1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
/** @file check_numeric.cpp
*
* These exams creates some numbers and check the result of several boolean
* tests on these numbers like is_integer() etc... */
/*
* GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "checks.h"
/* Simple and maybe somewhat pointless consistency tests of assorted tests and
* conversions. */
static unsigned check_numeric1(void)
{
unsigned result = 0;
bool errorflag = false;
int re_q, im_q;
// Check some numerator and denominator calculations:
for (int rep=0; rep<200; ++rep) {
do { re_q = rand(); } while (re_q == 0);
do { im_q = rand(); } while (im_q == 0);
numeric r(rand()-RAND_MAX/2, re_q);
numeric i(rand()-RAND_MAX/2, im_q);
numeric z = r + I*i;
numeric p = numer(z);
numeric q = denom(z);
numeric res = p/q;
if (res != z) {
clog << z << " erroneously transformed into "
<< p << "/" << q << " by numer() and denom()" << endl;
errorflag = true;
}
}
if (errorflag)
++result;
return result;
}
static unsigned check_numeric2(void)
{
unsigned result = 0;
bool errorflag = false;
int i_num, i_den;
// Check non-nested radicals (n/d)^(m/n) in ex wrapper class:
for (int i=0; i<200; ++i) {
for (int j=2; j<13; ++j) {
// construct an exponent 1/j...
numeric nm(1,j);
nm += numeric(int(20.0*rand()/(RAND_MAX+1.0))-10);
// ...a numerator...
do {
i_num = rand();
} while (i_num<=0);
numeric num(i_num);
// ...and a denominator.
do {
i_den = (rand())/100;
} while (i_den<=0);
numeric den(i_den);
// construct the radicals:
ex radical = pow(ex(num)/ex(den),ex(nm));
numeric floating = pow(num/den,nm);
// test the result:
if (is_a<numeric>(radical)) {
// This is very improbable with decent random numbers but it
// still can happen, so we better check if it is correct:
if (pow(radical,inverse(nm))==num/den) {
// Aha! We drew some lucky numbers. Nothing to see here...
} else {
clog << "(" << num << "/" << den << ")^(" << nm
<< ") should have been a product, instead it's "
<< radical << endl;
errorflag = true;
}
}
numeric ratio = abs(ex_to<numeric>(evalf(radical))/floating);
if (ratio>1.0001 && ratio<0.9999) {
clog << "(" << num << "/" << den << ")^(" << nm
<< ") erroneously evaluated to " << radical;
errorflag = true;
}
}
}
if (errorflag)
++result;
return result;
}
unsigned check_numeric(void)
{
unsigned result = 0;
cout << "checking consistency of numeric types" << flush;
clog << "---------consistency of numeric types:" << endl;
result += check_numeric1(); cout << '.' << flush;
result += check_numeric2(); cout << '.' << flush;
if (!result) {
cout << " passed " << endl;
clog << "(no output)" << endl;
} else {
cout << " failed " << endl;
}
return result;
}
|