unsigned co=0; co<n; ++co)
coeffmat.set(ro,co,eqns.op(co).rhs().coeff(a[co],1));
if (!coeffmat.determinant().is_zero()) {
++result;
clog << "solution of the system " << eqns << " for " << vars
<< " was not found" << endl;
}
} else {
// insert the solution into rhs of out equations
bool errorflag = false;
for (unsigned i=0; i<n; ++i)
if (eqns.op(i).rhs().subs(sol) != eqns.op(i).lhs())
errorflag = true;
if (errorflag) {
++result;
clog << "solution of the system " << eqns << " for " << vars
<< " erroneously returned " << sol << endl;
}
}
}
return result;
}
unsigned check_lsolve(void)
{
unsigned result = 0;
cout << "checking linear solve" << flush;
clog << "---------linear solve:" << endl;
// solve some numeric linear systems
for (unsigned n=1; n<12; ++n)
result += check_matrix_solve(n, n, 1, 0);
cout << '.' << flush;
// solve some underdetermined numeric systems
for (unsigned n=1; n<12; ++n)
result += check_matrix_solve(n+1, n, 1, 0);
cout << '.' << flush;
// solve some overdetermined numeric systems
for (unsigned n=1; n<12; ++n)
result += check_matrix_solve(n, n+1, 1, 0);
cout << '.' << flush;
// solve some multiple numeric systems
for (unsigned n=1; n<12; ++n)
result += check_matrix_solve(n, n, n/3+1, 0);
cout << '.' << flush;
// solve some symbolic linear systems
for (unsigned n=1; n<7; ++n)
result += check_matrix_solve(n, n, 1, 2);
cout << '.' << flush;
// check lsolve, the wrapper function around matrix::solve()
result += check_inifcns_lsolve(2); cout << '.' << flush;
result += check_inifcns_lsolve(3); cout << '.' << flush;
result += check_inifcns_lsolve(4); cout << '.' << flush;
result += check_inifcns_lsolve(5); cout << '.' << flush;
result += check_inifcns_lsolve(6); cout << '.' << flush;
if (!result) {
cout << " passed " << endl;
clog << "(no output)" << endl;
} else {
cout << " failed " << endl;
}
return result;
}
|