File: exam_pseries.cpp

package info (click to toggle)
ginac 1.0.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,544 kB
  • ctags: 3,232
  • sloc: cpp: 27,732; sh: 7,126; perl: 1,819; yacc: 763; lex: 345; makefile: 221; sed: 32
file content (339 lines) | stat: -rw-r--r-- 10,044 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/** @File exam_pseries.cpp
 *
 *  Series expansion test (Laurent and Taylor series). */

/*
 *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "exams.h"

static symbol x("x");

static unsigned check_series(const ex &e, const ex &point, const ex &d, int order = 8)
{
	ex es = e.series(x==point, order);
	ex ep = ex_to<pseries>(es).convert_to_poly();
	if (!(ep - d).is_zero()) {
		clog << "series expansion of " << e << " at " << point
		     << " erroneously returned " << ep << " (instead of " << d
		     << ")" << endl;
		(ep-d).printtree(clog);
		return 1;
	}
	return 0;
}

// Series expansion
static unsigned exam_series1(void)
{
	unsigned result = 0;
	ex e, d;
	
	e = sin(x);
	d = x - pow(x, 3) / 6 + pow(x, 5) / 120 - pow(x, 7) / 5040 + Order(pow(x, 8));
	result += check_series(e, 0, d);
	
	e = cos(x);
	d = 1 - pow(x, 2) / 2 + pow(x, 4) / 24 - pow(x, 6) / 720 + Order(pow(x, 8));
	result += check_series(e, 0, d);
	
	e = exp(x);
	d = 1 + x + pow(x, 2) / 2 + pow(x, 3) / 6 + pow(x, 4) / 24 + pow(x, 5) / 120 + pow(x, 6) / 720 + pow(x, 7) / 5040 + Order(pow(x, 8));
	result += check_series(e, 0, d);
	
	e = pow(1 - x, -1);
	d = 1 + x + pow(x, 2) + pow(x, 3) + pow(x, 4) + pow(x, 5) + pow(x, 6) + pow(x, 7) + Order(pow(x, 8));
	result += check_series(e, 0, d);
	
	e = x + pow(x, -1);
	d = x + pow(x, -1);
	result += check_series(e, 0, d);
	
	e = x + pow(x, -1);
	d = 2 + pow(x-1, 2) - pow(x-1, 3) + pow(x-1, 4) - pow(x-1, 5) + pow(x-1, 6) - pow(x-1, 7) + Order(pow(x-1, 8));
	result += check_series(e, 1, d);
	
	e = pow(x + pow(x, 3), -1);
	d = pow(x, -1) - x + pow(x, 3) - pow(x, 5) + Order(pow(x, 7));
	result += check_series(e, 0, d);
	
	e = pow(pow(x, 2) + pow(x, 4), -1);
	d = pow(x, -2) - 1 + pow(x, 2) - pow(x, 4) + Order(pow(x, 6));
	result += check_series(e, 0, d);
	
	e = pow(sin(x), -2);
	d = pow(x, -2) + numeric(1,3) + pow(x, 2) / 15 + pow(x, 4) * 2/189 + Order(pow(x, 5));
	result += check_series(e, 0, d);
	
	e = sin(x) / cos(x);
	d = x + pow(x, 3) / 3 + pow(x, 5) * 2/15 + pow(x, 7) * 17/315 + Order(pow(x, 8));
	result += check_series(e, 0, d);
	
	e = cos(x) / sin(x);
	d = pow(x, -1) - x / 3 - pow(x, 3) / 45 - pow(x, 5) * 2/945 + Order(pow(x, 6));
	result += check_series(e, 0, d);
	
	e = pow(numeric(2), x);
	ex t = log(2) * x;
	d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
	result += check_series(e, 0, d.expand());
	
	e = pow(Pi, x);
	t = log(Pi) * x;
	d = 1 + t + pow(t, 2) / 2 + pow(t, 3) / 6 + pow(t, 4) / 24 + pow(t, 5) / 120 + pow(t, 6) / 720 + pow(t, 7) / 5040 + Order(pow(x, 8));
	result += check_series(e, 0, d.expand());
	
	e = log(x);
	d = e;
	result += check_series(e, 0, d, 1);
	result += check_series(e, 0, d, 2);
	
	return result;
}

// Series addition
static unsigned exam_series2(void)
{
	unsigned result = 0;
	ex e, d;
	
	e = pow(sin(x), -1).series(x==0, 8) + pow(sin(-x), -1).series(x==0, 12);
	d = Order(pow(x, 6));
	result += check_series(e, 0, d);
	
	return result;
}

// Series multiplication
static unsigned exam_series3(void)
{
	unsigned result = 0;
	ex e, d;
	
	e = sin(x).series(x==0, 8) * pow(sin(x), -1).series(x==0, 12);
	d = 1 + Order(pow(x, 7));
	result += check_series(e, 0, d);
	
	return result;
}

// Series exponentiation
static unsigned exam_series4(void)
{
	unsigned result = 0;
	ex e, d;
	
	e = pow((2*cos(x)).series(x==0, 5), 2).series(x==0, 5);
	d = 4 - 4*pow(x, 2) + 4*pow(x, 4)/3 + Order(pow(x, 5));
	result += check_series(e, 0, d);
	
	e = pow(tgamma(x), 2).series(x==0, 3);
	d = pow(x,-2) - 2*Euler/x + (pow(Pi,2)/6+2*pow(Euler,2)) + Order(x);
	result += check_series(e, 0, d);
	
	return result;
}

// Order term handling
static unsigned exam_series5(void)
{
	unsigned result = 0;
	ex e, d;

	e = 1 + x + pow(x, 2) + pow(x, 3);
	d = Order(1);
	result += check_series(e, 0, d, 0);
	d = 1 + Order(x);
	result += check_series(e, 0, d, 1);
	d = 1 + x + Order(pow(x, 2));
	result += check_series(e, 0, d, 2);
	d = 1 + x + pow(x, 2) + Order(pow(x, 3));
	result += check_series(e, 0, d, 3);
	d = 1 + x + pow(x, 2) + pow(x, 3);
	result += check_series(e, 0, d, 4);
	return result;
}

// Series expansion of tgamma(-1)
static unsigned exam_series6(void)
{
	ex e = tgamma(2*x);
	ex d = pow(x+1,-1)*numeric(1,4) +
	       pow(x+1,0)*(numeric(3,4) -
	                   numeric(1,2)*Euler) +
	       pow(x+1,1)*(numeric(7,4) -
	                   numeric(3,2)*Euler +
	                   numeric(1,2)*pow(Euler,2) +
	                   numeric(1,12)*pow(Pi,2)) +
	       pow(x+1,2)*(numeric(15,4) -
	                   numeric(7,2)*Euler -
	                   numeric(1,3)*pow(Euler,3) +
	                   numeric(1,4)*pow(Pi,2) +
	                   numeric(3,2)*pow(Euler,2) -
	                   numeric(1,6)*pow(Pi,2)*Euler -
	                   numeric(2,3)*zeta(3)) +
	       pow(x+1,3)*(numeric(31,4) - pow(Euler,3) -
	                   numeric(15,2)*Euler +
	                   numeric(1,6)*pow(Euler,4) +
	                   numeric(7,2)*pow(Euler,2) +
	                   numeric(7,12)*pow(Pi,2) -
	                   numeric(1,2)*pow(Pi,2)*Euler -
	                   numeric(2)*zeta(3) +
	                   numeric(1,6)*pow(Euler,2)*pow(Pi,2) +
	                   numeric(1,40)*pow(Pi,4) +
	                   numeric(4,3)*zeta(3)*Euler) +
	       Order(pow(x+1,4));
	return check_series(e, -1, d, 4);
}
	
// Series expansion of tan(x==Pi/2)
static unsigned exam_series7(void)
{
	ex e = tan(x*Pi/2);
	ex d = pow(x-1,-1)/Pi*(-2) + pow(x-1,1)*Pi/6 + pow(x-1,3)*pow(Pi,3)/360
	      +pow(x-1,5)*pow(Pi,5)/15120 + pow(x-1,7)*pow(Pi,7)/604800
	      +Order(pow(x-1,8));
	return check_series(e,1,d,8);
}

// Series expansion of log(sin(x==0))
static unsigned exam_series8(void)
{
	ex e = log(sin(x));
	ex d = log(x) - pow(x,2)/6 - pow(x,4)/180 - pow(x,6)/2835
	      +Order(pow(x,8));
	return check_series(e,0,d,8);
}

// Series expansion of Li2(sin(x==0))
static unsigned exam_series9(void)
{
	ex e = Li2(sin(x));
	ex d = x + pow(x,2)/4 - pow(x,3)/18 - pow(x,4)/48
	       - 13*pow(x,5)/1800 - pow(x,6)/360 - 23*pow(x,7)/21168
	       + Order(pow(x,8));
	return check_series(e,0,d,8);
}

// Series expansion of Li2((x==2)^2), caring about branch-cut
static unsigned exam_series10(void)
{
	ex e = Li2(pow(x,2));
	ex d = Li2(4) + (-log(3) + I*Pi*csgn(I-I*pow(x,2))) * (x-2)
	       + (numeric(-2,3) + log(3)/4 - I*Pi/4*csgn(I-I*pow(x,2))) * pow(x-2,2)
	       + (numeric(11,27) - log(3)/12 + I*Pi/12*csgn(I-I*pow(x,2))) * pow(x-2,3)
	       + (numeric(-155,648) + log(3)/32 - I*Pi/32*csgn(I-I*pow(x,2))) * pow(x-2,4)
	       + Order(pow(x-2,5));
	return check_series(e,2,d,5);
}

// Series expansion of logarithms around branch points
static unsigned exam_series11(void)
{
	unsigned result = 0;
	ex e, d;
	symbol a("a");
	
	e = log(x);
	d = log(x);
	result += check_series(e,0,d,5);
	
	e = log(3/x);
	d = log(3)-log(x);
	result += check_series(e,0,d,5);
	
	e = log(3*pow(x,2));
	d = log(3)+2*log(x);
	result += check_series(e,0,d,5);
	
	// These ones must not be expanded because it would result in a branch cut
	// running in the wrong direction. (Other systems tend to get this wrong.)
	e = log(-x);
	d = e;
	result += check_series(e,0,d,5);
	
	e = log(I*(x-123));
	d = e;
	result += check_series(e,123,d,5);
	
	e = log(a*x);
	d = e;  // we don't know anything about a!
	result += check_series(e,0,d,5);
	
	e = log((1-x)/x);
	d = log(1-x) - (x-1) + pow(x-1,2)/2 - pow(x-1,3)/3 + Order(pow(x-1,4));
	result += check_series(e,1,d,4);
	
	return result;
}

// Series expansion of other functions around branch points
static unsigned exam_series12(void)
{
	unsigned result = 0;
	ex e, d;
	
	// NB: Mma and Maple give different results, but they agree if one
	// takes into account that by assumption |x|<1.
	e = atan(x);
	d = (I*log(2)/2-I*log(1+I*x)/2) + (x-I)/4 + I*pow(x-I,2)/16 + Order(pow(x-I,3));
	result += check_series(e,I,d,3);
	
	// NB: here, at -I, Mathematica disagrees, but it is wrong -- they
	// pick up a complex phase by incorrectly expanding logarithms.
	e = atan(x);
	d = (-I*log(2)/2+I*log(1-I*x)/2) + (x+I)/4 - I*pow(x+I,2)/16 + Order(pow(x+I,3));
	result += check_series(e,-I,d,3);
	
	// This is basically the same as above, the branch point is at +/-1:
	e = atanh(x);
	d = (-log(2)/2+log(x+1)/2) + (x+1)/4 + pow(x+1,2)/16 + Order(pow(x+1,3));
	result += check_series(e,-1,d,3);
	
	return result;
}


unsigned exam_pseries(void)
{
	unsigned result = 0;
	
	cout << "examining series expansion" << flush;
	clog << "----------series expansion:" << endl;
	
	result += exam_series1();  cout << '.' << flush;
	result += exam_series2();  cout << '.' << flush;
	result += exam_series3();  cout << '.' << flush;
	result += exam_series4();  cout << '.' << flush;
	result += exam_series5();  cout << '.' << flush;
	result += exam_series6();  cout << '.' << flush;
	result += exam_series7();  cout << '.' << flush;
	result += exam_series8();  cout << '.' << flush;
	result += exam_series9();  cout << '.' << flush;
	result += exam_series10();  cout << '.' << flush;
	result += exam_series11();  cout << '.' << flush;
	result += exam_series12();  cout << '.' << flush;
	
	if (!result) {
		cout << " passed " << endl;
		clog << "(no output)" << endl;
	} else {
		cout << " failed " << endl;
	}
	return result;
}