File: exam_polygcd.cpp

package info (click to toggle)
ginac 1.0.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,544 kB
  • ctags: 3,232
  • sloc: cpp: 27,732; sh: 7,126; perl: 1,819; yacc: 763; lex: 345; makefile: 221; sed: 32
file content (254 lines) | stat: -rw-r--r-- 6,518 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/** @file exam_polygcd.cpp
 *
 *  Some test with polynomial GCD calculations. See also the checks for
 *  rational function normalization in normalization.cpp. */

/*
 *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "exams.h"

const int MAX_VARIABLES = 3;

static symbol x("x"), z("z");
static symbol y[MAX_VARIABLES];

// GCD = 1
static unsigned poly_gcd1(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = x;
		ex e2 = pow(x, 2);
		for (int i=0; i<v; i++) {
			e1 += y[i];
			e2 += pow(y[i], 2);
		}

		ex f = (e1 + 1) * (e1 + 2);
		ex g = e2 * (-pow(x, 2) * y[0] * 3 + pow(y[0], 2) - 1);
		ex r = gcd(f, g);
		if (r != 1) {
			clog << "case 1, gcd(" << f << "," << g << ") = " << r << " (should be 1)" << endl;
			return 1;
		}
	}
	return 0;
}

// Linearly dense quartic inputs with quadratic GCDs
static unsigned poly_gcd2(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = x;
		ex e2 = x;
		for (int i=0; i<v; i++) {
			e1 += y[i];
			e2 -= y[i];
		}

		ex d = pow(e1 + 1, 2);
		ex f = d * pow(e2 - 2, 2);
		ex g = d * pow(e1 + 2, 2);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 2, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Sparse GCD and inputs where degrees are proportional to the number of variables
static unsigned poly_gcd3(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = pow(x, v + 1);
		for (int i=0; i<v; i++)
			e1 += pow(y[i], v + 1);

		ex d = e1 + 1;
		ex f = d * (e1 - 2);
		ex g = d * (e1 + 2);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 3, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Variation of case 3; major performance degradation with PRS
static unsigned poly_gcd3p(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = pow(x, v + 1);
		ex e2 = pow(x, v);
		for (int i=0; i<v; i++) {
			e1 += pow(y[i], v + 1);
			e2 += pow(y[i], v);
		}

		ex d = e1 + 1;
		ex f = d * (e1 - 2);
		ex g = d * (e2 + 2);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 3p, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Quadratic non-monic GCD; f and g have other quadratic factors
static unsigned poly_gcd4(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = pow(x, 2) * pow(y[0], 2);
		ex e2 = pow(x, 2) - pow(y[0], 2);
		ex e3 = x * y[0];
		for (int i=1; i<v; i++) {
			e1 += pow(y[i], 2);
			e2 += pow(y[i], 2);
			e3 += y[i];
		}

		ex d = e1 + 1;
		ex f = d * (e2 - 1);
		ex g = d * pow(e3 + 2, 2);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 4, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Completely dense non-monic quadratic inputs with dense non-monic linear GCDs
static unsigned poly_gcd5(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = x + 1;
		ex e2 = x - 2;
		ex e3 = x + 2;
		for (int i=0; i<v; i++) {
			e1 *= y[i] + 1;
			e2 *= y[i] - 2;
			e3 *= y[i] + 2;
		}

		ex d = e1 - 3;
		ex f = d * (e2 + 3);
		ex g = d * (e3 - 3);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 5, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Sparse non-monic quadratic inputs with linear GCDs
static unsigned poly_gcd5p(void)
{
	for (int v=1; v<=MAX_VARIABLES; v++) {
		ex e1 = x;
		for (int i=0; i<v; i++)
			e1 *= y[i];

		ex d = e1 - 1;
		ex f = d * (e1 + 3);
		ex g = d * (e1 - 3);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 5p, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Trivariate inputs with increasing degrees
static unsigned poly_gcd6(void)
{
	symbol y("y");

	for (int j=1; j<=MAX_VARIABLES; j++) {
		ex d = pow(x, j) * y * (z - 1);
		ex f = d * (pow(x, j) + pow(y, j + 1) * pow(z, j) + 1);
		ex g = d * (pow(x, j + 1) + pow(y, j) * pow(z, j + 1) - 7);
		ex r = gcd(f.expand(), g.expand());
		if (!(r - d).expand().is_zero()) {
			clog << "case 6, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
			return 1;
		}
	}
	return 0;
}

// Trivariate polynomials whose GCD has common factors with its cofactors
static unsigned poly_gcd7(void)
{
	symbol y("y");
	ex p = x - y * z + 1;
	ex q = x - y + z * 3;

	for (int j=1; j<=MAX_VARIABLES; j++) {
		for (int k=j+1; k<=4; k++) {
			ex d = pow(p, j) * pow(q, j);
			ex f = pow(p, j) * pow(q, k);
			ex g = pow(p, k) * pow(q, j); 
			ex r = gcd(f, g);
			if (!(r - d).expand().is_zero() && !(r + d).expand().is_zero()) {
				clog << "case 7, gcd(" << f << "," << g << ") = " << r << " (should be " << d << ")" << endl;
				return 1;
			}
		}
	}
	return 0;
}

unsigned exam_polygcd(void)
{
	unsigned result = 0;
	
	cout << "examining polynomial GCD computation" << flush;
	clog << "----------polynomial GCD computation:" << endl;
	
	result += poly_gcd1();  cout << '.' << flush;
	result += poly_gcd2();  cout << '.' << flush;
	result += poly_gcd3();  cout << '.' << flush;
	result += poly_gcd3p();	 cout << '.' << flush; // PRS "worst" case
	result += poly_gcd4();  cout << '.' << flush;
	result += poly_gcd5();  cout << '.' << flush;
	result += poly_gcd5p();  cout << '.' << flush;
	result += poly_gcd6();  cout << '.' << flush;
	result += poly_gcd7();  cout << '.' << flush;
	
	if (!result) {
		cout << " passed " << endl;
		clog << "(no output)" << endl;
	} else {
		cout << " failed " << endl;
	}
	
	return result;
}