File: check_lsolve.cpp

package info (click to toggle)
ginac 1.0.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,544 kB
  • ctags: 3,232
  • sloc: cpp: 27,732; sh: 7,126; perl: 1,819; yacc: 763; lex: 345; makefile: 221; sed: 32
file content (201 lines) | stat: -rw-r--r-- 6,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/** @file check_lsolve.cpp
 *
 *  These test routines do some simple checks on solving linear systems of
 *  symbolic equations. */

/*
 *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "checks.h"
#include <sstream>

static unsigned check_matrix_solve(unsigned m, unsigned n, unsigned p,
								   unsigned degree)
{
	const symbol a("a");
	matrix A(m,n);
	matrix B(m,p);
	// set the first min(m,n) rows of A and B
	for (unsigned ro=0; (ro<m)&&(ro<n); ++ro) {
		for (unsigned co=0; co<n; ++co)
			A.set(ro,co,dense_univariate_poly(a,degree));
		for (unsigned co=0; co<p; ++co)
			B.set(ro,co,dense_univariate_poly(a,degree));
	}
	// repeat excessive rows of A and B to avoid excessive construction of
	// overdetermined linear systems
	for (unsigned ro=n; ro<m; ++ro) {
		for (unsigned co=0; co<n; ++co)
			A.set(ro,co,A(ro-1,co));
		for (unsigned co=0; co<p; ++co)
			B.set(ro,co,B(ro-1,co));
	}
	// create a vector of n*p symbols all named "xrc" where r and c are ints
	vector<symbol> x;
	matrix X(n,p);
	for (unsigned i=0; i<n; ++i) {
		for (unsigned j=0; j<p; ++j) {
			ostringstream buf;
			buf << "x" << i << j << ends;
			x.push_back(symbol(buf.str()));
			X.set(i,j,x[p*i+j]);
		}
	}
	matrix sol(n,p);
	// Solve the system A*X==B:
	try {
		sol = A.solve(X, B);
	} catch (const exception & err) {  // catch runtime_error
		// Presumably, the coefficient matrix A was degenerate
		string errwhat = err.what();
		if (errwhat == "matrix::solve(): inconsistent linear system")
			return 0;
		else
			clog << "caught exception: " << errwhat << endl;
		throw;
	}
	
	// check the result with our original matrix:
	bool errorflag = false;
	for (unsigned ro=0; ro<m; ++ro) {
		for (unsigned pco=0; pco<p; ++pco) {
			ex e = 0;
			for (unsigned co=0; co<n; ++co)
			e += A(ro,co)*sol(co,pco);
			if (!(e-B(ro,pco)).normal().is_zero())
				errorflag = true;
		}
	}
	if (errorflag) {
		clog << "Our solve method claims that A*X==B, with matrices" << endl
		     << "A == " << A << endl
		     << "X == " << sol << endl
		     << "B == " << B << endl;
		return 1;
	}
	
	return 0;
}

static unsigned check_inifcns_lsolve(unsigned n)
{
	unsigned result = 0;
	
	for (int repetition=0; repetition<100; ++repetition) {
		// create two size n vectors of symbols, one for the coefficients
		// a[0],..,a[n], one for indeterminates x[0]..x[n]:
		vector<symbol> a;
		vector<symbol> x;
		for (unsigned i=0; i<n; ++i) {
			ostringstream buf;
			buf << i << ends;
			a.push_back(symbol(string("a")+buf.str()));
			x.push_back(symbol(string("x")+buf.str()));
		}
		lst eqns;  // equation list
		lst vars;  // variable list
		ex sol;	// solution
		// Create a random linear system...
		for (unsigned i=0; i<n; ++i) {
			ex lhs = rand()%201-100;
			ex rhs = rand()%201-100;
			for (unsigned j=0; j<n; ++j) {
				// ...with small coefficients to give degeneracy a chance...
				lhs += a[j]*(rand()%21-10);
				rhs += x[j]*(rand()%21-10);
			}
			eqns.append(lhs==rhs);
			vars.append(x[i]);
		}
		// ...solve it...
		sol = lsolve(eqns, vars);
		
		// ...and check the solution:
		if (sol.nops() == 0) {
			// no solution was found
			// is the coefficient matrix really, really, really degenerate?
			matrix coeffmat(n,n);
			for (unsigned ro=0; ro<n; ++ro)
				for (unsigned co=0; co<n; ++co)
					coeffmat.set(ro,co,eqns.op(co).rhs().coeff(a[co],1));
			if (!coeffmat.determinant().is_zero()) {
				++result;
				clog << "solution of the system " << eqns << " for " << vars
					 << " was not found" << endl;
			}
		} else {
			// insert the solution into rhs of out equations
			bool errorflag = false;
			for (unsigned i=0; i<n; ++i)
				if (eqns.op(i).rhs().subs(sol) != eqns.op(i).lhs())
					errorflag = true;
			if (errorflag) {
				++result;
				clog << "solution of the system " << eqns << " for " << vars
				     << " erroneously returned " << sol << endl;
			}
		}
	}
	
	return result;
}

unsigned check_lsolve(void)
{
	unsigned result = 0;
	
	cout << "checking linear solve" << flush;
	clog << "---------linear solve:" << endl;
	
	// solve some numeric linear systems
	for (unsigned n=1; n<12; ++n)
		result += check_matrix_solve(n, n, 1, 0);
	cout << '.' << flush;
	// solve some underdetermined numeric systems
	for (unsigned n=1; n<12; ++n)
		result += check_matrix_solve(n+1, n, 1, 0);
	cout << '.' << flush;
	// solve some overdetermined numeric systems
	for (unsigned n=1; n<12; ++n)
		result += check_matrix_solve(n, n+1, 1, 0);
	cout << '.' << flush;
	// solve some multiple numeric systems
	for (unsigned n=1; n<12; ++n)
		result += check_matrix_solve(n, n, n/3+1, 0);
	cout << '.' << flush;
	// solve some symbolic linear systems
	for (unsigned n=1; n<7; ++n)
		result += check_matrix_solve(n, n, 1, 2);
	cout << '.' << flush;
	
	// check lsolve, the wrapper function around matrix::solve()
	result += check_inifcns_lsolve(2);  cout << '.' << flush;
	result += check_inifcns_lsolve(3);  cout << '.' << flush;
	result += check_inifcns_lsolve(4);  cout << '.' << flush;
	result += check_inifcns_lsolve(5);  cout << '.' << flush;
	result += check_inifcns_lsolve(6);  cout << '.' << flush;
		
	if (!result) {
		cout << " passed " << endl;
		clog << "(no output)" << endl;
	} else {
		cout << " failed " << endl;
	}
	
	return result;
}