File: exam_normalization.cpp

package info (click to toggle)
ginac 1.5.8-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,628 kB
  • ctags: 4,936
  • sloc: cpp: 44,703; sh: 11,126; perl: 1,157; yacc: 763; makefile: 414; lex: 200; sed: 32
file content (239 lines) | stat: -rw-r--r-- 6,314 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/** @file exam_normalization.cpp
 *
 *  Rational function normalization test suite. */

/*
 *  GiNaC Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include "ginac.h"
using namespace GiNaC;

#include <iostream>
using namespace std;

static symbol w("w"), x("x"), y("y"), z("z");

static unsigned check_normal(const ex &e, const ex &d)
{
	ex en = e.normal();
	if (!en.is_equal(d)) {
		clog << "normal form of " << e << " erroneously returned "
		     << en << " (should be " << d << ")" << endl;
		return 1;
	}
	return 0;
}

static unsigned exam_normal1()
{
	unsigned result = 0;
	ex e, d;
	
	// Expansion
	e = pow(x, 2) - (x+1)*(x-1) - 1;
	d = 0;
	result += check_normal(e, d);
	
	// Expansion inside functions
	e = sin(x*(x+1)-x) + 1;
	d = sin(pow(x, 2)) + 1;
	result += check_normal(e, d);
	
	// Fraction addition
	e = 2/x + y/3;
	d = (x*y + 6) / (x*3);
	result += check_normal(e, d);
	
	e = pow(x, -1) + x/(x+1);
	d = (pow(x, 2)+x+1)/(x*(x+1));
	result += check_normal(e, d);

	return result;
}

static unsigned exam_normal2()
{
	unsigned result = 0;
	ex e, d;
	
	// Fraction cancellation
	e = numeric(1)/2 * z * (2*x + 2*y);
	d = z * (x + y);
	result += check_normal(e, d);
	
	e = numeric(1)/6 * z * (3*x + 3*y) * (2*x + 2*w);
	d = z * (x + y) * (x + w);
	result += check_normal(e, d);
	
	e = (3*x + 3*y) * (w/3 + z/3);
	d = (x + y) * (w + z);
	result += check_normal(e, d);
	
	// Fails stochastically with the new tinfo mechanism, because
	// sometimes the equivalent answer ... / pow(y - x, 2) is calculated.
	// TODO: make check for both cases.
//	e = (pow(x, 2) - pow(y, 2)) / pow(x-y, 3);
//	d = (x + y) / pow(x - y, 2);
//	result += check_normal(e, d);
	
	e = (pow(x, -1) + x) / (pow(x , 2) * 2 + 2);
	d = pow(x * 2, -1);
	result += check_normal(e, d);
	
	// Fails stochastically with the new tinfo mechanism, because
	// sometimes the equivalent answer ... / pow(y - x, 2) is calculated.
	// TODO: make check for both cases.
	// Fraction cancellation with rational coefficients
//	e = (pow(x, 2) - pow(y, 2)) / pow(x/2 - y/2, 3);
//	d = (8 * x + 8 * y) / pow(x - y, 2);
//	result += check_normal(e, d);
	
	// Fraction cancellation with rational coefficients
	e = z/5 * (x/7 + y/10) / (x/14 + y/20);
	d = 2*z/5;
	result += check_normal(e, d);
	
	return result;
}

static unsigned exam_normal3()
{
	unsigned result = 0;
	ex e, d;
	
	// Distribution of powers
	e = pow(x/y, 2);
	d = pow(x, 2) / pow(y, 2);
	result += check_normal(e, d);
	
	// Distribution of powers (integer, distribute) and fraction addition
	e = pow(pow(x, -1) + x, 2);
	d = pow(pow(x, 2) + 1, 2) / pow(x, 2);
	result += check_normal(e, d);
	
	// Distribution of powers (non-integer, don't distribute) and fraction addition
	e = pow(pow(x, -1) + x, numeric(1)/2);
	d = pow((pow(x, 2) + 1) / x, numeric(1)/2);
	result += check_normal(e, d);
	
	return result;
}

static unsigned exam_normal4()
{
	unsigned result = 0;
	ex e, d;
	
	// Replacement of functions with temporary symbols and fraction cancellation
	e = pow(sin(x), 2) - pow(cos(x), 2);
	e /= sin(x) + cos(x);
	d = sin(x) - cos(x);
	result += check_normal(e, d);
	
	// Replacement of non-integer powers with temporary symbols
	e = (pow(numeric(2), numeric(1)/2) * x + x) / x;
	d = pow(numeric(2), numeric(1)/2) + 1;
	result += check_normal(e, d);
	
	// Replacement of complex numbers with temporary symbols
	e = (x + y + x*I + y*I) / (x + y);
	d = 1 + I;
	result += check_normal(e, d);
	
	e = (pow(x, 2) + pow(y, 2)) / (x + y*I);
	d = e;
	result += check_normal(e, d);
	
	// More complex rational function
	e = (pow(x-y*2,4)/pow(pow(x,2)-pow(y,2)*4,2)+1)*(x+y*2)*(y+z)/(pow(x,2)+pow(y,2)*4);
	d = (y*2 + z*2) / (x + y*2);
	result += check_normal(e, d);
	
	return result;
}

/* Test content(), integer_content(), primpart(). */
static unsigned check_content(const ex & e, const ex & x, const ex & ic, const ex & c, const ex & pp)
{
	unsigned result = 0;

	ex r_ic = e.integer_content();
	if (!r_ic.is_equal(ic)) {
		clog << "integer_content(" << e << ") erroneously returned "
		     << r_ic << " instead of " << ic << endl;
		++result;
	}

	ex r_c = e.content(x);
	if (!r_c.is_equal(c)) {
		clog << "content(" << e << ", " << x << ") erroneously returned "
		     << r_c << " instead of " << c << endl;
		++result;
	}

	ex r_pp = e.primpart(x);
	if (!r_pp.is_equal(pp)) {
		clog << "primpart(" << e << ", " << x << ") erroneously returned "
		     << r_pp << " instead of " << pp << endl;
		++result;
	}

	ex r = r_c*r_pp*e.unit(x);
	if (!(r - e).expand().is_zero()) {
		clog << "product of unit, content, and primitive part of " << e << " yielded "
		     << r << " instead of " << e << endl;
		++result;
	}

	return result;
}

static unsigned exam_content()
{
	unsigned result = 0;
	symbol x("x"), y("y");

	result += check_content(ex(-3)/4, x, ex(3)/4, ex(3)/4, 1);
	result += check_content(-x/4, x, ex(1)/4, ex(1)/4, x);
	result += check_content(5*x-15, x, 5, 5, x-3);
	result += check_content(5*x*y-15*y*y, x, 5, 5*y, x-3*y);
	result += check_content(-15*x/2+ex(25)/3, x, ex(5)/6, ex(5)/6, 9*x-10);
	result += check_content(-x*y, x, 1, y, x);

	return result;
}

unsigned exam_normalization()
{
	unsigned result = 0;
	
	cout << "examining rational function normalization" << flush;
	
	result += exam_normal1(); cout << '.' << flush;
	result += exam_normal2(); cout << '.' << flush;
	result += exam_normal3(); cout << '.' << flush;
	result += exam_normal4(); cout << '.' << flush;
	result += exam_content(); cout << '.' << flush;
	
	return result;
}

int main(int argc, char** argv)
{
	return exam_normalization();
}