1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/** @file exam_normalization.cpp
*
* Rational function normalization test suite. */
/*
* GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exams.h"
static symbol w("w"), x("x"), y("y"), z("z");
static unsigned check_normal(const ex &e, const ex &d)
{
ex en = e.normal();
if (en.compare(d) != 0) {
clog << "normal form of " << e << " erroneously returned "
<< en << " (should be " << d << ")" << endl;
return 1;
}
return 0;
}
static unsigned exam_normal1(void)
{
unsigned result = 0;
ex e, d;
// Expansion
e = pow(x, 2) - (x+1)*(x-1) - 1;
d = 0;
result += check_normal(e, d);
// Expansion inside functions
e = sin(x*(x+1)-x) + 1;
d = sin(pow(x, 2)) + 1;
result += check_normal(e, d);
// Fraction addition
e = 2/x + y/3;
d = (x*y + 6) / (x*3);
result += check_normal(e, d);
e = pow(x, -1) + x/(x+1);
d = (pow(x, 2)+x+1)/(x*(x+1));
result += check_normal(e, d);
return result;
}
static unsigned exam_normal2(void)
{
unsigned result = 0;
ex e, d;
// Fraction cancellation
e = numeric(1)/2 * z * (2*x + 2*y);
d = z * (x + y);
result += check_normal(e, d);
e = numeric(1)/6 * z * (3*x + 3*y) * (2*x + 2*w);
d = z * (x + y) * (x + w);
result += check_normal(e, d);
e = (3*x + 3*y) * (w/3 + z/3);
d = (x + y) * (w + z);
result += check_normal(e, d);
e = (pow(x, 2) - pow(y, 2)) / pow(x-y, 3);
d = (x + y) / (pow(x, 2) + pow(y, 2) - x * y * 2);
result += check_normal(e, d);
e = (pow(x, -1) + x) / (pow(x , 2) * 2 + 2);
d = pow(x * 2, -1);
result += check_normal(e, d);
// Fraction cancellation with rational coefficients
e = (pow(x, 2) - pow(y, 2)) / pow(x/2 - y/2, 3);
d = (8 * x + 8 * y) / (pow(x, 2) + pow(y, 2) - x * y * 2);
result += check_normal(e, d);
// Fraction cancellation with rational coefficients
e = z/5 * (x/7 + y/10) / (x/14 + y/20);
d = 2*z/5;
result += check_normal(e, d);
return result;
}
static unsigned exam_normal3(void)
{
unsigned result = 0;
ex e, d;
// Distribution of powers
e = pow(x/y, 2);
d = pow(x, 2) / pow(y, 2);
result += check_normal(e, d);
// Distribution of powers (integer, distribute) and fraction addition
e = pow(pow(x, -1) + x, 2);
d = pow(pow(x, 2) + 1, 2) / pow(x, 2);
result += check_normal(e, d);
// Distribution of powers (non-integer, don't distribute) and fraction addition
e = pow(pow(x, -1) + x, numeric(1)/2);
d = pow((pow(x, 2) + 1) / x, numeric(1)/2);
result += check_normal(e, d);
return result;
}
static unsigned exam_normal4(void)
{
unsigned result = 0;
ex e, d;
// Replacement of functions with temporary symbols and fraction cancellation
e = pow(sin(x), 2) - pow(cos(x), 2);
e /= sin(x) + cos(x);
d = sin(x) - cos(x);
result += check_normal(e, d);
// Replacement of non-integer powers with temporary symbols
e = (pow(numeric(2), numeric(1)/2) * x + x) / x;
d = pow(numeric(2), numeric(1)/2) + 1;
result += check_normal(e, d);
// Replacement of complex numbers with temporary symbols
e = (x + y + x*I + y*I) / (x + y);
d = 1 + I;
result += check_normal(e, d);
e = (pow(x, 2) + pow(y, 2)) / (x + y*I);
d = e;
result += check_normal(e, d);
// More complex rational function
e = (pow(x-y*2,4)/pow(pow(x,2)-pow(y,2)*4,2)+1)*(x+y*2)*(y+z)/(pow(x,2)+pow(y,2)*4);
d = (y*2 + z*2) / (x + y*2);
result += check_normal(e, d);
return result;
}
unsigned exam_normalization(void)
{
unsigned result = 0;
cout << "examining rational function normalization" << flush;
clog << "----------rational function normalization:" << endl;
result += exam_normal1(); cout << '.' << flush;
result += exam_normal2(); cout << '.' << flush;
result += exam_normal3(); cout << '.' << flush;
result += exam_normal4(); cout << '.' << flush;
if (!result) {
cout << " passed " << endl;
clog << "(no output)" << endl;
} else {
cout << " failed " << endl;
}
return result;
}
|