File: time_vandermonde.cpp

package info (click to toggle)
ginac 1.0.8-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 3,544 kB
  • ctags: 3,232
  • sloc: cpp: 27,732; sh: 7,126; perl: 1,819; yacc: 763; lex: 345; makefile: 221; sed: 32
file content (109 lines) | stat: -rw-r--r-- 2,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/** @file time_vandermonde.cpp
 *
 *  Calculates determinants of dense symbolic Vandermonde materices with
 *  monomials in one single variable as entries.
 *  For 4x4 our matrix would look like this:
 *  [[1,a,a^2,a^3], [1,-a,a^2,-a^3], [1,a^2,a^4,a^6], [1,-a^2,a^4,-a^6]]
 */

/*
 *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "times.h"

static unsigned vandermonde_det(unsigned size)
{
	unsigned result = 0;
	const symbol a("a");

	// construct Vandermonde matrix:
	matrix M(size,size);
	for (unsigned ro=0; ro<size; ++ro) {
		for (unsigned co=0; co<size; ++co) {
			if (ro%2)
				M(ro,co) = pow(-pow(a,1+ro/2),co);
			else
				M(ro,co) = pow(pow(a,1+ro/2),co);
		}
	}

	// compute determinant:
	ex det = M.determinant();

	// check the result:
	ex vanddet = 1;
	for (unsigned i=0; i<size; ++i)
		for (unsigned j=0; j<i; ++j)
			vanddet *= M(i,1) - M(j,1);

	if (expand(det - vanddet) != 0) {
		clog << "Determaint of Vandermonde matrix " << endl
		     << "M==" << M << endl
		     << "was miscalculated: det(M)==" << det << endl;
		++result;
	}

	return result;
}

unsigned time_vandermonde(void)
{
	unsigned result = 0;
	
	cout << "timing determinant of univariate symbolic Vandermonde matrices" << flush;
	clog << "-------determinant of univariate symbolic Vandermonde matrices:" << endl;
	
	vector<unsigned> sizes;
	vector<double> times;
	timer swatch;
	
	sizes.push_back(6);
	sizes.push_back(8);
	sizes.push_back(10);
	sizes.push_back(12);
	
	for (vector<unsigned>::iterator i=sizes.begin(); i!=sizes.end(); ++i) {
		int count = 1;
		swatch.start();
		result += vandermonde_det(*i);
		// correct for very small times:
		while (swatch.read()<0.02) {
			vandermonde_det(*i);
			++count;
		}
		times.push_back(swatch.read()/count);
		cout << '.' << flush;
	}
	
	if (!result) {
		cout << " passed ";
		clog << "(no output)" << endl;
	} else {
		cout << " failed ";
	}
	// print the report:
	cout << endl << "	dim:   ";
	for (vector<unsigned>::iterator i=sizes.begin(); i!=sizes.end(); ++i)
		cout << '\t' << *i << 'x' << *i;
	cout << endl << "	time/s:";
	for (vector<double>::iterator i=times.begin(); i!=times.end(); ++i)
		cout << '\t' << int(1000*(*i))*0.001;
	cout << endl;
	
	return result;
}