File: exam_numeric.cpp

package info (click to toggle)
ginac 1.0.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,544 kB
  • ctags: 3,232
  • sloc: cpp: 27,732; sh: 7,126; perl: 1,819; yacc: 763; lex: 345; makefile: 221; sed: 32
file content (398 lines) | stat: -rw-r--r-- 12,286 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/** @file exam_numeric.cpp
 *
 *  These exams creates some numbers and check the result of several boolean
 *  tests on these numbers like is_integer() etc... */

/*
 *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "exams.h"

#include <sstream>

/* Simple and maybe somewhat pointless consistency tests of assorted tests and
 * conversions. */
static unsigned exam_numeric1(void)
{
	unsigned result = 0;
	numeric test_int1(42);
	numeric test_int2(5);
	numeric test_rat1 = test_int1; test_rat1 /= test_int2;
	test_rat1 = -test_rat1;		 // -42/5
	numeric test_crat = test_rat1+I*test_int2;  // 5*I-42/5
	symbol a("a");
	ex e1, e2;
	
	if (!test_int1.is_integer()) {
		clog << test_int1
		     << " erroneously not recognized as integer" << endl;
		++result;
	}
	if (!test_int1.is_rational()) {
		clog << test_int1
		     << " erroneously not recognized as rational" << endl;
		++result;
	}
	
	if (!test_rat1.is_rational()) {
		clog << test_rat1
		     << " erroneously not recognized as rational" << endl;
		++result;
	}
	if (test_rat1.is_integer()) {
		clog << test_rat1
			 << " erroneously recognized as integer" << endl;
		++result;
	}
	
	if (!test_crat.is_crational()) {
		clog << test_crat
		     << " erroneously not recognized as complex rational" << endl;
		++result;
	}
	
	int i = numeric(1984).to_int();
	if (i-1984) {
		clog << "conversion of " << i
		     << " from numeric to int failed" << endl;
		++result;
	}
	
	e1 = test_int1;
	if (!e1.info(info_flags::posint)) {
		clog << "expression " << e1
		     << " erroneously not recognized as positive integer" << endl;
		++result;
	}
	
	e2 = test_int1 + a;
	if (e2.info(info_flags::integer)) {
		clog << "expression " << e2
		     << " erroneously recognized as integer" << endl;
		++result;
	}
	
	// The next two were two actual bugs in CLN till June, 12, 1999:
	test_rat1 = numeric(3)/numeric(2);
	test_rat1 += test_rat1;
	if (!test_rat1.is_integer()) {
		clog << "3/2 + 3/2 erroneously not integer 3 but instead "
		     << test_rat1 << endl;
		++result;
	}
	test_rat1 = numeric(3)/numeric(2);
	numeric test_rat2 = test_rat1 + numeric(1);  // 5/2
	test_rat2 -= test_rat1;  // 1
	if (!test_rat2.is_integer()) {
		clog << "5/2 - 3/2 erroneously not integer 1 but instead "
		     << test_rat2 << endl;
		++result;
	}
	
	return result;
}

/* We had some fun with a bug in CLN that caused it to loop forever when
 * calculating expt(a,b) if b is a rational and a a nonnegative integer.
 * Implementing a workaround sadly introduced another bug on May 28th 1999
 * that was fixed on May 31st.  The workaround turned out to be stupid and
 * the original bug in CLN was finally killed on September 2nd. */
static unsigned exam_numeric2(void)
{
	unsigned result = 0;
	
	ex zero = numeric(0);
	ex two = numeric(2);
	ex three = numeric(3);
	
	// The hang in this code was the reason for the original workaround
	if (pow(two,two/three)==42) {
		clog << "pow(2,2/3) erroneously returned 42" << endl;
		++result;  // cannot happen
	}
	
	// Actually, this used to raise a FPE after introducing the workaround
	if (two*zero!=zero) {
		clog << "2*0 erroneously returned " << two*zero << endl;
		++result;
	}
	
	// And this returned a cl_F due to the implicit call of numeric::power()
	ex six = two*three;
	if (!six.info(info_flags::integer)) {
		clog << "2*3 erroneously returned the non-integer " << six << endl;
		++result;
	}
	
	// The fix in the workaround left a whole which was fixed hours later...
	ex another_zero = pow(zero,numeric(1)/numeric(2));
	if (!another_zero.is_zero()) {
		clog << "pow(0,1/2) erroneously returned" << another_zero << endl;
		++result;
	}
	
	return result;
}

/* Assorted tests to ensure some crucial functions behave exactly as specified
 * in the documentation. */
static unsigned exam_numeric3(void)
{
	unsigned result = 0;
	numeric calc_rem, calc_quo;
	numeric a, b;
	
	// check if irem(a, b) and irem(a, b, q) really behave like Maple's 
	// irem(a, b) and irem(a, b, 'q') as advertised in our documentation.
	// These overloaded routines indeed need to be checked separately since
	// internally they might be doing something completely different:
	a = 23; b = 4; calc_rem = irem(a, b);
	if (calc_rem != 3) {
		clog << "irem(" << a << "," << b << ") erroneously returned "
		     << calc_rem << endl;
		++result;
	}
	a = 23; b = -4; calc_rem = irem(a, b);
	if (calc_rem != 3) {
		clog << "irem(" << a << "," << b << ") erroneously returned "
			 << calc_rem << endl;
		++result;
	}
	a = -23; b = 4; calc_rem = irem(a, b);
	if (calc_rem != -3) {
		clog << "irem(" << a << "," << b << ") erroneously returned "
		     << calc_rem << endl;
		++result;
	}
	a = -23; b = -4; calc_rem = irem(a, b);
	if (calc_rem != -3) {
		clog << "irem(" << a << "," << b << ") erroneously returned "
		     << calc_rem << endl;
		++result;
	}
	// and now the overloaded irem(a,b,q):
	a = 23; b = 4; calc_rem = irem(a, b, calc_quo);
	if (calc_rem != 3 || calc_quo != 5) {
		clog << "irem(" << a << "," << b << ",q) erroneously returned "
		     << calc_rem << " with q=" << calc_quo << endl;
		++result;
	}
	a = 23; b = -4; calc_rem = irem(a, b, calc_quo);
	if (calc_rem != 3 || calc_quo != -5) {
		clog << "irem(" << a << "," << b << ",q) erroneously returned "
		     << calc_rem << " with q=" << calc_quo << endl;
		++result;
	}
	a = -23; b = 4; calc_rem = irem(a, b, calc_quo);
	if (calc_rem != -3 || calc_quo != -5) {
		clog << "irem(" << a << "," << b << ",q) erroneously returned "
		     << calc_rem << " with q=" << calc_quo << endl;
		++result;
	}
	a = -23; b = -4; calc_rem = irem(a, b, calc_quo);
	if (calc_rem != -3 || calc_quo != 5) {
		clog << "irem(" << a << "," << b << ",q) erroneously returned "
		     << calc_rem << " with q=" << calc_quo << endl;
		++result;
	}
	// check if iquo(a, b) and iquo(a, b, r) really behave like Maple's 
	// iquo(a, b) and iquo(a, b, 'r') as advertised in our documentation.
	// These overloaded routines indeed need to be checked separately since
	// internally they might be doing something completely different:
	a = 23; b = 4; calc_quo = iquo(a, b);
	if (calc_quo != 5) {
		clog << "iquo(" << a << "," << b << ") erroneously returned "
		     << calc_quo << endl;
		++result;
	}
	a = 23; b = -4; calc_quo = iquo(a, b);
	if (calc_quo != -5) {
		clog << "iquo(" << a << "," << b << ") erroneously returned "
		     << calc_quo << endl;
		++result;
	}
	a = -23; b = 4; calc_quo = iquo(a, b);
	if (calc_quo != -5) {
		clog << "iquo(" << a << "," << b << ") erroneously returned "
		     << calc_quo << endl;
		++result;
	}
	a = -23; b = -4; calc_quo = iquo(a, b);
	if (calc_quo != 5) {
		clog << "iquo(" << a << "," << b << ") erroneously returned "
		     << calc_quo << endl;
		++result;
	}
	// and now the overloaded iquo(a,b,r):
	a = 23; b = 4; calc_quo = iquo(a, b, calc_rem);
	if (calc_quo != 5 || calc_rem != 3) {
		clog << "iquo(" << a << "," << b << ",r) erroneously returned "
		     << calc_quo << " with r=" << calc_rem << endl;
		++result;
	}
	a = 23; b = -4; calc_quo = iquo(a, b, calc_rem);
	if (calc_quo != -5 || calc_rem != 3) {
		clog << "iquo(" << a << "," << b << ",r) erroneously returned "
		     << calc_quo << " with r=" << calc_rem << endl;
		++result;
	}
	a = -23; b = 4; calc_quo = iquo(a, b, calc_rem);
	if (calc_quo != -5 || calc_rem != -3) {
		clog << "iquo(" << a << "," << b << ",r) erroneously returned "
		     << calc_quo << " with r=" << calc_rem << endl;
		++result;
	}
	a = -23; b = -4; calc_quo = iquo(a, b, calc_rem);
	if (calc_quo != 5 || calc_rem != -3) {
		clog << "iquo(" << a << "," << b << ",r) erroneously returned "
		     << calc_quo << " with r=" << calc_rem << endl;
		++result;
	}
	
	return result;
}

/* Now we perform some less trivial checks about several functions which should
 * return exact numbers if possible. */
static unsigned exam_numeric4(void)
{
	unsigned result = 0;
	bool passed;
	
	// square roots of squares of integers:
	passed = true;
	for (int i=0; i<42; ++i)
		if (!sqrt(numeric(i*i)).is_integer())
			passed = false;
	if (!passed) {
		clog << "One or more square roots of squares of integers did not return exact integers" << endl;
		++result;
	}
	
	// square roots of squares of rationals:
	passed = true;
	for (int num=0; num<41; ++num)
		for (int den=1; den<42; ++den)
			if (!sqrt(numeric(num*num)/numeric(den*den)).is_rational())
				passed = false;
	if (!passed) {
		clog << "One or more square roots of squares of rationals did not return exact integers" << endl;
		++result;
	}
	
	return result;
}

/* This test examines that simplifications of the form 5^(3/2) -> 5*5^(1/2)
 * are carried out properly. */
static unsigned exam_numeric5(void)
{
	unsigned result = 0;
	
	// A variation of one of Ramanujan's wonderful identities must be
	// verifiable with very primitive means:
	ex e1 = pow(1 + pow(3,numeric(1,5)) - pow(3,numeric(2,5)),3);
	ex e2 = expand(e1 - 10 + 5*pow(3,numeric(3,5)));
	if (!e2.is_zero()) {
		clog << "expand((1+3^(1/5)-3^(2/5))^3-10+5*3^(3/5)) returned "
		     << e2 << " instead of 0." << endl;
		++result;
	}
	
	return result;
}

/* This test checks whether the numeric output/parsing routines are
   consistent. */
static unsigned exam_numeric6(void)
{
	unsigned result = 0;

	symbol sym("sym");
	vector<ex> test_numbers;
	test_numbers.push_back(numeric(0));			// zero
	test_numbers.push_back(numeric(1));			// one
	test_numbers.push_back(numeric(-1));		// minus one
	test_numbers.push_back(numeric(42));		// positive integer
	test_numbers.push_back(numeric(-42));		// negative integer
	test_numbers.push_back(numeric(14,3));		// positive rational
	test_numbers.push_back(numeric(-14,3));		// negative rational
	test_numbers.push_back(numeric(3.141));		// positive decimal
	test_numbers.push_back(numeric(-3.141));	// negative decimal
	test_numbers.push_back(numeric(0.1974));	// positive decimal, leading zero
	test_numbers.push_back(numeric(-0.1974));	// negative decimal, leading zero
	test_numbers.push_back(sym);				// symbol

	for (vector<ex>::const_iterator br=test_numbers.begin(); br<test_numbers.end(); ++br) {
		for (vector<ex>::const_iterator bi=test_numbers.begin(); bi<test_numbers.end(); ++bi) {

			for (vector<ex>::const_iterator er=test_numbers.begin(); er<test_numbers.end(); ++er) {
				for (vector<ex>::const_iterator ei=test_numbers.begin(); ei<test_numbers.end(); ++ei) {

					// Construct expression, don't test invalid ones
					ex base = (*br) + (*bi)*I, exponent = (*er) + (*ei)*I, x;
					try {
						x = pow(base, exponent);
					} catch (...) {
						continue;
					}

					// Print to string
					std::ostringstream s;
					s << x;

					// Read back expression from string
					string x_as_string = s.str();
					ex x_again(x_as_string, lst(sym));

					// They should be equal
					if (!x_again.is_equal(x)) {
						clog << x << " was read back as " << x_again << endl;
						++result;
					}
				}
			}
		}
	}

	return result;
}

unsigned exam_numeric(void)
{
	unsigned result = 0;
	
	cout << "examining consistency of numeric types" << flush;
	clog << "----------consistency of numeric types:" << endl;
	
	result += exam_numeric1();  cout << '.' << flush;
	result += exam_numeric2();  cout << '.' << flush;
	result += exam_numeric3();  cout << '.' << flush;
	result += exam_numeric4();  cout << '.' << flush;
	result += exam_numeric5();  cout << '.' << flush;
	result += exam_numeric6();  cout << '.' << flush;
	
	if (!result) {
		cout << " passed " << endl;
		clog << "(no output)" << endl;
	} else {
		cout << " failed " << endl;
	}
	
	return result;
}