File: exam_differentiation.cpp

package info (click to toggle)
ginac 1.0.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,544 kB
  • ctags: 3,232
  • sloc: cpp: 27,732; sh: 7,126; perl: 1,819; yacc: 763; lex: 345; makefile: 221; sed: 32
file content (282 lines) | stat: -rw-r--r-- 8,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/** @file exam_differentiation.cpp
 *
 *  Tests for symbolic differentiation, including various functions. */

/*
 *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "exams.h"

static unsigned check_diff(const ex &e, const symbol &x,
						   const ex &d, unsigned nth=1)
{
	ex ed = e.diff(x, nth);
	if ((ed - d).compare(ex(0)) != 0) {
		switch (nth) {
		case 0:
			clog << "zeroth ";
			break;
		case 1:
			break;
		case 2:
			clog << "second ";
			break;
		case 3:
			clog << "third ";
			break;
		default:
			clog << nth << "th ";
		}
		clog << "derivative of " << e << " by " << x << " returned "
		     << ed << " instead of " << d << endl;
		clog << "returned:" << endl;
		ed.printtree(clog);
		clog << endl << "instead of" << endl;
		d.printtree(clog);

		return 1;
	}
	return 0;
}

// Simple (expanded) polynomials
static unsigned exam_differentiation1(void)
{
	unsigned result = 0;
	symbol x("x"), y("y");
	ex e1, e2, e, d;
	
	// construct bivariate polynomial e to be diff'ed:
	e1 = pow(x, -2) * 3 + pow(x, -1) * 5 + 7 + x * 11 + pow(x, 2) * 13;
	e2 = pow(y, -2) * 5 + pow(y, -1) * 7 + 11 + y * 13 + pow(y, 2) * 17;
	e = (e1 * e2).expand();
	
	// d e / dx:
	d = ex("121-55/x^2-66/x^3-30/x^3/y^2-42/x^3/y-78/x^3*y-102/x^3*y^2-25/x^2/y^2-35/x^2/y-65/x^2*y-85/x^2*y^2+77/y+143*y+187*y^2+130*x/y^2+182/y*x+338*x*y+442*x*y^2+55/y^2+286*x",lst(x,y));
	result += check_diff(e, x, d);
	
	// d e / dy:
	d = ex("91-30/x^2/y^3-21/x^2/y^2+39/x^2+102/x^2*y-50/x/y^3-35/x/y^2+65/x+170/x*y-77*x/y^2+143*x+374*x*y-130/y^3*x^2-91/y^2*x^2+169*x^2+442*x^2*y-110/y^3*x-70/y^3+238*y-49/y^2",lst(x,y));
	result += check_diff(e, y, d);
	
	// d^2 e / dx^2:
	d = ex("286+90/x^4/y^2+126/x^4/y+234/x^4*y+306/x^4*y^2+50/x^3/y^2+70/x^3/y+130/x^3*y+170/x^3*y^2+130/y^2+182/y+338*y+442*y^2+198/x^4+110/x^3",lst(x,y));
	result += check_diff(e, x, d, 2);
	
	// d^2 e / dy^2:
	d = ex("238+90/x^2/y^4+42/x^2/y^3+102/x^2+150/x/y^4+70/x/y^3+170/x+330*x/y^4+154*x/y^3+374*x+390*x^2/y^4+182*x^2/y^3+442*x^2+210/y^4+98/y^3",lst(x,y));
	result += check_diff(e, y, d, 2);
	
	return result;
}

// Trigonometric functions
static unsigned exam_differentiation2(void)
{
	unsigned result = 0;
	symbol x("x"), y("y"), a("a"), b("b");
	ex e1, e2, e, d;
	
	// construct expression e to be diff'ed:
	e1 = y*pow(x, 2) + a*x + b;
	e2 = sin(e1);
	e = b*pow(e2, 2) + y*e2 + a;
	
	d = 2*b*e2*cos(e1)*(2*x*y + a) + y*cos(e1)*(2*x*y + a);
	result += check_diff(e, x, d);
	
	d = 2*b*pow(cos(e1),2)*pow(2*x*y + a, 2) + 4*b*y*e2*cos(e1)
	    - 2*b*pow(e2,2)*pow(2*x*y + a, 2) - y*e2*pow(2*x*y + a, 2)
	    + 2*pow(y,2)*cos(e1);
	result += check_diff(e, x, d, 2);
	
	d = 2*b*e2*cos(e1)*pow(x, 2) + e2 + y*cos(e1)*pow(x, 2);
	result += check_diff(e, y, d);

	d = 2*b*pow(cos(e1),2)*pow(x,4) - 2*b*pow(e2,2)*pow(x,4)
	    + 2*cos(e1)*pow(x,2) - y*e2*pow(x,4);
	result += check_diff(e, y, d, 2);
	
	// construct expression e to be diff'ed:
	e2 = cos(e1);
	e = b*pow(e2, 2) + y*e2 + a;
	
	d = -2*b*e2*sin(e1)*(2*x*y + a) - y*sin(e1)*(2*x*y + a);
	result += check_diff(e, x, d);
	
	d = 2*b*pow(sin(e1),2)*pow(2*y*x + a,2) - 4*b*e2*sin(e1)*y 
	    - 2*b*pow(e2,2)*pow(2*y*x + a,2) - y*e2*pow(2*y*x + a,2)
	    - 2*pow(y,2)*sin(e1);
	result += check_diff(e, x, d, 2);
	
	d = -2*b*e2*sin(e1)*pow(x,2) + e2 - y*sin(e1)*pow(x, 2);
	result += check_diff(e, y, d);
	
	d = -2*b*pow(e2,2)*pow(x,4) + 2*b*pow(sin(e1),2)*pow(x,4)
	    - 2*sin(e1)*pow(x,2) - y*e2*pow(x,4);
	result += check_diff(e, y, d, 2);

	return result;
}
	
// exp function
static unsigned exam_differentiation3(void)
{
	unsigned result = 0;
	symbol x("x"), y("y"), a("a"), b("b");
	ex e1, e2, e, d;

	// construct expression e to be diff'ed:
	e1 = y*pow(x, 2) + a*x + b;
	e2 = exp(e1);
	e = b*pow(e2, 2) + y*e2 + a;
	
	d = 2*b*pow(e2, 2)*(2*x*y + a) + y*e2*(2*x*y + a);
	result += check_diff(e, x, d);
	
	d = 4*b*pow(e2,2)*pow(2*y*x + a,2) + 4*b*pow(e2,2)*y
	    + 2*pow(y,2)*e2 + y*e2*pow(2*y*x + a,2);
	result += check_diff(e, x, d, 2);
	
	d = 2*b*pow(e2,2)*pow(x,2) + e2 + y*e2*pow(x,2);
	result += check_diff(e, y, d);
	
	d = 4*b*pow(e2,2)*pow(x,4) + 2*e2*pow(x,2) + y*e2*pow(x,4);
	result += check_diff(e, y, d, 2);

	return result;
}

// log functions
static unsigned exam_differentiation4(void)
{
	unsigned result = 0;
	symbol x("x"), y("y"), a("a"), b("b");
	ex e1, e2, e, d;
	
	// construct expression e to be diff'ed:
	e1 = y*pow(x, 2) + a*x + b;
	e2 = log(e1);
	e = b*pow(e2, 2) + y*e2 + a;
	
	d = 2*b*e2*(2*x*y + a)/e1 + y*(2*x*y + a)/e1;
	result += check_diff(e, x, d);
	
	d = 2*b*pow((2*x*y + a),2)*pow(e1,-2) + 4*b*y*e2/e1
	    - 2*b*e2*pow(2*x*y + a,2)*pow(e1,-2) + 2*pow(y,2)/e1
	    - y*pow(2*x*y + a,2)*pow(e1,-2);
	result += check_diff(e, x, d, 2);
	
	d = 2*b*e2*pow(x,2)/e1 + e2 + y*pow(x,2)/e1;
	result += check_diff(e, y, d);
	
	d = 2*b*pow(x,4)*pow(e1,-2) - 2*b*e2*pow(e1,-2)*pow(x,4)
	    + 2*pow(x,2)/e1 - y*pow(x,4)*pow(e1,-2);
	result += check_diff(e, y, d, 2);

	return result;
}

// Functions with two variables
static unsigned exam_differentiation5(void)
{
	unsigned result = 0;
	symbol x("x"), y("y"), a("a"), b("b");
	ex e1, e2, e, d;
	
	// test atan2
	e1 = y*pow(x, 2) + a*x + b;
	e2 = x*pow(y, 2) + b*y + a;
	e = atan2(e1,e2);
	
	d = pow(y,2)*pow(pow(b+y*pow(x,2)+x*a,2)+pow(y*b+pow(y,2)*x+a,2),-1)*
	    (-b-y*pow(x,2)-x*a)
	   +pow(pow(b+y*pow(x,2)+x*a,2)+pow(y*b+pow(y,2)*x+a,2),-1)*
	    (y*b+pow(y,2)*x+a)*(2*y*x+a);
	result += check_diff(e, x, d);
	
	return result;
}

// Series
static unsigned exam_differentiation6(void)
{
	symbol x("x");
	ex e, d, ed;
	
	e = sin(x).series(x==0, 8);
	d = cos(x).series(x==0, 7);
	ed = e.diff(x);
	ed = series_to_poly(ed);
	d = series_to_poly(d);
	
	if ((ed - d).compare(ex(0)) != 0) {
		clog << "derivative of " << e << " by " << x << " returned "
		     << ed << " instead of " << d << ")" << endl;
		return 1;
	}
	return 0;
}

// Hashing can help a lot, if differentiation is done cleverly
static unsigned exam_differentiation7(void)
{
	symbol x("x");
	ex P = x + pow(x,3);
	ex e = (P.diff(x) / P).diff(x, 2);
	ex d = 6/P - 18*x/pow(P,2) - 54*pow(x,3)/pow(P,2) + 2/pow(P,3)
	    +18*pow(x,2)/pow(P,3) + 54*pow(x,4)/pow(P,3) + 54*pow(x,6)/pow(P,3);
	
	if (!(e-d).expand().is_zero()) {
		clog << "expanded second derivative of " << (P.diff(x) / P) << " by " << x
		     << " returned " << e.expand() << " instead of " << d << endl;
		return 1;
	}
	if (e.nops() > 3) {
		clog << "second derivative of " << (P.diff(x) / P) << " by " << x
		     << " has " << e.nops() << " operands.  "
		     << "The result is still correct but not optimal: 3 are enough!  "
		     << "(Hint: maybe the product rule for objects of class mul should be more careful about assembling the result?)" << endl;
		return 1;
	}
	return 0;
}

unsigned exam_differentiation(void)
{
	unsigned result = 0;
	
	cout << "examining symbolic differentiation" << flush;
	clog << "----------symbolic differentiation:" << endl;
	
	result += exam_differentiation1();  cout << '.' << flush;
	result += exam_differentiation2();  cout << '.' << flush;
	result += exam_differentiation3();  cout << '.' << flush;
	result += exam_differentiation4();  cout << '.' << flush;
	result += exam_differentiation5();  cout << '.' << flush;
	result += exam_differentiation6();  cout << '.' << flush;
	result += exam_differentiation7();  cout << '.' << flush;
	
	if (!result) {
		cout << " passed " << endl;
		clog << "(no output)" << endl;
	} else {
		cout << " failed " << endl;
	}
	return result;
}