1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
/** @file time_lw_F.cpp
*
* Test F from the paper "Comparison of Polynomial-Oriented CAS" by Robert H.
* Lewis and Michael Wester. */
/*
* GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "times.h"
static unsigned test(void)
{
symbol x("x");
symbol y("y");
ex p = expand(pow(pow(x,2)-3*x*y+pow(y,2),4)*pow(3*x-7*y+2,5));
ex q = expand(pow(pow(x,2)-3*x*y+pow(y,2),3)*pow(3*x-7*y-2,6));
ex result = gcd(p,q);
if (result!=expand(pow(pow(x,2)-3*x*y+pow(y,2),3))) {
clog << "gcd(expand((x^2-3*x*y+y^2)^4*(3*x-7*y+2)^5),expand((x^2-3*x*y+y^2)^3*(3*x-7*y-2)^6)) erroneously returned " << result << endl;
return 1;
}
return 0;
}
unsigned time_lw_F(void)
{
unsigned result = 0;
unsigned count = 0;
timer rolex;
double time = .0;
cout << "timing Lewis-Wester test F (gcd of 2-var polys)" << flush;
clog << "-------Lewis-Wester test F (gcd of 2-var polys):" << endl;
rolex.start();
// correct for very small times:
do {
result = test();
++count;
} while ((time=rolex.read())<0.1 && !result);
cout << '.' << flush;
if (!result) {
cout << " passed ";
clog << "(no output)" << endl;
} else {
cout << " failed ";
}
cout << int(1000*(time/count))*0.001 << 's' << endl;
return result;
}
|