1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/** @file exam_inifcns.cpp
*
* This test routine applies assorted tests on initially known higher level
* functions. */
/*
* GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exams.h"
/* Assorted tests on other transcendental functions. */
static unsigned inifcns_consist_trans(void)
{
unsigned result = 0;
symbol x("x");
ex chk;
chk = asin(1)-acos(0);
if (!chk.is_zero()) {
clog << "asin(1)-acos(0) erroneously returned " << chk
<< " instead of 0" << endl;
++result;
}
// arbitrary check of type sin(f(x)):
chk = pow(sin(acos(x)),2) + pow(sin(asin(x)),2)
- (1+pow(x,2))*pow(sin(atan(x)),2);
if (chk != 1-pow(x,2)) {
clog << "sin(acos(x))^2 + sin(asin(x))^2 - (1+x^2)*sin(atan(x))^2 "
<< "erroneously returned " << chk << " instead of 1-x^2" << endl;
++result;
}
// arbitrary check of type cos(f(x)):
chk = pow(cos(acos(x)),2) + pow(cos(asin(x)),2)
- (1+pow(x,2))*pow(cos(atan(x)),2);
if (!chk.is_zero()) {
clog << "cos(acos(x))^2 + cos(asin(x))^2 - (1+x^2)*cos(atan(x))^2 "
<< "erroneously returned " << chk << " instead of 0" << endl;
++result;
}
// arbitrary check of type tan(f(x)):
chk = tan(acos(x))*tan(asin(x)) - tan(atan(x));
if (chk != 1-x) {
clog << "tan(acos(x))*tan(asin(x)) - tan(atan(x)) "
<< "erroneously returned " << chk << " instead of -x+1" << endl;
++result;
}
// arbitrary check of type sinh(f(x)):
chk = -pow(sinh(acosh(x)),2).expand()*pow(sinh(atanh(x)),2)
- pow(sinh(asinh(x)),2);
if (!chk.is_zero()) {
clog << "expand(-(sinh(acosh(x)))^2)*(sinh(atanh(x))^2) - sinh(asinh(x))^2 "
<< "erroneously returned " << chk << " instead of 0" << endl;
++result;
}
// arbitrary check of type cosh(f(x)):
chk = (pow(cosh(asinh(x)),2) - 2*pow(cosh(acosh(x)),2))
* pow(cosh(atanh(x)),2);
if (chk != 1) {
clog << "(cosh(asinh(x))^2 - 2*cosh(acosh(x))^2) * cosh(atanh(x))^2 "
<< "erroneously returned " << chk << " instead of 1" << endl;
++result;
}
// arbitrary check of type tanh(f(x)):
chk = (pow(tanh(asinh(x)),-2) - pow(tanh(acosh(x)),2)).expand()
* pow(tanh(atanh(x)),2);
if (chk != 2) {
clog << "expand(tanh(acosh(x))^2 - tanh(asinh(x))^(-2)) * tanh(atanh(x))^2 "
<< "erroneously returned " << chk << " instead of 2" << endl;
++result;
}
// check consistency of log and eta phases:
for (int r1=-1; r1<=1; ++r1) {
for (int i1=-1; i1<=1; ++i1) {
ex x1 = r1+I*i1;
if (x1.is_zero())
continue;
for (int r2=-1; r2<=1; ++r2) {
for (int i2=-1; i2<=1; ++i2) {
ex x2 = r2+I*i2;
if (x2.is_zero())
continue;
if (abs(evalf(eta(x1,x2)-log(x1*x2)+log(x1)+log(x2)))>.1e-12) {
clog << "either eta(x,y), log(x), log(y) or log(x*y) is wrong"
<< " at x==" << x1 << ", y==" << x2 << endl;
++result;
}
}
}
}
}
return result;
}
/* Simple tests on the tgamma function. We stuff in arguments where the results
* exists in closed form and check if it's ok. */
static unsigned inifcns_consist_gamma(void)
{
unsigned result = 0;
ex e;
e = tgamma(1);
for (int i=2; i<8; ++i)
e += tgamma(ex(i));
if (e != numeric(874)) {
clog << "tgamma(1)+...+tgamma(7) erroneously returned "
<< e << " instead of 874" << endl;
++result;
}
e = tgamma(1);
for (int i=2; i<8; ++i)
e *= tgamma(ex(i));
if (e != numeric(24883200)) {
clog << "tgamma(1)*...*tgamma(7) erroneously returned "
<< e << " instead of 24883200" << endl;
++result;
}
e = tgamma(ex(numeric(5, 2)))*tgamma(ex(numeric(9, 2)))*64;
if (e != 315*Pi) {
clog << "64*tgamma(5/2)*tgamma(9/2) erroneously returned "
<< e << " instead of 315*Pi" << endl;
++result;
}
e = tgamma(ex(numeric(-13, 2)));
for (int i=-13; i<7; i=i+2)
e += tgamma(ex(numeric(i, 2)));
e = (e*tgamma(ex(numeric(15, 2)))*numeric(512));
if (e != numeric(633935)*Pi) {
clog << "512*(tgamma(-13/2)+...+tgamma(5/2))*tgamma(15/2) erroneously returned "
<< e << " instead of 633935*Pi" << endl;
++result;
}
return result;
}
/* Simple tests on the Psi-function (aka polygamma-function). We stuff in
arguments where the result exists in closed form and check if it's ok. */
static unsigned inifcns_consist_psi(void)
{
unsigned result = 0;
symbol x;
ex e, f;
// We check psi(1) and psi(1/2) implicitly by calculating the curious
// little identity tgamma(1)'/tgamma(1) - tgamma(1/2)'/tgamma(1/2) == 2*log(2).
e += (tgamma(x).diff(x)/tgamma(x)).subs(x==numeric(1));
e -= (tgamma(x).diff(x)/tgamma(x)).subs(x==numeric(1,2));
if (e!=2*log(2)) {
clog << "tgamma(1)'/tgamma(1) - tgamma(1/2)'/tgamma(1/2) erroneously returned "
<< e << " instead of 2*log(2)" << endl;
++result;
}
return result;
}
/* Simple tests on the Riemann Zeta function. We stuff in arguments where the
* result exists in closed form and check if it's ok. Of course, this checks
* the Bernoulli numbers as a side effect. */
static unsigned inifcns_consist_zeta(void)
{
unsigned result = 0;
ex e;
for (int i=0; i<13; i+=2)
e += zeta(i)/pow(Pi,i);
if (e!=numeric(-204992279,638512875)) {
clog << "zeta(0) + zeta(2) + ... + zeta(12) erroneously returned "
<< e << " instead of -204992279/638512875" << endl;
++result;
}
e = 0;
for (int i=-1; i>-16; i--)
e += zeta(i);
if (e!=numeric(487871,1633632)) {
clog << "zeta(-1) + zeta(-2) + ... + zeta(-15) erroneously returned "
<< e << " instead of 487871/1633632" << endl;
++result;
}
return result;
}
unsigned exam_inifcns(void)
{
unsigned result = 0;
cout << "examining consistency of symbolic functions" << flush;
clog << "----------consistency of symbolic functions:" << endl;
result += inifcns_consist_trans(); cout << '.' << flush;
result += inifcns_consist_gamma(); cout << '.' << flush;
result += inifcns_consist_psi(); cout << '.' << flush;
result += inifcns_consist_zeta(); cout << '.' << flush;
if (!result) {
cout << " passed " << endl;
clog << "(no output)" << endl;
} else {
cout << " failed " << endl;
}
return result;
}
|