File: ginac.texi

package info (click to toggle)
ginac 1.5.8-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,628 kB
  • ctags: 4,936
  • sloc: cpp: 44,703; sh: 11,126; perl: 1,157; yacc: 763; makefile: 414; lex: 200; sed: 32
file content (8878 lines) | stat: -rw-r--r-- 306,193 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
\input texinfo  @c -*-texinfo-*-
@c %**start of header
@setfilename ginac.info
@settitle GiNaC, an open framework for symbolic computation within the C++ programming language
@setchapternewpage on
@afourpaper
@c For `info' only.
@paragraphindent 0
@c For TeX only.
@iftex
@c I hate putting "@noindent" in front of every paragraph.
@parindent=0pt
@end iftex
@c %**end of header

@include version.texi

@dircategory Mathematics
@direntry
* ginac: (ginac).                   C++ library for symbolic computation.
@end direntry

@ifinfo
This is a tutorial that documents GiNaC @value{VERSION}, an open
framework for symbolic computation within the C++ programming language.

Copyright (C) 1999-2010 Johannes Gutenberg University Mainz, Germany

Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.

@ignore
Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph

@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
@end ifinfo

@finalout
@c finalout prevents ugly black rectangles on overfull hbox lines
@titlepage
@title GiNaC @value{VERSION}
@subtitle An open framework for symbolic computation within the C++ programming language
@subtitle @value{UPDATED}
@author @uref{http://www.ginac.de}

@page
@vskip 0pt plus 1filll
Copyright @copyright{} 1999-2010 Johannes Gutenberg University Mainz, Germany
@sp 2
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
@end titlepage

@page
@contents

@page


@node Top, Introduction, (dir), (dir)
@c    node-name, next, previous, up
@top GiNaC

This is a tutorial that documents GiNaC @value{VERSION}, an open
framework for symbolic computation within the C++ programming language.

@menu
* Introduction::                 GiNaC's purpose.
* A tour of GiNaC::              A quick tour of the library.
* Installation::                 How to install the package.
* Basic concepts::               Description of fundamental classes.
* Methods and functions::        Algorithms for symbolic manipulations.
* Extending GiNaC::              How to extend the library.
* A comparison with other CAS::  Compares GiNaC to traditional CAS.
* Internal structures::          Description of some internal structures.
* Package tools::                Configuring packages to work with GiNaC.
* Bibliography::
* Concept index::
@end menu


@node Introduction, A tour of GiNaC, Top, Top
@c    node-name, next, previous, up
@chapter Introduction
@cindex history of GiNaC

The motivation behind GiNaC derives from the observation that most
present day computer algebra systems (CAS) are linguistically and
semantically impoverished.  Although they are quite powerful tools for
learning math and solving particular problems they lack modern
linguistic structures that allow for the creation of large-scale
projects.  GiNaC is an attempt to overcome this situation by extending a
well established and standardized computer language (C++) by some
fundamental symbolic capabilities, thus allowing for integrated systems
that embed symbolic manipulations together with more established areas
of computer science (like computation-intense numeric applications,
graphical interfaces, etc.) under one roof.

The particular problem that led to the writing of the GiNaC framework is
still a very active field of research, namely the calculation of higher
order corrections to elementary particle interactions.  There,
theoretical physicists are interested in matching present day theories
against experiments taking place at particle accelerators.  The
computations involved are so complex they call for a combined symbolical
and numerical approach.  This turned out to be quite difficult to
accomplish with the present day CAS we have worked with so far and so we
tried to fill the gap by writing GiNaC.  But of course its applications
are in no way restricted to theoretical physics.

This tutorial is intended for the novice user who is new to GiNaC but
already has some background in C++ programming.  However, since a
hand-made documentation like this one is difficult to keep in sync with
the development, the actual documentation is inside the sources in the
form of comments.  That documentation may be parsed by one of the many
Javadoc-like documentation systems.  If you fail at generating it you
may access it from @uref{http://www.ginac.de/reference/, the GiNaC home
page}.  It is an invaluable resource not only for the advanced user who
wishes to extend the system (or chase bugs) but for everybody who wants
to comprehend the inner workings of GiNaC.  This little tutorial on the
other hand only covers the basic things that are unlikely to change in
the near future.

@section License
The GiNaC framework for symbolic computation within the C++ programming
language is Copyright @copyright{} 1999-2010 Johannes Gutenberg
University Mainz, Germany.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.


@node A tour of GiNaC, How to use it from within C++, Introduction, Top
@c    node-name, next, previous, up
@chapter A Tour of GiNaC

This quick tour of GiNaC wants to arise your interest in the
subsequent chapters by showing off a bit.  Please excuse us if it
leaves many open questions.

@menu
* How to use it from within C++::  Two simple examples.
* What it can do for you::         A Tour of GiNaC's features.
@end menu


@node How to use it from within C++, What it can do for you, A tour of GiNaC, A tour of GiNaC
@c    node-name, next, previous, up
@section How to use it from within C++

The GiNaC open framework for symbolic computation within the C++ programming
language does not try to define a language of its own as conventional
CAS do.  Instead, it extends the capabilities of C++ by symbolic
manipulations.  Here is how to generate and print a simple (and rather
pointless) bivariate polynomial with some large coefficients:

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
@{
    symbol x("x"), y("y");
    ex poly;

    for (int i=0; i<3; ++i)
        poly += factorial(i+16)*pow(x,i)*pow(y,2-i);

    cout << poly << endl;
    return 0;
@}
@end example

Assuming the file is called @file{hello.cc}, on our system we can compile
and run it like this:

@example
$ c++ hello.cc -o hello -lcln -lginac
$ ./hello
355687428096000*x*y+20922789888000*y^2+6402373705728000*x^2
@end example

(@xref{Package tools}, for tools that help you when creating a software
package that uses GiNaC.)

@cindex Hermite polynomial
Next, there is a more meaningful C++ program that calls a function which
generates Hermite polynomials in a specified free variable.

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

ex HermitePoly(const symbol & x, int n)
@{
    ex HKer=exp(-pow(x, 2));
    // uses the identity H_n(x) == (-1)^n exp(x^2) (d/dx)^n exp(-x^2)
    return normal(pow(-1, n) * diff(HKer, x, n) / HKer);
@}

int main()
@{
    symbol z("z");

    for (int i=0; i<6; ++i)
        cout << "H_" << i << "(z) == " << HermitePoly(z,i) << endl;

    return 0;
@}
@end example

When run, this will type out

@example
H_0(z) == 1
H_1(z) == 2*z
H_2(z) == 4*z^2-2
H_3(z) == -12*z+8*z^3
H_4(z) == -48*z^2+16*z^4+12
H_5(z) == 120*z-160*z^3+32*z^5
@end example

This method of generating the coefficients is of course far from optimal
for production purposes.

In order to show some more examples of what GiNaC can do we will now use
the @command{ginsh}, a simple GiNaC interactive shell that provides a
convenient window into GiNaC's capabilities.


@node What it can do for you, Installation, How to use it from within C++, A tour of GiNaC
@c    node-name, next, previous, up
@section What it can do for you

@cindex @command{ginsh}
After invoking @command{ginsh} one can test and experiment with GiNaC's
features much like in other Computer Algebra Systems except that it does
not provide programming constructs like loops or conditionals.  For a
concise description of the @command{ginsh} syntax we refer to its
accompanied man page. Suffice to say that assignments and comparisons in
@command{ginsh} are written as they are in C, i.e. @code{=} assigns and
@code{==} compares.

It can manipulate arbitrary precision integers in a very fast way.
Rational numbers are automatically converted to fractions of coprime
integers:

@example
> x=3^150;
369988485035126972924700782451696644186473100389722973815184405301748249
> y=3^149;
123329495011708990974900260817232214728824366796574324605061468433916083
> x/y;
3
> y/x;
1/3
@end example

Exact numbers are always retained as exact numbers and only evaluated as
floating point numbers if requested.  For instance, with numeric
radicals is dealt pretty much as with symbols.  Products of sums of them
can be expanded:

@example
> expand((1+a^(1/5)-a^(2/5))^3);
1+3*a+3*a^(1/5)-5*a^(3/5)-a^(6/5)
> expand((1+3^(1/5)-3^(2/5))^3);
10-5*3^(3/5)
> evalf((1+3^(1/5)-3^(2/5))^3);
0.33408977534118624228
@end example

The function @code{evalf} that was used above converts any number in
GiNaC's expressions into floating point numbers.  This can be done to
arbitrary predefined accuracy:

@example
> evalf(1/7);
0.14285714285714285714
> Digits=150;
150
> evalf(1/7);
0.1428571428571428571428571428571428571428571428571428571428571428571428
5714285714285714285714285714285714285
@end example

Exact numbers other than rationals that can be manipulated in GiNaC
include predefined constants like Archimedes' @code{Pi}.  They can both
be used in symbolic manipulations (as an exact number) as well as in
numeric expressions (as an inexact number):

@example
> a=Pi^2+x;
x+Pi^2
> evalf(a);
9.869604401089358619+x
> x=2;
2
> evalf(a);
11.869604401089358619
@end example

Built-in functions evaluate immediately to exact numbers if
this is possible.  Conversions that can be safely performed are done
immediately; conversions that are not generally valid are not done:

@example
> cos(42*Pi);
1
> cos(acos(x));
x
> acos(cos(x));
acos(cos(x))
@end example

(Note that converting the last input to @code{x} would allow one to
conclude that @code{42*Pi} is equal to @code{0}.)

Linear equation systems can be solved along with basic linear
algebra manipulations over symbolic expressions.  In C++ GiNaC offers
a matrix class for this purpose but we can see what it can do using
@command{ginsh}'s bracket notation to type them in:

@example
> lsolve(a+x*y==z,x);
y^(-1)*(z-a);
> lsolve(@{3*x+5*y == 7, -2*x+10*y == -5@}, @{x, y@});
@{x==19/8,y==-1/40@}
> M = [ [1, 3], [-3, 2] ];
[[1,3],[-3,2]]
> determinant(M);
11
> charpoly(M,lambda);
lambda^2-3*lambda+11
> A = [ [1, 1], [2, -1] ];
[[1,1],[2,-1]]
> A+2*M;
[[1,1],[2,-1]]+2*[[1,3],[-3,2]]
> evalm(%);
[[3,7],[-4,3]]
> B = [ [0, 0, a], [b, 1, -b], [-1/a, 0, 0] ];
> evalm(B^(2^12345));
[[1,0,0],[0,1,0],[0,0,1]]
@end example

Multivariate polynomials and rational functions may be expanded,
collected and normalized (i.e. converted to a ratio of two coprime 
polynomials):

@example
> a = x^4 + 2*x^2*y^2 + 4*x^3*y + 12*x*y^3 - 3*y^4;
12*x*y^3+2*x^2*y^2+4*x^3*y-3*y^4+x^4
> b = x^2 + 4*x*y - y^2;
4*x*y-y^2+x^2
> expand(a*b);
8*x^5*y+17*x^4*y^2+43*x^2*y^4-24*x*y^5+16*x^3*y^3+3*y^6+x^6
> collect(a+b,x);
4*x^3*y-y^2-3*y^4+(12*y^3+4*y)*x+x^4+x^2*(1+2*y^2)
> collect(a+b,y);
12*x*y^3-3*y^4+(-1+2*x^2)*y^2+(4*x+4*x^3)*y+x^2+x^4
> normal(a/b);
3*y^2+x^2
@end example

You can differentiate functions and expand them as Taylor or Laurent
series in a very natural syntax (the second argument of @code{series} is
a relation defining the evaluation point, the third specifies the
order):

@cindex Zeta function
@example
> diff(tan(x),x);
tan(x)^2+1
> series(sin(x),x==0,4);
x-1/6*x^3+Order(x^4)
> series(1/tan(x),x==0,4);
x^(-1)-1/3*x+Order(x^2)
> series(tgamma(x),x==0,3);
x^(-1)-Euler+(1/12*Pi^2+1/2*Euler^2)*x+
(-1/3*zeta(3)-1/12*Pi^2*Euler-1/6*Euler^3)*x^2+Order(x^3)
> evalf(%);
x^(-1)-0.5772156649015328606+(0.9890559953279725555)*x
-(0.90747907608088628905)*x^2+Order(x^3)
> series(tgamma(2*sin(x)-2),x==Pi/2,6);
-(x-1/2*Pi)^(-2)+(-1/12*Pi^2-1/2*Euler^2-1/240)*(x-1/2*Pi)^2
-Euler-1/12+Order((x-1/2*Pi)^3)
@end example

Here we have made use of the @command{ginsh}-command @code{%} to pop the
previously evaluated element from @command{ginsh}'s internal stack.

Often, functions don't have roots in closed form.  Nevertheless, it's
quite easy to compute a solution numerically, to arbitrary precision:

@cindex fsolve
@example
> Digits=50:
> fsolve(cos(x)==x,x,0,2);
0.7390851332151606416553120876738734040134117589007574649658
> f=exp(sin(x))-x:
> X=fsolve(f,x,-10,10);
2.2191071489137460325957851882042901681753665565320678854155
> subs(f,x==X);
-6.372367644529809108115521591070847222364418220770475144296E-58
@end example

Notice how the final result above differs slightly from zero by about
@math{6*10^(-58)}.  This is because with 50 decimal digits precision the
root cannot be represented more accurately than @code{X}.  Such
inaccuracies are to be expected when computing with finite floating
point values.

If you ever wanted to convert units in C or C++ and found this is
cumbersome, here is the solution.  Symbolic types can always be used as
tags for different types of objects.  Converting from wrong units to the
metric system is now easy:

@example
> in=.0254*m;
0.0254*m
> lb=.45359237*kg;
0.45359237*kg
> 200*lb/in^2;
140613.91592783185568*kg*m^(-2)
@end example


@node Installation, Prerequisites, What it can do for you, Top
@c    node-name, next, previous, up
@chapter Installation

@cindex CLN
GiNaC's installation follows the spirit of most GNU software. It is
easily installed on your system by three steps: configuration, build,
installation.

@menu
* Prerequisites::                Packages upon which GiNaC depends.
* Configuration::                How to configure GiNaC.
* Building GiNaC::               How to compile GiNaC.
* Installing GiNaC::             How to install GiNaC on your system.
@end menu


@node Prerequisites, Configuration, Installation, Installation
@c    node-name, next, previous, up
@section Prerequisites

In order to install GiNaC on your system, some prerequisites need to be
met.  First of all, you need to have a C++-compiler adhering to the
ANSI-standard @cite{ISO/IEC 14882:1998(E)}.  We used GCC for development
so if you have a different compiler you are on your own.  For the
configuration to succeed you need a Posix compliant shell installed in
@file{/bin/sh}, GNU @command{bash} is fine. The pkg-config utility is
required for the configuration, it can be downloaded from
@uref{http://pkg-config.freedesktop.org}.
Last but not least, the CLN library
is used extensively and needs to be installed on your system.
Please get it from @uref{ftp://ftpthep.physik.uni-mainz.de/pub/gnu/}
(it is covered by GPL) and install it prior to trying to install
GiNaC.  The configure script checks if it can find it and if it cannot
it will refuse to continue.


@node Configuration, Building GiNaC, Prerequisites, Installation
@c    node-name, next, previous, up
@section Configuration
@cindex configuration
@cindex Autoconf

To configure GiNaC means to prepare the source distribution for
building.  It is done via a shell script called @command{configure} that
is shipped with the sources and was originally generated by GNU
Autoconf.  Since a configure script generated by GNU Autoconf never
prompts, all customization must be done either via command line
parameters or environment variables.  It accepts a list of parameters,
the complete set of which can be listed by calling it with the
@option{--help} option.  The most important ones will be shortly
described in what follows:

@itemize @bullet

@item
@option{--disable-shared}: When given, this option switches off the
build of a shared library, i.e. a @file{.so} file.  This may be convenient
when developing because it considerably speeds up compilation.

@item
@option{--prefix=@var{PREFIX}}: The directory where the compiled library
and headers are installed. It defaults to @file{/usr/local} which means
that the library is installed in the directory @file{/usr/local/lib},
the header files in @file{/usr/local/include/ginac} and the documentation
(like this one) into @file{/usr/local/share/doc/GiNaC}.

@item
@option{--libdir=@var{LIBDIR}}: Use this option in case you want to have
the library installed in some other directory than
@file{@var{PREFIX}/lib/}.

@item
@option{--includedir=@var{INCLUDEDIR}}: Use this option in case you want
to have the header files installed in some other directory than
@file{@var{PREFIX}/include/ginac/}. For instance, if you specify
@option{--includedir=/usr/include} you will end up with the header files
sitting in the directory @file{/usr/include/ginac/}. Note that the
subdirectory @file{ginac} is enforced by this process in order to
keep the header files separated from others.  This avoids some
clashes and allows for an easier deinstallation of GiNaC. This ought
to be considered A Good Thing (tm).

@item
@option{--datadir=@var{DATADIR}}: This option may be given in case you
want to have the documentation installed in some other directory than
@file{@var{PREFIX}/share/doc/GiNaC/}.

@end itemize

In addition, you may specify some environment variables.  @env{CXX}
holds the path and the name of the C++ compiler in case you want to
override the default in your path.  (The @command{configure} script
searches your path for @command{c++}, @command{g++}, @command{gcc},
@command{CC}, @command{cxx} and @command{cc++} in that order.)  It may
be very useful to define some compiler flags with the @env{CXXFLAGS}
environment variable, like optimization, debugging information and
warning levels.  If omitted, it defaults to @option{-g
-O2}.@footnote{The @command{configure} script is itself generated from
the file @file{configure.ac}.  It is only distributed in packaged
releases of GiNaC.  If you got the naked sources, e.g. from git, you
must generate @command{configure} along with the various
@file{Makefile.in} by using the @command{autoreconf} utility.  This will
require a fair amount of support from your local toolchain, though.}

The whole process is illustrated in the following two
examples. (Substitute @command{setenv @var{VARIABLE} @var{value}} for
@command{export @var{VARIABLE}=@var{value}} if the Berkeley C shell is
your login shell.)

Here is a simple configuration for a site-wide GiNaC library assuming
everything is in default paths:

@example
$ export CXXFLAGS="-Wall -O2"
$ ./configure
@end example

And here is a configuration for a private static GiNaC library with
several components sitting in custom places (site-wide GCC and private
CLN).  The compiler is persuaded to be picky and full assertions and
debugging information are switched on:

@example
$ export CXX=/usr/local/gnu/bin/c++
$ export CPPFLAGS="$(CPPFLAGS) -I$(HOME)/include"
$ export CXXFLAGS="$(CXXFLAGS) -DDO_GINAC_ASSERT -ggdb -Wall -pedantic"
$ export LDFLAGS="$(LDFLAGS) -L$(HOME)/lib"
$ ./configure --disable-shared --prefix=$(HOME)
@end example


@node Building GiNaC, Installing GiNaC, Configuration, Installation
@c    node-name, next, previous, up
@section Building GiNaC
@cindex building GiNaC

After proper configuration you should just build the whole
library by typing
@example
$ make
@end example
at the command prompt and go for a cup of coffee.  The exact time it
takes to compile GiNaC depends not only on the speed of your machines
but also on other parameters, for instance what value for @env{CXXFLAGS}
you entered.  Optimization may be very time-consuming.

Just to make sure GiNaC works properly you may run a collection of
regression tests by typing

@example
$ make check
@end example

This will compile some sample programs, run them and check the output
for correctness.  The regression tests fall in three categories.  First,
the so called @emph{exams} are performed, simple tests where some
predefined input is evaluated (like a pupils' exam).  Second, the
@emph{checks} test the coherence of results among each other with
possible random input.  Third, some @emph{timings} are performed, which
benchmark some predefined problems with different sizes and display the
CPU time used in seconds.  Each individual test should return a message
@samp{passed}.  This is mostly intended to be a QA-check if something
was broken during development, not a sanity check of your system.  Some
of the tests in sections @emph{checks} and @emph{timings} may require
insane amounts of memory and CPU time.  Feel free to kill them if your
machine catches fire.  Another quite important intent is to allow people
to fiddle around with optimization.

By default, the only documentation that will be built is this tutorial
in @file{.info} format. To build the GiNaC tutorial and reference manual
in HTML, DVI, PostScript, or PDF formats, use one of

@example
$ make html
$ make dvi
$ make ps
$ make pdf
@end example

Generally, the top-level Makefile runs recursively to the
subdirectories.  It is therefore safe to go into any subdirectory
(@code{doc/}, @code{ginsh/}, @dots{}) and simply type @code{make}
@var{target} there in case something went wrong.


@node Installing GiNaC, Basic concepts, Building GiNaC, Installation
@c    node-name, next, previous, up
@section Installing GiNaC
@cindex installation

To install GiNaC on your system, simply type

@example
$ make install
@end example

As described in the section about configuration the files will be
installed in the following directories (the directories will be created
if they don't already exist):

@itemize @bullet

@item
@file{libginac.a} will go into @file{@var{PREFIX}/lib/} (or
@file{@var{LIBDIR}}) which defaults to @file{/usr/local/lib/}.
So will @file{libginac.so} unless the configure script was
given the option @option{--disable-shared}.  The proper symlinks
will be established as well.

@item
All the header files will be installed into @file{@var{PREFIX}/include/ginac/}
(or @file{@var{INCLUDEDIR}/ginac/}, if specified).

@item
All documentation (info) will be stuffed into
@file{@var{PREFIX}/share/doc/GiNaC/} (or
@file{@var{DATADIR}/doc/GiNaC/}, if @var{DATADIR} was specified).

@end itemize

For the sake of completeness we will list some other useful make
targets: @command{make clean} deletes all files generated by
@command{make}, i.e. all the object files.  In addition @command{make
distclean} removes all files generated by the configuration and
@command{make maintainer-clean} goes one step further and deletes files
that may require special tools to rebuild (like the @command{libtool}
for instance).  Finally @command{make uninstall} removes the installed
library, header files and documentation@footnote{Uninstallation does not
work after you have called @command{make distclean} since the
@file{Makefile} is itself generated by the configuration from
@file{Makefile.in} and hence deleted by @command{make distclean}.  There
are two obvious ways out of this dilemma.  First, you can run the
configuration again with the same @var{PREFIX} thus creating a
@file{Makefile} with a working @samp{uninstall} target.  Second, you can
do it by hand since you now know where all the files went during
installation.}.


@node Basic concepts, Expressions, Installing GiNaC, Top
@c    node-name, next, previous, up
@chapter Basic concepts

This chapter will describe the different fundamental objects that can be
handled by GiNaC.  But before doing so, it is worthwhile introducing you
to the more commonly used class of expressions, representing a flexible
meta-class for storing all mathematical objects.

@menu
* Expressions::                  The fundamental GiNaC class.
* Automatic evaluation::         Evaluation and canonicalization.
* Error handling::               How the library reports errors.
* The class hierarchy::          Overview of GiNaC's classes.
* Symbols::                      Symbolic objects.
* Numbers::                      Numerical objects.
* Constants::                    Pre-defined constants.
* Fundamental containers::       Sums, products and powers.
* Lists::                        Lists of expressions.
* Mathematical functions::       Mathematical functions.
* Relations::                    Equality, Inequality and all that.
* Integrals::                    Symbolic integrals.
* Matrices::                     Matrices.
* Indexed objects::              Handling indexed quantities.
* Non-commutative objects::      Algebras with non-commutative products.
* Hash maps::                    A faster alternative to std::map<>.
@end menu


@node Expressions, Automatic evaluation, Basic concepts, Basic concepts
@c    node-name, next, previous, up
@section Expressions
@cindex expression (class @code{ex})
@cindex @code{has()}

The most common class of objects a user deals with is the expression
@code{ex}, representing a mathematical object like a variable, number,
function, sum, product, etc@dots{}  Expressions may be put together to form
new expressions, passed as arguments to functions, and so on.  Here is a
little collection of valid expressions:

@example
ex MyEx1 = 5;                       // simple number
ex MyEx2 = x + 2*y;                 // polynomial in x and y
ex MyEx3 = (x + 1)/(x - 1);         // rational expression
ex MyEx4 = sin(x + 2*y) + 3*z + 41; // containing a function
ex MyEx5 = MyEx4 + 1;               // similar to above
@end example

Expressions are handles to other more fundamental objects, that often
contain other expressions thus creating a tree of expressions
(@xref{Internal structures}, for particular examples).  Most methods on
@code{ex} therefore run top-down through such an expression tree.  For
example, the method @code{has()} scans recursively for occurrences of
something inside an expression.  Thus, if you have declared @code{MyEx4}
as in the example above @code{MyEx4.has(y)} will find @code{y} inside
the argument of @code{sin} and hence return @code{true}.

The next sections will outline the general picture of GiNaC's class
hierarchy and describe the classes of objects that are handled by
@code{ex}.

@subsection Note: Expressions and STL containers

GiNaC expressions (@code{ex} objects) have value semantics (they can be
assigned, reassigned and copied like integral types) but the operator
@code{<} doesn't provide a well-defined ordering on them. In STL-speak,
expressions are @samp{Assignable} but not @samp{LessThanComparable}.

This implies that in order to use expressions in sorted containers such as
@code{std::map<>} and @code{std::set<>} you have to supply a suitable
comparison predicate. GiNaC provides such a predicate, called
@code{ex_is_less}. For example, a set of expressions should be defined
as @code{std::set<ex, ex_is_less>}.

Unsorted containers such as @code{std::vector<>} and @code{std::list<>}
don't pose a problem. A @code{std::vector<ex>} works as expected.

@xref{Information about expressions}, for more about comparing and ordering
expressions.


@node Automatic evaluation, Error handling, Expressions, Basic concepts
@c    node-name, next, previous, up
@section Automatic evaluation and canonicalization of expressions
@cindex evaluation

GiNaC performs some automatic transformations on expressions, to simplify
them and put them into a canonical form. Some examples:

@example
ex MyEx1 = 2*x - 1 + x;  // 3*x-1
ex MyEx2 = x - x;        // 0
ex MyEx3 = cos(2*Pi);    // 1
ex MyEx4 = x*y/x;        // y
@end example

This behavior is usually referred to as @dfn{automatic} or @dfn{anonymous
evaluation}. GiNaC only performs transformations that are

@itemize @bullet
@item
at most of complexity
@tex
$O(n\log n)$
@end tex
@ifnottex
@math{O(n log n)}
@end ifnottex
@item
algebraically correct, possibly except for a set of measure zero (e.g.
@math{x/x} is transformed to @math{1} although this is incorrect for @math{x=0})
@end itemize

There are two types of automatic transformations in GiNaC that may not
behave in an entirely obvious way at first glance:

@itemize
@item
The terms of sums and products (and some other things like the arguments of
symmetric functions, the indices of symmetric tensors etc.) are re-ordered
into a canonical form that is deterministic, but not lexicographical or in
any other way easy to guess (it almost always depends on the number and
order of the symbols you define). However, constructing the same expression
twice, either implicitly or explicitly, will always result in the same
canonical form.
@item
Expressions of the form 'number times sum' are automatically expanded (this
has to do with GiNaC's internal representation of sums and products). For
example
@example
ex MyEx5 = 2*(x + y);   // 2*x+2*y
ex MyEx6 = z*(x + y);   // z*(x+y)
@end example
@end itemize

The general rule is that when you construct expressions, GiNaC automatically
creates them in canonical form, which might differ from the form you typed in
your program. This may create some awkward looking output (@samp{-y+x} instead
of @samp{x-y}) but allows for more efficient operation and usually yields
some immediate simplifications.

@cindex @code{eval()}
Internally, the anonymous evaluator in GiNaC is implemented by the methods

@example
ex ex::eval(int level = 0) const;
ex basic::eval(int level = 0) const;
@end example

but unless you are extending GiNaC with your own classes or functions, there
should never be any reason to call them explicitly. All GiNaC methods that
transform expressions, like @code{subs()} or @code{normal()}, automatically
re-evaluate their results.


@node Error handling, The class hierarchy, Automatic evaluation, Basic concepts
@c    node-name, next, previous, up
@section Error handling
@cindex exceptions
@cindex @code{pole_error} (class)

GiNaC reports run-time errors by throwing C++ exceptions. All exceptions
generated by GiNaC are subclassed from the standard @code{exception} class
defined in the @file{<stdexcept>} header. In addition to the predefined
@code{logic_error}, @code{domain_error}, @code{out_of_range},
@code{invalid_argument}, @code{runtime_error}, @code{range_error} and
@code{overflow_error} types, GiNaC also defines a @code{pole_error}
exception that gets thrown when trying to evaluate a mathematical function
at a singularity.

The @code{pole_error} class has a member function

@example
int pole_error::degree() const;
@end example

that returns the order of the singularity (or 0 when the pole is
logarithmic or the order is undefined).

When using GiNaC it is useful to arrange for exceptions to be caught in
the main program even if you don't want to do any special error handling.
Otherwise whenever an error occurs in GiNaC, it will be delegated to the
default exception handler of your C++ compiler's run-time system which
usually only aborts the program without giving any information what went
wrong.

Here is an example for a @code{main()} function that catches and prints
exceptions generated by GiNaC:

@example
#include <iostream>
#include <stdexcept>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
@{
    try @{
        ...
        // code using GiNaC
        ...
    @} catch (exception &p) @{
        cerr << p.what() << endl;
        return 1;
    @}
    return 0;
@}
@end example


@node The class hierarchy, Symbols, Error handling, Basic concepts
@c    node-name, next, previous, up
@section The class hierarchy

GiNaC's class hierarchy consists of several classes representing
mathematical objects, all of which (except for @code{ex} and some
helpers) are internally derived from one abstract base class called
@code{basic}.  You do not have to deal with objects of class
@code{basic}, instead you'll be dealing with symbols, numbers,
containers of expressions and so on.

@cindex container
@cindex atom
To get an idea about what kinds of symbolic composites may be built we
have a look at the most important classes in the class hierarchy and
some of the relations among the classes:

@ifnotinfo
@image{classhierarchy}
@end ifnotinfo
@ifinfo
<PICTURE MISSING>
@end ifinfo

The abstract classes shown here (the ones without drop-shadow) are of no
interest for the user.  They are used internally in order to avoid code
duplication if two or more classes derived from them share certain
features.  An example is @code{expairseq}, a container for a sequence of
pairs each consisting of one expression and a number (@code{numeric}).
What @emph{is} visible to the user are the derived classes @code{add}
and @code{mul}, representing sums and products.  @xref{Internal
structures}, where these two classes are described in more detail.  The
following table shortly summarizes what kinds of mathematical objects
are stored in the different classes:

@cartouche
@multitable @columnfractions .22 .78
@item @code{symbol} @tab Algebraic symbols @math{a}, @math{x}, @math{y}@dots{}
@item @code{constant} @tab Constants like 
@tex
$\pi$
@end tex
@ifnottex
@math{Pi}
@end ifnottex
@item @code{numeric} @tab All kinds of numbers, @math{42}, @math{7/3*I}, @math{3.14159}@dots{}
@item @code{add} @tab Sums like @math{x+y} or @math{a-(2*b)+3}
@item @code{mul} @tab Products like @math{x*y} or @math{2*a^2*(x+y+z)/b}
@item @code{ncmul} @tab Products of non-commutative objects
@item @code{power} @tab Exponentials such as @math{x^2}, @math{a^b}, 
@tex
$\sqrt{2}$
@end tex
@ifnottex
@code{sqrt(}@math{2}@code{)}
@end ifnottex
@dots{}
@item @code{pseries} @tab Power Series, e.g. @math{x-1/6*x^3+1/120*x^5+O(x^7)}
@item @code{function} @tab A symbolic function like
@tex
$\sin 2x$
@end tex
@ifnottex
@math{sin(2*x)}
@end ifnottex
@item @code{lst} @tab Lists of expressions @{@math{x}, @math{2*y}, @math{3+z}@}
@item @code{matrix} @tab @math{m}x@math{n} matrices of expressions
@item @code{relational} @tab A relation like the identity @math{x}@code{==}@math{y}
@item @code{indexed} @tab Indexed object like @math{A_ij}
@item @code{tensor} @tab Special tensor like the delta and metric tensors
@item @code{idx} @tab Index of an indexed object
@item @code{varidx} @tab Index with variance
@item @code{spinidx} @tab Index with variance and dot (used in Weyl-van-der-Waerden spinor formalism)
@item @code{wildcard} @tab Wildcard for pattern matching
@item @code{structure} @tab Template for user-defined classes
@end multitable
@end cartouche


@node Symbols, Numbers, The class hierarchy, Basic concepts
@c    node-name, next, previous, up
@section Symbols
@cindex @code{symbol} (class)
@cindex hierarchy of classes

@cindex atom
Symbolic indeterminates, or @dfn{symbols} for short, are for symbolic
manipulation what atoms are for chemistry.

A typical symbol definition looks like this:
@example
symbol x("x");
@end example

This definition actually contains three very different things:
@itemize
@item a C++ variable named @code{x}
@item a @code{symbol} object stored in this C++ variable; this object
  represents the symbol in a GiNaC expression
@item the string @code{"x"} which is the name of the symbol, used (almost)
  exclusively for printing expressions holding the symbol
@end itemize

Symbols have an explicit name, supplied as a string during construction,
because in C++, variable names can't be used as values, and the C++ compiler
throws them away during compilation.

It is possible to omit the symbol name in the definition:
@example
symbol x;
@end example

In this case, GiNaC will assign the symbol an internal, unique name of the
form @code{symbolNNN}. This won't affect the usability of the symbol but
the output of your calculations will become more readable if you give your
symbols sensible names (for intermediate expressions that are only used
internally such anonymous symbols can be quite useful, however).

Now, here is one important property of GiNaC that differentiates it from
other computer algebra programs you may have used: GiNaC does @emph{not} use
the names of symbols to tell them apart, but a (hidden) serial number that
is unique for each newly created @code{symbol} object. If you want to use
one and the same symbol in different places in your program, you must only
create one @code{symbol} object and pass that around. If you create another
symbol, even if it has the same name, GiNaC will treat it as a different
indeterminate.

Observe:
@example
ex f(int n)
@{
    symbol x("x");
    return pow(x, n);
@}

int main()
@{
    symbol x("x");
    ex e = f(6);

    cout << e << endl;
     // prints "x^6" which looks right, but...

    cout << e.degree(x) << endl;
     // ...this doesn't work. The symbol "x" here is different from the one
     // in f() and in the expression returned by f(). Consequently, it
     // prints "0".
@}
@end example

One possibility to ensure that @code{f()} and @code{main()} use the same
symbol is to pass the symbol as an argument to @code{f()}:
@example
ex f(int n, const ex & x)
@{
    return pow(x, n);
@}

int main()
@{
    symbol x("x");

    // Now, f() uses the same symbol.
    ex e = f(6, x);

    cout << e.degree(x) << endl;
     // prints "6", as expected
@}
@end example

Another possibility would be to define a global symbol @code{x} that is used
by both @code{f()} and @code{main()}. If you are using global symbols and
multiple compilation units you must take special care, however. Suppose
that you have a header file @file{globals.h} in your program that defines
a @code{symbol x("x");}. In this case, every unit that includes
@file{globals.h} would also get its own definition of @code{x} (because
header files are just inlined into the source code by the C++ preprocessor),
and hence you would again end up with multiple equally-named, but different,
symbols. Instead, the @file{globals.h} header should only contain a
@emph{declaration} like @code{extern symbol x;}, with the definition of
@code{x} moved into a C++ source file such as @file{globals.cpp}.

A different approach to ensuring that symbols used in different parts of
your program are identical is to create them with a @emph{factory} function
like this one:
@example
const symbol & get_symbol(const string & s)
@{
    static map<string, symbol> directory;
    map<string, symbol>::iterator i = directory.find(s);
    if (i != directory.end())
        return i->second;
    else
        return directory.insert(make_pair(s, symbol(s))).first->second;
@}
@end example

This function returns one newly constructed symbol for each name that is
passed in, and it returns the same symbol when called multiple times with
the same name. Using this symbol factory, we can rewrite our example like
this:
@example
ex f(int n)
@{
    return pow(get_symbol("x"), n);
@}

int main()
@{
    ex e = f(6);

    // Both calls of get_symbol("x") yield the same symbol.
    cout << e.degree(get_symbol("x")) << endl;
     // prints "6"
@}
@end example

Instead of creating symbols from strings we could also have
@code{get_symbol()} take, for example, an integer number as its argument.
In this case, we would probably want to give the generated symbols names
that include this number, which can be accomplished with the help of an
@code{ostringstream}.

In general, if you're getting weird results from GiNaC such as an expression
@samp{x-x} that is not simplified to zero, you should check your symbol
definitions.

As we said, the names of symbols primarily serve for purposes of expression
output. But there are actually two instances where GiNaC uses the names for
identifying symbols: When constructing an expression from a string, and when
recreating an expression from an archive (@pxref{Input/output}).

In addition to its name, a symbol may contain a special string that is used
in LaTeX output:
@example
symbol x("x", "\\Box");
@end example

This creates a symbol that is printed as "@code{x}" in normal output, but
as "@code{\Box}" in LaTeX code (@xref{Input/output}, for more
information about the different output formats of expressions in GiNaC).
GiNaC automatically creates proper LaTeX code for symbols having names of
greek letters (@samp{alpha}, @samp{mu}, etc.).

@cindex @code{subs()}
Symbols in GiNaC can't be assigned values. If you need to store results of
calculations and give them a name, use C++ variables of type @code{ex}.
If you want to replace a symbol in an expression with something else, you
can invoke the expression's @code{.subs()} method
(@pxref{Substituting expressions}).

@cindex @code{realsymbol()}
By default, symbols are expected to stand in for complex values, i.e. they live
in the complex domain.  As a consequence, operations like complex conjugation,
for example (@pxref{Complex expressions}), do @emph{not} evaluate if applied
to such symbols. Likewise @code{log(exp(x))} does not evaluate to @code{x},
because of the unknown imaginary part of @code{x}.
On the other hand, if you are sure that your symbols will hold only real
values, you would like to have such functions evaluated. Therefore GiNaC
allows you to specify
the domain of the symbol. Instead of @code{symbol x("x");} you can write
@code{realsymbol x("x");} to tell GiNaC that @code{x} stands in for real values.

@cindex @code{possymbol()}
Furthermore, it is also possible to declare a symbol as positive. This will,
for instance, enable the automatic simplification of @code{abs(x)} into 
@code{x}. This is done by declaring the symbol as @code{possymbol x("x");}.


@node Numbers, Constants, Symbols, Basic concepts
@c    node-name, next, previous, up
@section Numbers
@cindex @code{numeric} (class)

@cindex GMP
@cindex CLN
@cindex rational
@cindex fraction
For storing numerical things, GiNaC uses Bruno Haible's library CLN.
The classes therein serve as foundation classes for GiNaC.  CLN stands
for Class Library for Numbers or alternatively for Common Lisp Numbers.
In order to find out more about CLN's internals, the reader is referred to
the documentation of that library.  @inforef{Introduction, , cln}, for
more information. Suffice to say that it is by itself build on top of
another library, the GNU Multiple Precision library GMP, which is an
extremely fast library for arbitrary long integers and rationals as well
as arbitrary precision floating point numbers.  It is very commonly used
by several popular cryptographic applications.  CLN extends GMP by
several useful things: First, it introduces the complex number field
over either reals (i.e. floating point numbers with arbitrary precision)
or rationals.  Second, it automatically converts rationals to integers
if the denominator is unity and complex numbers to real numbers if the
imaginary part vanishes and also correctly treats algebraic functions.
Third it provides good implementations of state-of-the-art algorithms
for all trigonometric and hyperbolic functions as well as for
calculation of some useful constants.

The user can construct an object of class @code{numeric} in several
ways.  The following example shows the four most important constructors.
It uses construction from C-integer, construction of fractions from two
integers, construction from C-float and construction from a string:

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace GiNaC;

int main()
@{
    numeric two = 2;                      // exact integer 2
    numeric r(2,3);                       // exact fraction 2/3
    numeric e(2.71828);                   // floating point number
    numeric p = "3.14159265358979323846"; // constructor from string
    // Trott's constant in scientific notation:
    numeric trott("1.0841015122311136151E-2");
    
    std::cout << two*p << std::endl;  // floating point 6.283...
    ...
@end example

@cindex @code{I}
@cindex complex numbers
The imaginary unit in GiNaC is a predefined @code{numeric} object with the
name @code{I}:

@example
    ...
    numeric z1 = 2-3*I;                    // exact complex number 2-3i
    numeric z2 = 5.9+1.6*I;                // complex floating point number
@}
@end example

It may be tempting to construct fractions by writing @code{numeric r(3/2)}.
This would, however, call C's built-in operator @code{/} for integers
first and result in a numeric holding a plain integer 1.  @strong{Never
use the operator @code{/} on integers} unless you know exactly what you
are doing!  Use the constructor from two integers instead, as shown in
the example above.  Writing @code{numeric(1)/2} may look funny but works
also.

@cindex @code{Digits}
@cindex accuracy
We have seen now the distinction between exact numbers and floating
point numbers.  Clearly, the user should never have to worry about
dynamically created exact numbers, since their `exactness' always
determines how they ought to be handled, i.e. how `long' they are.  The
situation is different for floating point numbers.  Their accuracy is
controlled by one @emph{global} variable, called @code{Digits}.  (For
those readers who know about Maple: it behaves very much like Maple's
@code{Digits}).  All objects of class numeric that are constructed from
then on will be stored with a precision matching that number of decimal
digits:

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

void foo()
@{
    numeric three(3.0), one(1.0);
    numeric x = one/three;

    cout << "in " << Digits << " digits:" << endl;
    cout << x << endl;
    cout << Pi.evalf() << endl;
@}

int main()
@{
    foo();
    Digits = 60;
    foo();
    return 0;
@}
@end example

The above example prints the following output to screen:

@example
in 17 digits:
0.33333333333333333334
3.1415926535897932385
in 60 digits:
0.33333333333333333333333333333333333333333333333333333333333333333334
3.1415926535897932384626433832795028841971693993751058209749445923078
@end example

@cindex rounding
Note that the last number is not necessarily rounded as you would
naively expect it to be rounded in the decimal system.  But note also,
that in both cases you got a couple of extra digits.  This is because
numbers are internally stored by CLN as chunks of binary digits in order
to match your machine's word size and to not waste precision.  Thus, on
architectures with different word size, the above output might even
differ with regard to actually computed digits.

It should be clear that objects of class @code{numeric} should be used
for constructing numbers or for doing arithmetic with them.  The objects
one deals with most of the time are the polymorphic expressions @code{ex}.

@subsection Tests on numbers

Once you have declared some numbers, assigned them to expressions and
done some arithmetic with them it is frequently desired to retrieve some
kind of information from them like asking whether that number is
integer, rational, real or complex.  For those cases GiNaC provides
several useful methods.  (Internally, they fall back to invocations of
certain CLN functions.)

As an example, let's construct some rational number, multiply it with
some multiple of its denominator and test what comes out:

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

// some very important constants:
const numeric twentyone(21);
const numeric ten(10);
const numeric five(5);

int main()
@{
    numeric answer = twentyone;

    answer /= five;
    cout << answer.is_integer() << endl;  // false, it's 21/5
    answer *= ten;
    cout << answer.is_integer() << endl;  // true, it's 42 now!
@}
@end example

Note that the variable @code{answer} is constructed here as an integer
by @code{numeric}'s copy constructor, but in an intermediate step it
holds a rational number represented as integer numerator and integer
denominator.  When multiplied by 10, the denominator becomes unity and
the result is automatically converted to a pure integer again.
Internally, the underlying CLN is responsible for this behavior and we
refer the reader to CLN's documentation.  Suffice to say that
the same behavior applies to complex numbers as well as return values of
certain functions.  Complex numbers are automatically converted to real
numbers if the imaginary part becomes zero.  The full set of tests that
can be applied is listed in the following table.

@cartouche
@multitable @columnfractions .30 .70
@item @strong{Method} @tab @strong{Returns true if the object is@dots{}}
@item @code{.is_zero()}
@tab @dots{}equal to zero
@item @code{.is_positive()}
@tab @dots{}not complex and greater than 0
@item @code{.is_negative()}
@tab @dots{}not complex and smaller than 0
@item @code{.is_integer()}
@tab @dots{}a (non-complex) integer
@item @code{.is_pos_integer()}
@tab @dots{}an integer and greater than 0
@item @code{.is_nonneg_integer()}
@tab @dots{}an integer and greater equal 0
@item @code{.is_even()}
@tab @dots{}an even integer
@item @code{.is_odd()}
@tab @dots{}an odd integer
@item @code{.is_prime()}
@tab @dots{}a prime integer (probabilistic primality test)
@item @code{.is_rational()}
@tab @dots{}an exact rational number (integers are rational, too)
@item @code{.is_real()}
@tab @dots{}a real integer, rational or float (i.e. is not complex)
@item @code{.is_cinteger()}
@tab @dots{}a (complex) integer (such as @math{2-3*I})
@item @code{.is_crational()}
@tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
@end multitable
@end cartouche

@page

@subsection Numeric functions

The following functions can be applied to @code{numeric} objects and will be
evaluated immediately:

@cartouche
@multitable @columnfractions .30 .70
@item @strong{Name} @tab @strong{Function}
@item @code{inverse(z)}
@tab returns @math{1/z}
@cindex @code{inverse()} (numeric)
@item @code{pow(a, b)}
@tab exponentiation @math{a^b}
@item @code{abs(z)}
@tab absolute value
@item @code{real(z)}
@tab real part
@cindex @code{real()}
@item @code{imag(z)}
@tab imaginary part
@cindex @code{imag()}
@item @code{csgn(z)}
@tab complex sign (returns an @code{int})
@item @code{step(x)}
@tab step function (returns an @code{numeric})
@item @code{numer(z)}
@tab numerator of rational or complex rational number
@item @code{denom(z)}
@tab denominator of rational or complex rational number
@item @code{sqrt(z)}
@tab square root
@item @code{isqrt(n)}
@tab integer square root
@cindex @code{isqrt()}
@item @code{sin(z)}
@tab sine
@item @code{cos(z)}
@tab cosine
@item @code{tan(z)}
@tab tangent
@item @code{asin(z)}
@tab inverse sine
@item @code{acos(z)}
@tab inverse cosine
@item @code{atan(z)}
@tab inverse tangent
@item @code{atan(y, x)}
@tab inverse tangent with two arguments
@item @code{sinh(z)}
@tab hyperbolic sine
@item @code{cosh(z)}
@tab hyperbolic cosine
@item @code{tanh(z)}
@tab hyperbolic tangent
@item @code{asinh(z)}
@tab inverse hyperbolic sine
@item @code{acosh(z)}
@tab inverse hyperbolic cosine
@item @code{atanh(z)}
@tab inverse hyperbolic tangent
@item @code{exp(z)}
@tab exponential function
@item @code{log(z)}
@tab natural logarithm
@item @code{Li2(z)}
@tab dilogarithm
@item @code{zeta(z)}
@tab Riemann's zeta function
@item @code{tgamma(z)}
@tab gamma function
@item @code{lgamma(z)}
@tab logarithm of gamma function
@item @code{psi(z)}
@tab psi (digamma) function
@item @code{psi(n, z)}
@tab derivatives of psi function (polygamma functions)
@item @code{factorial(n)}
@tab factorial function @math{n!}
@item @code{doublefactorial(n)}
@tab double factorial function @math{n!!}
@cindex @code{doublefactorial()}
@item @code{binomial(n, k)}
@tab binomial coefficients
@item @code{bernoulli(n)}
@tab Bernoulli numbers
@cindex @code{bernoulli()}
@item @code{fibonacci(n)}
@tab Fibonacci numbers
@cindex @code{fibonacci()}
@item @code{mod(a, b)}
@tab modulus in positive representation (in the range @code{[0, abs(b)-1]} with the sign of b, or zero)
@cindex @code{mod()}
@item @code{smod(a, b)}
@tab modulus in symmetric representation (in the range @code{[-iquo(abs(b), 2), iquo(abs(b), 2)]})
@cindex @code{smod()}
@item @code{irem(a, b)}
@tab integer remainder (has the sign of @math{a}, or is zero)
@cindex @code{irem()}
@item @code{irem(a, b, q)}
@tab integer remainder and quotient, @code{irem(a, b, q) == a-q*b}
@item @code{iquo(a, b)}
@tab integer quotient
@cindex @code{iquo()}
@item @code{iquo(a, b, r)}
@tab integer quotient and remainder, @code{r == a-iquo(a, b)*b}
@item @code{gcd(a, b)}
@tab greatest common divisor
@item @code{lcm(a, b)}
@tab least common multiple
@end multitable
@end cartouche

Most of these functions are also available as symbolic functions that can be
used in expressions (@pxref{Mathematical functions}) or, like @code{gcd()},
as polynomial algorithms.

@subsection Converting numbers

Sometimes it is desirable to convert a @code{numeric} object back to a
built-in arithmetic type (@code{int}, @code{double}, etc.). The @code{numeric}
class provides a couple of methods for this purpose:

@cindex @code{to_int()}
@cindex @code{to_long()}
@cindex @code{to_double()}
@cindex @code{to_cl_N()}
@example
int numeric::to_int() const;
long numeric::to_long() const;
double numeric::to_double() const;
cln::cl_N numeric::to_cl_N() const;
@end example

@code{to_int()} and @code{to_long()} only work when the number they are
applied on is an exact integer. Otherwise the program will halt with a
message like @samp{Not a 32-bit integer}. @code{to_double()} applied on a
rational number will return a floating-point approximation. Both
@code{to_int()/to_long()} and @code{to_double()} discard the imaginary
part of complex numbers.


@node Constants, Fundamental containers, Numbers, Basic concepts
@c    node-name, next, previous, up
@section Constants
@cindex @code{constant} (class)

@cindex @code{Pi}
@cindex @code{Catalan}
@cindex @code{Euler}
@cindex @code{evalf()}
Constants behave pretty much like symbols except that they return some
specific number when the method @code{.evalf()} is called.

The predefined known constants are:

@cartouche
@multitable @columnfractions .14 .32 .54
@item @strong{Name} @tab @strong{Common Name} @tab @strong{Numerical Value (to 35 digits)}
@item @code{Pi}
@tab Archimedes' constant
@tab 3.14159265358979323846264338327950288
@item @code{Catalan}
@tab Catalan's constant
@tab 0.91596559417721901505460351493238411
@item @code{Euler}
@tab Euler's (or Euler-Mascheroni) constant
@tab 0.57721566490153286060651209008240243
@end multitable
@end cartouche


@node Fundamental containers, Lists, Constants, Basic concepts
@c    node-name, next, previous, up
@section Sums, products and powers
@cindex polynomial
@cindex @code{add}
@cindex @code{mul}
@cindex @code{power}

Simple rational expressions are written down in GiNaC pretty much like
in other CAS or like expressions involving numerical variables in C.
The necessary operators @code{+}, @code{-}, @code{*} and @code{/} have
been overloaded to achieve this goal.  When you run the following
code snippet, the constructor for an object of type @code{mul} is
automatically called to hold the product of @code{a} and @code{b} and
then the constructor for an object of type @code{add} is called to hold
the sum of that @code{mul} object and the number one:

@example
    ...
    symbol a("a"), b("b");
    ex MyTerm = 1+a*b;
    ...
@end example

@cindex @code{pow()}
For exponentiation, you have already seen the somewhat clumsy (though C-ish)
statement @code{pow(x,2);} to represent @code{x} squared.  This direct
construction is necessary since we cannot safely overload the constructor
@code{^} in C++ to construct a @code{power} object.  If we did, it would
have several counterintuitive and undesired effects:

@itemize @bullet
@item
Due to C's operator precedence, @code{2*x^2} would be parsed as @code{(2*x)^2}.
@item
Due to the binding of the operator @code{^}, @code{x^a^b} would result in
@code{(x^a)^b}. This would be confusing since most (though not all) other CAS
interpret this as @code{x^(a^b)}.
@item
Also, expressions involving integer exponents are very frequently used,
which makes it even more dangerous to overload @code{^} since it is then
hard to distinguish between the semantics as exponentiation and the one
for exclusive or.  (It would be embarrassing to return @code{1} where one
has requested @code{2^3}.)
@end itemize

@cindex @command{ginsh}
All effects are contrary to mathematical notation and differ from the
way most other CAS handle exponentiation, therefore overloading @code{^}
is ruled out for GiNaC's C++ part.  The situation is different in
@command{ginsh}, there the exponentiation-@code{^} exists.  (Also note
that the other frequently used exponentiation operator @code{**} does
not exist at all in C++).

To be somewhat more precise, objects of the three classes described
here, are all containers for other expressions.  An object of class
@code{power} is best viewed as a container with two slots, one for the
basis, one for the exponent.  All valid GiNaC expressions can be
inserted.  However, basic transformations like simplifying
@code{pow(pow(x,2),3)} to @code{x^6} automatically are only performed
when this is mathematically possible.  If we replace the outer exponent
three in the example by some symbols @code{a}, the simplification is not
safe and will not be performed, since @code{a} might be @code{1/2} and
@code{x} negative.

Objects of type @code{add} and @code{mul} are containers with an
arbitrary number of slots for expressions to be inserted.  Again, simple
and safe simplifications are carried out like transforming
@code{3*x+4-x} to @code{2*x+4}.


@node Lists, Mathematical functions, Fundamental containers, Basic concepts
@c    node-name, next, previous, up
@section Lists of expressions
@cindex @code{lst} (class)
@cindex lists
@cindex @code{nops()}
@cindex @code{op()}
@cindex @code{append()}
@cindex @code{prepend()}
@cindex @code{remove_first()}
@cindex @code{remove_last()}
@cindex @code{remove_all()}

The GiNaC class @code{lst} serves for holding a @dfn{list} of arbitrary
expressions. They are not as ubiquitous as in many other computer algebra
packages, but are sometimes used to supply a variable number of arguments of
the same type to GiNaC methods such as @code{subs()} and some @code{matrix}
constructors, so you should have a basic understanding of them.

Lists can be constructed by assigning a comma-separated sequence of
expressions:

@example
@{
    symbol x("x"), y("y");
    lst l;
    l = x, 2, y, x+y;
    // now, l is a list holding the expressions 'x', '2', 'y', and 'x+y',
    // in that order
    ...
@end example

There are also constructors that allow direct creation of lists of up to
16 expressions, which is often more convenient but slightly less efficient:

@example
    ...
    // This produces the same list 'l' as above:
    // lst l(x, 2, y, x+y);
    // lst l = lst(x, 2, y, x+y);
    ...
@end example

Use the @code{nops()} method to determine the size (number of expressions) of
a list and the @code{op()} method or the @code{[]} operator to access
individual elements:

@example
    ...
    cout << l.nops() << endl;                // prints '4'
    cout << l.op(2) << " " << l[0] << endl;  // prints 'y x'
    ...
@end example

As with the standard @code{list<T>} container, accessing random elements of a
@code{lst} is generally an operation of order @math{O(N)}. Faster read-only
sequential access to the elements of a list is possible with the
iterator types provided by the @code{lst} class:

@example
typedef ... lst::const_iterator;
typedef ... lst::const_reverse_iterator;
lst::const_iterator lst::begin() const;
lst::const_iterator lst::end() const;
lst::const_reverse_iterator lst::rbegin() const;
lst::const_reverse_iterator lst::rend() const;
@end example

For example, to print the elements of a list individually you can use:

@example
    ...
    // O(N)
    for (lst::const_iterator i = l.begin(); i != l.end(); ++i)
        cout << *i << endl;
    ...
@end example

which is one order faster than

@example
    ...
    // O(N^2)
    for (size_t i = 0; i < l.nops(); ++i)
        cout << l.op(i) << endl;
    ...
@end example

These iterators also allow you to use some of the algorithms provided by
the C++ standard library:

@example
    ...
    // print the elements of the list (requires #include <iterator>)
    std::copy(l.begin(), l.end(), ostream_iterator<ex>(cout, "\n"));

    // sum up the elements of the list (requires #include <numeric>)
    ex sum = std::accumulate(l.begin(), l.end(), ex(0));
    cout << sum << endl;  // prints '2+2*x+2*y'
    ...
@end example

@code{lst} is one of the few GiNaC classes that allow in-place modifications
(the only other one is @code{matrix}). You can modify single elements:

@example
    ...
    l[1] = 42;       // l is now @{x, 42, y, x+y@}
    l.let_op(1) = 7; // l is now @{x, 7, y, x+y@}
    ...
@end example

You can append or prepend an expression to a list with the @code{append()}
and @code{prepend()} methods:

@example
    ...
    l.append(4*x);   // l is now @{x, 7, y, x+y, 4*x@}
    l.prepend(0);    // l is now @{0, x, 7, y, x+y, 4*x@}
    ...
@end example

You can remove the first or last element of a list with @code{remove_first()}
and @code{remove_last()}:

@example
    ...
    l.remove_first();   // l is now @{x, 7, y, x+y, 4*x@}
    l.remove_last();    // l is now @{x, 7, y, x+y@}
    ...
@end example

You can remove all the elements of a list with @code{remove_all()}:

@example
    ...
    l.remove_all();     // l is now empty
    ...
@end example

You can bring the elements of a list into a canonical order with @code{sort()}:

@example
    ...
    lst l1, l2;
    l1 = x, 2, y, x+y;
    l2 = 2, x+y, x, y;
    l1.sort();
    l2.sort();
    // l1 and l2 are now equal
    ...
@end example

Finally, you can remove all but the first element of consecutive groups of
elements with @code{unique()}:

@example
    ...
    lst l3;
    l3 = x, 2, 2, 2, y, x+y, y+x;
    l3.unique();        // l3 is now @{x, 2, y, x+y@}
@}
@end example


@node Mathematical functions, Relations, Lists, Basic concepts
@c    node-name, next, previous, up
@section Mathematical functions
@cindex @code{function} (class)
@cindex trigonometric function
@cindex hyperbolic function

There are quite a number of useful functions hard-wired into GiNaC.  For
instance, all trigonometric and hyperbolic functions are implemented
(@xref{Built-in functions}, for a complete list).

These functions (better called @emph{pseudofunctions}) are all objects
of class @code{function}.  They accept one or more expressions as
arguments and return one expression.  If the arguments are not
numerical, the evaluation of the function may be halted, as it does in
the next example, showing how a function returns itself twice and
finally an expression that may be really useful:

@cindex Gamma function
@cindex @code{subs()}
@example
    ...
    symbol x("x"), y("y");    
    ex foo = x+y/2;
    cout << tgamma(foo) << endl;
     // -> tgamma(x+(1/2)*y)
    ex bar = foo.subs(y==1);
    cout << tgamma(bar) << endl;
     // -> tgamma(x+1/2)
    ex foobar = bar.subs(x==7);
    cout << tgamma(foobar) << endl;
     // -> (135135/128)*Pi^(1/2)
    ...
@end example

Besides evaluation most of these functions allow differentiation, series
expansion and so on.  Read the next chapter in order to learn more about
this.

It must be noted that these pseudofunctions are created by inline
functions, where the argument list is templated.  This means that
whenever you call @code{GiNaC::sin(1)} it is equivalent to
@code{sin(ex(1))} and will therefore not result in a floating point
number.  Unless of course the function prototype is explicitly
overridden -- which is the case for arguments of type @code{numeric}
(not wrapped inside an @code{ex}).  Hence, in order to obtain a floating
point number of class @code{numeric} you should call
@code{sin(numeric(1))}.  This is almost the same as calling
@code{sin(1).evalf()} except that the latter will return a numeric
wrapped inside an @code{ex}.


@node Relations, Integrals, Mathematical functions, Basic concepts
@c    node-name, next, previous, up
@section Relations
@cindex @code{relational} (class)

Sometimes, a relation holding between two expressions must be stored
somehow.  The class @code{relational} is a convenient container for such
purposes.  A relation is by definition a container for two @code{ex} and
a relation between them that signals equality, inequality and so on.
They are created by simply using the C++ operators @code{==}, @code{!=},
@code{<}, @code{<=}, @code{>} and @code{>=} between two expressions.

@xref{Mathematical functions}, for examples where various applications
of the @code{.subs()} method show how objects of class relational are
used as arguments.  There they provide an intuitive syntax for
substitutions.  They are also used as arguments to the @code{ex::series}
method, where the left hand side of the relation specifies the variable
to expand in and the right hand side the expansion point.  They can also
be used for creating systems of equations that are to be solved for
unknown variables.  But the most common usage of objects of this class
is rather inconspicuous in statements of the form @code{if
(expand(pow(a+b,2))==a*a+2*a*b+b*b) @{...@}}.  Here, an implicit
conversion from @code{relational} to @code{bool} takes place.  Note,
however, that @code{==} here does not perform any simplifications, hence
@code{expand()} must be called explicitly.

@node Integrals, Matrices, Relations, Basic concepts
@c    node-name, next, previous, up
@section Integrals
@cindex @code{integral} (class)

An object of class @dfn{integral} can be used to hold a symbolic integral.
If you want to symbolically represent the integral of @code{x*x} from 0 to
1, you would write this as
@example
integral(x, 0, 1, x*x)
@end example
The first argument is the integration variable. It should be noted that
GiNaC is not very good (yet?) at symbolically evaluating integrals. In
fact, it can only integrate polynomials. An expression containing integrals
can be evaluated symbolically by calling the
@example
.eval_integ()
@end example
method on it. Numerical evaluation is available by calling the
@example
.evalf()
@end example
method on an expression containing the integral. This will only evaluate
integrals into a number if @code{subs}ing the integration variable by a
number in the fourth argument of an integral and then @code{evalf}ing the
result always results in a number. Of course, also the boundaries of the
integration domain must @code{evalf} into numbers. It should be noted that
trying to @code{evalf} a function with discontinuities in the integration
domain is not recommended. The accuracy of the numeric evaluation of
integrals is determined by the static member variable
@example
ex integral::relative_integration_error
@end example
of the class @code{integral}. The default value of this is 10^-8.
The integration works by halving the interval of integration, until numeric
stability of the answer indicates that the requested accuracy has been
reached. The maximum depth of the halving can be set via the static member
variable
@example
int integral::max_integration_level
@end example
The default value is 15. If this depth is exceeded, @code{evalf} will simply
return the integral unevaluated. The function that performs the numerical
evaluation, is also available as
@example
ex adaptivesimpson(const ex & x, const ex & a, const ex & b, const ex & f,
                   const ex & error)
@end example
This function will throw an exception if the maximum depth is exceeded. The
last parameter of the function is optional and defaults to the
@code{relative_integration_error}. To make sure that we do not do too
much work if an expression contains the same integral multiple times,
a lookup table is used.

If you know that an expression holds an integral, you can get the
integration variable, the left boundary, right boundary and integrand by
respectively calling @code{.op(0)}, @code{.op(1)}, @code{.op(2)}, and
@code{.op(3)}. Differentiating integrals with respect to variables works
as expected. Note that it makes no sense to differentiate an integral
with respect to the integration variable.

@node Matrices, Indexed objects, Integrals, Basic concepts
@c    node-name, next, previous, up
@section Matrices
@cindex @code{matrix} (class)

A @dfn{matrix} is a two-dimensional array of expressions. The elements of a
matrix with @math{m} rows and @math{n} columns are accessed with two
@code{unsigned} indices, the first one in the range 0@dots{}@math{m-1}, the
second one in the range 0@dots{}@math{n-1}.

There are a couple of ways to construct matrices, with or without preset
elements. The constructor

@example
matrix::matrix(unsigned r, unsigned c);
@end example

creates a matrix with @samp{r} rows and @samp{c} columns with all elements
set to zero.

The fastest way to create a matrix with preinitialized elements is to assign
a list of comma-separated expressions to an empty matrix (see below for an
example). But you can also specify the elements as a (flat) list with

@example
matrix::matrix(unsigned r, unsigned c, const lst & l);
@end example

The function

@cindex @code{lst_to_matrix()}
@example
ex lst_to_matrix(const lst & l);
@end example

constructs a matrix from a list of lists, each list representing a matrix row.

There is also a set of functions for creating some special types of
matrices:

@cindex @code{diag_matrix()}
@cindex @code{unit_matrix()}
@cindex @code{symbolic_matrix()}
@example
ex diag_matrix(const lst & l);
ex unit_matrix(unsigned x);
ex unit_matrix(unsigned r, unsigned c);
ex symbolic_matrix(unsigned r, unsigned c, const string & base_name);
ex symbolic_matrix(unsigned r, unsigned c, const string & base_name,
                   const string & tex_base_name);
@end example

@code{diag_matrix()} constructs a diagonal matrix given the list of diagonal
elements. @code{unit_matrix()} creates an @samp{x} by @samp{x} (or @samp{r}
by @samp{c}) unit matrix. And finally, @code{symbolic_matrix} constructs a
matrix filled with newly generated symbols made of the specified base name
and the position of each element in the matrix.

Matrices often arise by omitting elements of another matrix. For
instance, the submatrix @code{S} of a matrix @code{M} takes a
rectangular block from @code{M}. The reduced matrix @code{R} is defined
by removing one row and one column from a matrix @code{M}. (The
determinant of a reduced matrix is called a @emph{Minor} of @code{M} and
can be used for computing the inverse using Cramer's rule.)

@cindex @code{sub_matrix()}
@cindex @code{reduced_matrix()}
@example
ex sub_matrix(const matrix&m, unsigned r, unsigned nr, unsigned c, unsigned nc);
ex reduced_matrix(const matrix& m, unsigned r, unsigned c);
@end example

The function @code{sub_matrix()} takes a row offset @code{r} and a
column offset @code{c} and takes a block of @code{nr} rows and @code{nc}
columns. The function @code{reduced_matrix()} has two integer arguments
that specify which row and column to remove:

@example
@{
    matrix m(3,3);
    m = 11, 12, 13,
        21, 22, 23,
        31, 32, 33;
    cout << reduced_matrix(m, 1, 1) << endl;
    // -> [[11,13],[31,33]]
    cout << sub_matrix(m, 1, 2, 1, 2) << endl;
    // -> [[22,23],[32,33]]
@}
@end example

Matrix elements can be accessed and set using the parenthesis (function call)
operator:

@example
const ex & matrix::operator()(unsigned r, unsigned c) const;
ex & matrix::operator()(unsigned r, unsigned c);
@end example

It is also possible to access the matrix elements in a linear fashion with
the @code{op()} method. But C++-style subscripting with square brackets
@samp{[]} is not available.

Here are a couple of examples for constructing matrices:

@example
@{
    symbol a("a"), b("b");

    matrix M(2, 2);
    M = a, 0,
        0, b;
    cout << M << endl;
     // -> [[a,0],[0,b]]

    matrix M2(2, 2);
    M2(0, 0) = a;
    M2(1, 1) = b;
    cout << M2 << endl;
     // -> [[a,0],[0,b]]

    cout << matrix(2, 2, lst(a, 0, 0, b)) << endl;
     // -> [[a,0],[0,b]]

    cout << lst_to_matrix(lst(lst(a, 0), lst(0, b))) << endl;
     // -> [[a,0],[0,b]]

    cout << diag_matrix(lst(a, b)) << endl;
     // -> [[a,0],[0,b]]

    cout << unit_matrix(3) << endl;
     // -> [[1,0,0],[0,1,0],[0,0,1]]

    cout << symbolic_matrix(2, 3, "x") << endl;
     // -> [[x00,x01,x02],[x10,x11,x12]]
@}
@end example

@cindex @code{is_zero_matrix()} 
The method @code{matrix::is_zero_matrix()} returns @code{true} only if
all entries of the matrix are zeros. There is also method
@code{ex::is_zero_matrix()} which returns @code{true} only if the
expression is zero or a zero matrix.

@cindex @code{transpose()}
There are three ways to do arithmetic with matrices. The first (and most
direct one) is to use the methods provided by the @code{matrix} class:

@example
matrix matrix::add(const matrix & other) const;
matrix matrix::sub(const matrix & other) const;
matrix matrix::mul(const matrix & other) const;
matrix matrix::mul_scalar(const ex & other) const;
matrix matrix::pow(const ex & expn) const;
matrix matrix::transpose() const;
@end example

All of these methods return the result as a new matrix object. Here is an
example that calculates @math{A*B-2*C} for three matrices @math{A}, @math{B}
and @math{C}:

@example
@{
    matrix A(2, 2), B(2, 2), C(2, 2);
    A =  1, 2,
         3, 4;
    B = -1, 0,
         2, 1;
    C =  8, 4,
         2, 1;

    matrix result = A.mul(B).sub(C.mul_scalar(2));
    cout << result << endl;
     // -> [[-13,-6],[1,2]]
    ...
@}
@end example

@cindex @code{evalm()}
The second (and probably the most natural) way is to construct an expression
containing matrices with the usual arithmetic operators and @code{pow()}.
For efficiency reasons, expressions with sums, products and powers of
matrices are not automatically evaluated in GiNaC. You have to call the
method

@example
ex ex::evalm() const;
@end example

to obtain the result:

@example
@{
    ...
    ex e = A*B - 2*C;
    cout << e << endl;
     // -> [[1,2],[3,4]]*[[-1,0],[2,1]]-2*[[8,4],[2,1]]
    cout << e.evalm() << endl;
     // -> [[-13,-6],[1,2]]
    ...
@}
@end example

The non-commutativity of the product @code{A*B} in this example is
automatically recognized by GiNaC. There is no need to use a special
operator here. @xref{Non-commutative objects}, for more information about
dealing with non-commutative expressions.

Finally, you can work with indexed matrices and call @code{simplify_indexed()}
to perform the arithmetic:

@example
@{
    ...
    idx i(symbol("i"), 2), j(symbol("j"), 2), k(symbol("k"), 2);
    e = indexed(A, i, k) * indexed(B, k, j) - 2 * indexed(C, i, j);
    cout << e << endl;
     // -> -2*[[8,4],[2,1]].i.j+[[-1,0],[2,1]].k.j*[[1,2],[3,4]].i.k
    cout << e.simplify_indexed() << endl;
     // -> [[-13,-6],[1,2]].i.j
@}
@end example

Using indices is most useful when working with rectangular matrices and
one-dimensional vectors because you don't have to worry about having to
transpose matrices before multiplying them. @xref{Indexed objects}, for
more information about using matrices with indices, and about indices in
general.

The @code{matrix} class provides a couple of additional methods for
computing determinants, traces, characteristic polynomials and ranks:

@cindex @code{determinant()}
@cindex @code{trace()}
@cindex @code{charpoly()}
@cindex @code{rank()}
@example
ex matrix::determinant(unsigned algo=determinant_algo::automatic) const;
ex matrix::trace() const;
ex matrix::charpoly(const ex & lambda) const;
unsigned matrix::rank() const;
@end example

The @samp{algo} argument of @code{determinant()} allows to select
between different algorithms for calculating the determinant.  The
asymptotic speed (as parametrized by the matrix size) can greatly differ
between those algorithms, depending on the nature of the matrix'
entries.  The possible values are defined in the @file{flags.h} header
file.  By default, GiNaC uses a heuristic to automatically select an
algorithm that is likely (but not guaranteed) to give the result most
quickly.

@cindex @code{inverse()} (matrix)
@cindex @code{solve()}
Matrices may also be inverted using the @code{ex matrix::inverse()}
method and linear systems may be solved with:

@example
matrix matrix::solve(const matrix & vars, const matrix & rhs,
                     unsigned algo=solve_algo::automatic) const;
@end example

Assuming the matrix object this method is applied on is an @code{m}
times @code{n} matrix, then @code{vars} must be a @code{n} times
@code{p} matrix of symbolic indeterminates and @code{rhs} a @code{m}
times @code{p} matrix.  The returned matrix then has dimension @code{n}
times @code{p} and in the case of an underdetermined system will still
contain some of the indeterminates from @code{vars}.  If the system is
overdetermined, an exception is thrown.


@node Indexed objects, Non-commutative objects, Matrices, Basic concepts
@c    node-name, next, previous, up
@section Indexed objects

GiNaC allows you to handle expressions containing general indexed objects in
arbitrary spaces. It is also able to canonicalize and simplify such
expressions and perform symbolic dummy index summations. There are a number
of predefined indexed objects provided, like delta and metric tensors.

There are few restrictions placed on indexed objects and their indices and
it is easy to construct nonsense expressions, but our intention is to
provide a general framework that allows you to implement algorithms with
indexed quantities, getting in the way as little as possible.

@cindex @code{idx} (class)
@cindex @code{indexed} (class)
@subsection Indexed quantities and their indices

Indexed expressions in GiNaC are constructed of two special types of objects,
@dfn{index objects} and @dfn{indexed objects}.

@itemize @bullet

@cindex contravariant
@cindex covariant
@cindex variance
@item Index objects are of class @code{idx} or a subclass. Every index has
a @dfn{value} and a @dfn{dimension} (which is the dimension of the space
the index lives in) which can both be arbitrary expressions but are usually
a number or a simple symbol. In addition, indices of class @code{varidx} have
a @dfn{variance} (they can be co- or contravariant), and indices of class
@code{spinidx} have a variance and can be @dfn{dotted} or @dfn{undotted}.

@item Indexed objects are of class @code{indexed} or a subclass. They
contain a @dfn{base expression} (which is the expression being indexed), and
one or more indices.

@end itemize

@strong{Please notice:} when printing expressions, covariant indices and indices
without variance are denoted @samp{.i} while contravariant indices are
denoted @samp{~i}. Dotted indices have a @samp{*} in front of the index
value. In the following, we are going to use that notation in the text so
instead of @math{A^i_jk} we will write @samp{A~i.j.k}. Index dimensions are
not visible in the output.

A simple example shall illustrate the concepts:

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
@{
    symbol i_sym("i"), j_sym("j");
    idx i(i_sym, 3), j(j_sym, 3);

    symbol A("A");
    cout << indexed(A, i, j) << endl;
     // -> A.i.j
    cout << index_dimensions << indexed(A, i, j) << endl;
     // -> A.i[3].j[3]
    cout << dflt; // reset cout to default output format (dimensions hidden)
    ...
@end example

The @code{idx} constructor takes two arguments, the index value and the
index dimension. First we define two index objects, @code{i} and @code{j},
both with the numeric dimension 3. The value of the index @code{i} is the
symbol @code{i_sym} (which prints as @samp{i}) and the value of the index
@code{j} is the symbol @code{j_sym} (which prints as @samp{j}). Next we
construct an expression containing one indexed object, @samp{A.i.j}. It has
the symbol @code{A} as its base expression and the two indices @code{i} and
@code{j}.

The dimensions of indices are normally not visible in the output, but one
can request them to be printed with the @code{index_dimensions} manipulator,
as shown above.

Note the difference between the indices @code{i} and @code{j} which are of
class @code{idx}, and the index values which are the symbols @code{i_sym}
and @code{j_sym}. The indices of indexed objects cannot directly be symbols
or numbers but must be index objects. For example, the following is not
correct and will raise an exception:

@example
symbol i("i"), j("j");
e = indexed(A, i, j); // ERROR: indices must be of type idx
@end example

You can have multiple indexed objects in an expression, index values can
be numeric, and index dimensions symbolic:

@example
    ...
    symbol B("B"), dim("dim");
    cout << 4 * indexed(A, i)
          + indexed(B, idx(j_sym, 4), idx(2, 3), idx(i_sym, dim)) << endl;
     // -> B.j.2.i+4*A.i
    ...
@end example

@code{B} has a 4-dimensional symbolic index @samp{k}, a 3-dimensional numeric
index of value 2, and a symbolic index @samp{i} with the symbolic dimension
@samp{dim}. Note that GiNaC doesn't automatically notify you that the free
indices of @samp{A} and @samp{B} in the sum don't match (you have to call
@code{simplify_indexed()} for that, see below).

In fact, base expressions, index values and index dimensions can be
arbitrary expressions:

@example
    ...
    cout << indexed(A+B, idx(2*i_sym+1, dim/2)) << endl;
     // -> (B+A).(1+2*i)
    ...
@end example

It's also possible to construct nonsense like @samp{Pi.sin(x)}. You will not
get an error message from this but you will probably not be able to do
anything useful with it.

@cindex @code{get_value()}
@cindex @code{get_dim()}
The methods

@example
ex idx::get_value();
ex idx::get_dim();
@end example

return the value and dimension of an @code{idx} object. If you have an index
in an expression, such as returned by calling @code{.op()} on an indexed
object, you can get a reference to the @code{idx} object with the function
@code{ex_to<idx>()} on the expression.

There are also the methods

@example
bool idx::is_numeric();
bool idx::is_symbolic();
bool idx::is_dim_numeric();
bool idx::is_dim_symbolic();
@end example

for checking whether the value and dimension are numeric or symbolic
(non-numeric). Using the @code{info()} method of an index (see @ref{Information
about expressions}) returns information about the index value.

@cindex @code{varidx} (class)
If you need co- and contravariant indices, use the @code{varidx} class:

@example
    ...
    symbol mu_sym("mu"), nu_sym("nu");
    varidx mu(mu_sym, 4), nu(nu_sym, 4); // default is contravariant ~mu, ~nu
    varidx mu_co(mu_sym, 4, true);       // covariant index .mu

    cout << indexed(A, mu, nu) << endl;
     // -> A~mu~nu
    cout << indexed(A, mu_co, nu) << endl;
     // -> A.mu~nu
    cout << indexed(A, mu.toggle_variance(), nu) << endl;
     // -> A.mu~nu
    ...
@end example

A @code{varidx} is an @code{idx} with an additional flag that marks it as
co- or contravariant. The default is a contravariant (upper) index, but
this can be overridden by supplying a third argument to the @code{varidx}
constructor. The two methods

@example
bool varidx::is_covariant();
bool varidx::is_contravariant();
@end example

allow you to check the variance of a @code{varidx} object (use @code{ex_to<varidx>()}
to get the object reference from an expression). There's also the very useful
method

@example
ex varidx::toggle_variance();
@end example

which makes a new index with the same value and dimension but the opposite
variance. By using it you only have to define the index once.

@cindex @code{spinidx} (class)
The @code{spinidx} class provides dotted and undotted variant indices, as
used in the Weyl-van-der-Waerden spinor formalism:

@example
    ...
    symbol K("K"), C_sym("C"), D_sym("D");
    spinidx C(C_sym, 2), D(D_sym);          // default is 2-dimensional,
                                            // contravariant, undotted
    spinidx C_co(C_sym, 2, true);           // covariant index
    spinidx D_dot(D_sym, 2, false, true);   // contravariant, dotted
    spinidx D_co_dot(D_sym, 2, true, true); // covariant, dotted

    cout << indexed(K, C, D) << endl;
     // -> K~C~D
    cout << indexed(K, C_co, D_dot) << endl;
     // -> K.C~*D
    cout << indexed(K, D_co_dot, D) << endl;
     // -> K.*D~D
    ...
@end example

A @code{spinidx} is a @code{varidx} with an additional flag that marks it as
dotted or undotted. The default is undotted but this can be overridden by
supplying a fourth argument to the @code{spinidx} constructor. The two
methods

@example
bool spinidx::is_dotted();
bool spinidx::is_undotted();
@end example

allow you to check whether or not a @code{spinidx} object is dotted (use
@code{ex_to<spinidx>()} to get the object reference from an expression).
Finally, the two methods

@example
ex spinidx::toggle_dot();
ex spinidx::toggle_variance_dot();
@end example

create a new index with the same value and dimension but opposite dottedness
and the same or opposite variance.

@subsection Substituting indices

@cindex @code{subs()}
Sometimes you will want to substitute one symbolic index with another
symbolic or numeric index, for example when calculating one specific element
of a tensor expression. This is done with the @code{.subs()} method, as it
is done for symbols (see @ref{Substituting expressions}).

You have two possibilities here. You can either substitute the whole index
by another index or expression:

@example
    ...
    ex e = indexed(A, mu_co);
    cout << e << " becomes " << e.subs(mu_co == nu) << endl;
     // -> A.mu becomes A~nu
    cout << e << " becomes " << e.subs(mu_co == varidx(0, 4)) << endl;
     // -> A.mu becomes A~0
    cout << e << " becomes " << e.subs(mu_co == 0) << endl;
     // -> A.mu becomes A.0
    ...
@end example

The third example shows that trying to replace an index with something that
is not an index will substitute the index value instead.

Alternatively, you can substitute the @emph{symbol} of a symbolic index by
another expression:

@example
    ...
    ex e = indexed(A, mu_co);
    cout << e << " becomes " << e.subs(mu_sym == nu_sym) << endl;
     // -> A.mu becomes A.nu
    cout << e << " becomes " << e.subs(mu_sym == 0) << endl;
     // -> A.mu becomes A.0
    ...
@end example

As you see, with the second method only the value of the index will get
substituted. Its other properties, including its dimension, remain unchanged.
If you want to change the dimension of an index you have to substitute the
whole index by another one with the new dimension.

Finally, substituting the base expression of an indexed object works as
expected:

@example
    ...
    ex e = indexed(A, mu_co);
    cout << e << " becomes " << e.subs(A == A+B) << endl;
     // -> A.mu becomes (B+A).mu
    ...
@end example

@subsection Symmetries
@cindex @code{symmetry} (class)
@cindex @code{sy_none()}
@cindex @code{sy_symm()}
@cindex @code{sy_anti()}
@cindex @code{sy_cycl()}

Indexed objects can have certain symmetry properties with respect to their
indices. Symmetries are specified as a tree of objects of class @code{symmetry}
that is constructed with the helper functions

@example
symmetry sy_none(...);
symmetry sy_symm(...);
symmetry sy_anti(...);
symmetry sy_cycl(...);
@end example

@code{sy_none()} stands for no symmetry, @code{sy_symm()} and @code{sy_anti()}
specify fully symmetric or antisymmetric, respectively, and @code{sy_cycl()}
represents a cyclic symmetry. Each of these functions accepts up to four
arguments which can be either symmetry objects themselves or unsigned integer
numbers that represent an index position (counting from 0). A symmetry
specification that consists of only a single @code{sy_symm()}, @code{sy_anti()}
or @code{sy_cycl()} with no arguments specifies the respective symmetry for
all indices.

Here are some examples of symmetry definitions:

@example
    ...
    // No symmetry:
    e = indexed(A, i, j);
    e = indexed(A, sy_none(), i, j);     // equivalent
    e = indexed(A, sy_none(0, 1), i, j); // equivalent

    // Symmetric in all three indices:
    e = indexed(A, sy_symm(), i, j, k);
    e = indexed(A, sy_symm(0, 1, 2), i, j, k); // equivalent
    e = indexed(A, sy_symm(2, 0, 1), i, j, k); // same symmetry, but yields a
                                               // different canonical order

    // Symmetric in the first two indices only:
    e = indexed(A, sy_symm(0, 1), i, j, k);
    e = indexed(A, sy_none(sy_symm(0, 1), 2), i, j, k); // equivalent

    // Antisymmetric in the first and last index only (index ranges need not
    // be contiguous):
    e = indexed(A, sy_anti(0, 2), i, j, k);
    e = indexed(A, sy_none(sy_anti(0, 2), 1), i, j, k); // equivalent

    // An example of a mixed symmetry: antisymmetric in the first two and
    // last two indices, symmetric when swapping the first and last index
    // pairs (like the Riemann curvature tensor):
    e = indexed(A, sy_symm(sy_anti(0, 1), sy_anti(2, 3)), i, j, k, l);

    // Cyclic symmetry in all three indices:
    e = indexed(A, sy_cycl(), i, j, k);
    e = indexed(A, sy_cycl(0, 1, 2), i, j, k); // equivalent

    // The following examples are invalid constructions that will throw
    // an exception at run time.

    // An index may not appear multiple times:
    e = indexed(A, sy_symm(0, 0, 1), i, j, k); // ERROR
    e = indexed(A, sy_none(sy_symm(0, 1), sy_anti(0, 2)), i, j, k); // ERROR

    // Every child of sy_symm(), sy_anti() and sy_cycl() must refer to the
    // same number of indices:
    e = indexed(A, sy_symm(sy_anti(0, 1), 2), i, j, k); // ERROR

    // And of course, you cannot specify indices which are not there:
    e = indexed(A, sy_symm(0, 1, 2, 3), i, j, k); // ERROR
    ...
@end example

If you need to specify more than four indices, you have to use the
@code{.add()} method of the @code{symmetry} class. For example, to specify
full symmetry in the first six indices you would write
@code{sy_symm(0, 1, 2, 3).add(4).add(5)}.

If an indexed object has a symmetry, GiNaC will automatically bring the
indices into a canonical order which allows for some immediate simplifications:

@example
    ...
    cout << indexed(A, sy_symm(), i, j)
          + indexed(A, sy_symm(), j, i) << endl;
     // -> 2*A.j.i
    cout << indexed(B, sy_anti(), i, j)
          + indexed(B, sy_anti(), j, i) << endl;
     // -> 0
    cout << indexed(B, sy_anti(), i, j, k)
          - indexed(B, sy_anti(), j, k, i) << endl;
     // -> 0
    ...
@end example

@cindex @code{get_free_indices()}
@cindex dummy index
@subsection Dummy indices

GiNaC treats certain symbolic index pairs as @dfn{dummy indices} meaning
that a summation over the index range is implied. Symbolic indices which are
not dummy indices are called @dfn{free indices}. Numeric indices are neither
dummy nor free indices.

To be recognized as a dummy index pair, the two indices must be of the same
class and their value must be the same single symbol (an index like
@samp{2*n+1} is never a dummy index). If the indices are of class
@code{varidx} they must also be of opposite variance; if they are of class
@code{spinidx} they must be both dotted or both undotted.

The method @code{.get_free_indices()} returns a vector containing the free
indices of an expression. It also checks that the free indices of the terms
of a sum are consistent:

@example
@{
    symbol A("A"), B("B"), C("C");

    symbol i_sym("i"), j_sym("j"), k_sym("k"), l_sym("l");
    idx i(i_sym, 3), j(j_sym, 3), k(k_sym, 3), l(l_sym, 3);

    ex e = indexed(A, i, j) * indexed(B, j, k) + indexed(C, k, l, i, l);
    cout << exprseq(e.get_free_indices()) << endl;
     // -> (.i,.k)
     // 'j' and 'l' are dummy indices

    symbol mu_sym("mu"), nu_sym("nu"), rho_sym("rho"), sigma_sym("sigma");
    varidx mu(mu_sym, 4), nu(nu_sym, 4), rho(rho_sym, 4), sigma(sigma_sym, 4);

    e = indexed(A, mu, nu) * indexed(B, nu.toggle_variance(), rho)
      + indexed(C, mu, sigma, rho, sigma.toggle_variance());
    cout << exprseq(e.get_free_indices()) << endl;
     // -> (~mu,~rho)
     // 'nu' is a dummy index, but 'sigma' is not

    e = indexed(A, mu, mu);
    cout << exprseq(e.get_free_indices()) << endl;
     // -> (~mu)
     // 'mu' is not a dummy index because it appears twice with the same
     // variance

    e = indexed(A, mu, nu) + 42;
    cout << exprseq(e.get_free_indices()) << endl; // ERROR
     // this will throw an exception:
     // "add::get_free_indices: inconsistent indices in sum"
@}
@end example

@cindex @code{expand_dummy_sum()}
A dummy index summation like 
@tex
$ a_i b^i$
@end tex
@ifnottex
a.i b~i
@end ifnottex
can be expanded for indices with numeric
dimensions (e.g. 3)  into the explicit sum like
@tex
$a_1b^1+a_2b^2+a_3b^3 $.
@end tex
@ifnottex
a.1 b~1 + a.2 b~2 + a.3 b~3.
@end ifnottex
This is performed by the function

@example
    ex expand_dummy_sum(const ex & e, bool subs_idx = false);
@end example

which takes an expression @code{e} and returns the expanded sum for all
dummy indices with numeric dimensions. If the parameter @code{subs_idx}
is set to @code{true} then all substitutions are made by @code{idx} class
indices, i.e. without variance. In this case the above sum 
@tex
$ a_i b^i$
@end tex
@ifnottex
a.i b~i
@end ifnottex
will be expanded to
@tex
$a_1b_1+a_2b_2+a_3b_3 $.
@end tex
@ifnottex
a.1 b.1 + a.2 b.2 + a.3 b.3.
@end ifnottex


@cindex @code{simplify_indexed()}
@subsection Simplifying indexed expressions

In addition to the few automatic simplifications that GiNaC performs on
indexed expressions (such as re-ordering the indices of symmetric tensors
and calculating traces and convolutions of matrices and predefined tensors)
there is the method

@example
ex ex::simplify_indexed();
ex ex::simplify_indexed(const scalar_products & sp);
@end example

that performs some more expensive operations:

@itemize @bullet
@item it checks the consistency of free indices in sums in the same way
  @code{get_free_indices()} does
@item it tries to give dummy indices that appear in different terms of a sum
  the same name to allow simplifications like @math{a_i*b_i-a_j*b_j=0}
@item it (symbolically) calculates all possible dummy index summations/contractions
  with the predefined tensors (this will be explained in more detail in the
  next section)
@item it detects contractions that vanish for symmetry reasons, for example
  the contraction of a symmetric and a totally antisymmetric tensor
@item as a special case of dummy index summation, it can replace scalar products
  of two tensors with a user-defined value
@end itemize

The last point is done with the help of the @code{scalar_products} class
which is used to store scalar products with known values (this is not an
arithmetic class, you just pass it to @code{simplify_indexed()}):

@example
@{
    symbol A("A"), B("B"), C("C"), i_sym("i");
    idx i(i_sym, 3);

    scalar_products sp;
    sp.add(A, B, 0); // A and B are orthogonal
    sp.add(A, C, 0); // A and C are orthogonal
    sp.add(A, A, 4); // A^2 = 4 (A has length 2)

    e = indexed(A + B, i) * indexed(A + C, i);
    cout << e << endl;
     // -> (B+A).i*(A+C).i

    cout << e.expand(expand_options::expand_indexed).simplify_indexed(sp)
         << endl;
     // -> 4+C.i*B.i
@}
@end example

The @code{scalar_products} object @code{sp} acts as a storage for the
scalar products added to it with the @code{.add()} method. This method
takes three arguments: the two expressions of which the scalar product is
taken, and the expression to replace it with.

@cindex @code{expand()}
The example above also illustrates a feature of the @code{expand()} method:
if passed the @code{expand_indexed} option it will distribute indices
over sums, so @samp{(A+B).i} becomes @samp{A.i+B.i}.

@cindex @code{tensor} (class)
@subsection Predefined tensors

Some frequently used special tensors such as the delta, epsilon and metric
tensors are predefined in GiNaC. They have special properties when
contracted with other tensor expressions and some of them have constant
matrix representations (they will evaluate to a number when numeric
indices are specified).

@cindex @code{delta_tensor()}
@subsubsection Delta tensor

The delta tensor takes two indices, is symmetric and has the matrix
representation @code{diag(1, 1, 1, ...)}. It is constructed by the function
@code{delta_tensor()}:

@example
@{
    symbol A("A"), B("B");

    idx i(symbol("i"), 3), j(symbol("j"), 3),
        k(symbol("k"), 3), l(symbol("l"), 3);

    ex e = indexed(A, i, j) * indexed(B, k, l)
         * delta_tensor(i, k) * delta_tensor(j, l);
    cout << e.simplify_indexed() << endl;
     // -> B.i.j*A.i.j

    cout << delta_tensor(i, i) << endl;
     // -> 3
@}
@end example

@cindex @code{metric_tensor()}
@subsubsection General metric tensor

The function @code{metric_tensor()} creates a general symmetric metric
tensor with two indices that can be used to raise/lower tensor indices. The
metric tensor is denoted as @samp{g} in the output and if its indices are of
mixed variance it is automatically replaced by a delta tensor:

@example
@{
    symbol A("A");

    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);

    ex e = metric_tensor(mu, nu) * indexed(A, nu.toggle_variance(), rho);
    cout << e.simplify_indexed() << endl;
     // -> A~mu~rho

    e = delta_tensor(mu, nu.toggle_variance()) * metric_tensor(nu, rho);
    cout << e.simplify_indexed() << endl;
     // -> g~mu~rho

    e = metric_tensor(mu.toggle_variance(), nu.toggle_variance())
      * metric_tensor(nu, rho);
    cout << e.simplify_indexed() << endl;
     // -> delta.mu~rho

    e = metric_tensor(nu.toggle_variance(), rho.toggle_variance())
      * metric_tensor(mu, nu) * (delta_tensor(mu.toggle_variance(), rho)
        + indexed(A, mu.toggle_variance(), rho));
    cout << e.simplify_indexed() << endl;
     // -> 4+A.rho~rho
@}
@end example

@cindex @code{lorentz_g()}
@subsubsection Minkowski metric tensor

The Minkowski metric tensor is a special metric tensor with a constant
matrix representation which is either @code{diag(1, -1, -1, ...)} (negative
signature, the default) or @code{diag(-1, 1, 1, ...)} (positive signature).
It is created with the function @code{lorentz_g()} (although it is output as
@samp{eta}):

@example
@{
    varidx mu(symbol("mu"), 4);

    e = delta_tensor(varidx(0, 4), mu.toggle_variance())
      * lorentz_g(mu, varidx(0, 4));       // negative signature
    cout << e.simplify_indexed() << endl;
     // -> 1

    e = delta_tensor(varidx(0, 4), mu.toggle_variance())
      * lorentz_g(mu, varidx(0, 4), true); // positive signature
    cout << e.simplify_indexed() << endl;
     // -> -1
@}
@end example

@cindex @code{spinor_metric()}
@subsubsection Spinor metric tensor

The function @code{spinor_metric()} creates an antisymmetric tensor with
two indices that is used to raise/lower indices of 2-component spinors.
It is output as @samp{eps}:

@example
@{
    symbol psi("psi");

    spinidx A(symbol("A")), B(symbol("B")), C(symbol("C"));
    ex A_co = A.toggle_variance(), B_co = B.toggle_variance();

    e = spinor_metric(A, B) * indexed(psi, B_co);
    cout << e.simplify_indexed() << endl;
     // -> psi~A

    e = spinor_metric(A, B) * indexed(psi, A_co);
    cout << e.simplify_indexed() << endl;
     // -> -psi~B

    e = spinor_metric(A_co, B_co) * indexed(psi, B);
    cout << e.simplify_indexed() << endl;
     // -> -psi.A

    e = spinor_metric(A_co, B_co) * indexed(psi, A);
    cout << e.simplify_indexed() << endl;
     // -> psi.B

    e = spinor_metric(A_co, B_co) * spinor_metric(A, B);
    cout << e.simplify_indexed() << endl;
     // -> 2

    e = spinor_metric(A_co, B_co) * spinor_metric(B, C);
    cout << e.simplify_indexed() << endl;
     // -> -delta.A~C
@}
@end example

The matrix representation of the spinor metric is @code{[[0, 1], [-1, 0]]}.

@cindex @code{epsilon_tensor()}
@cindex @code{lorentz_eps()}
@subsubsection Epsilon tensor

The epsilon tensor is totally antisymmetric, its number of indices is equal
to the dimension of the index space (the indices must all be of the same
numeric dimension), and @samp{eps.1.2.3...} (resp. @samp{eps~0~1~2...}) is
defined to be 1. Its behavior with indices that have a variance also
depends on the signature of the metric. Epsilon tensors are output as
@samp{eps}.

There are three functions defined to create epsilon tensors in 2, 3 and 4
dimensions:

@example
ex epsilon_tensor(const ex & i1, const ex & i2);
ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3);
ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4,
               bool pos_sig = false);
@end example

The first two functions create an epsilon tensor in 2 or 3 Euclidean
dimensions, the last function creates an epsilon tensor in a 4-dimensional
Minkowski space (the last @code{bool} argument specifies whether the metric
has negative or positive signature, as in the case of the Minkowski metric
tensor):

@example
@{
    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4),
           sig(symbol("sig"), 4), lam(symbol("lam"), 4), bet(symbol("bet"), 4);
    e = lorentz_eps(mu, nu, rho, sig) *
        lorentz_eps(mu.toggle_variance(), nu.toggle_variance(), lam, bet);
    cout << simplify_indexed(e) << endl;
     // -> 2*eta~bet~rho*eta~sig~lam-2*eta~sig~bet*eta~rho~lam

    idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
    symbol A("A"), B("B");
    e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(B, k);
    cout << simplify_indexed(e) << endl;
     // -> -B.k*A.j*eps.i.k.j
    e = epsilon_tensor(i, j, k) * indexed(A, j) * indexed(A, k);
    cout << simplify_indexed(e) << endl;
     // -> 0
@}
@end example

@subsection Linear algebra

The @code{matrix} class can be used with indices to do some simple linear
algebra (linear combinations and products of vectors and matrices, traces
and scalar products):

@example
@{
    idx i(symbol("i"), 2), j(symbol("j"), 2);
    symbol x("x"), y("y");

    // A is a 2x2 matrix, X is a 2x1 vector
    matrix A(2, 2), X(2, 1);
    A = 1, 2,
        3, 4;
    X = x, y;

    cout << indexed(A, i, i) << endl;
     // -> 5

    ex e = indexed(A, i, j) * indexed(X, j);
    cout << e.simplify_indexed() << endl;
     // -> [[2*y+x],[4*y+3*x]].i

    e = indexed(A, i, j) * indexed(X, i) + indexed(X, j) * 2;
    cout << e.simplify_indexed() << endl;
     // -> [[3*y+3*x,6*y+2*x]].j
@}
@end example

You can of course obtain the same results with the @code{matrix::add()},
@code{matrix::mul()} and @code{matrix::trace()} methods (@pxref{Matrices})
but with indices you don't have to worry about transposing matrices.

Matrix indices always start at 0 and their dimension must match the number
of rows/columns of the matrix. Matrices with one row or one column are
vectors and can have one or two indices (it doesn't matter whether it's a
row or a column vector). Other matrices must have two indices.

You should be careful when using indices with variance on matrices. GiNaC
doesn't look at the variance and doesn't know that @samp{F~mu~nu} and
@samp{F.mu.nu} are different matrices. In this case you should use only
one form for @samp{F} and explicitly multiply it with a matrix representation
of the metric tensor.


@node Non-commutative objects, Hash maps, Indexed objects, Basic concepts
@c    node-name, next, previous, up
@section Non-commutative objects

GiNaC is equipped to handle certain non-commutative algebras. Three classes of
non-commutative objects are built-in which are mostly of use in high energy
physics:

@itemize
@item Clifford (Dirac) algebra (class @code{clifford})
@item su(3) Lie algebra (class @code{color})
@item Matrices (unindexed) (class @code{matrix})
@end itemize

The @code{clifford} and @code{color} classes are subclasses of
@code{indexed} because the elements of these algebras usually carry
indices. The @code{matrix} class is described in more detail in
@ref{Matrices}.

Unlike most computer algebra systems, GiNaC does not primarily provide an
operator (often denoted @samp{&*}) for representing inert products of
arbitrary objects. Rather, non-commutativity in GiNaC is a property of the
classes of objects involved, and non-commutative products are formed with
the usual @samp{*} operator, as are ordinary products. GiNaC is capable of
figuring out by itself which objects commutate and will group the factors
by their class. Consider this example:

@example
    ...
    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
    idx a(symbol("a"), 8), b(symbol("b"), 8);
    ex e = -dirac_gamma(mu) * (2*color_T(a)) * 8 * color_T(b) * dirac_gamma(nu);
    cout << e << endl;
     // -> -16*(gamma~mu*gamma~nu)*(T.a*T.b)
    ...
@end example

As can be seen, GiNaC pulls out the overall commutative factor @samp{-16} and
groups the non-commutative factors (the gammas and the su(3) generators)
together while preserving the order of factors within each class (because
Clifford objects commutate with color objects). The resulting expression is a
@emph{commutative} product with two factors that are themselves non-commutative
products (@samp{gamma~mu*gamma~nu} and @samp{T.a*T.b}). For clarification,
parentheses are placed around the non-commutative products in the output.

@cindex @code{ncmul} (class)
Non-commutative products are internally represented by objects of the class
@code{ncmul}, as opposed to commutative products which are handled by the
@code{mul} class. You will normally not have to worry about this distinction,
though.

The advantage of this approach is that you never have to worry about using
(or forgetting to use) a special operator when constructing non-commutative
expressions. Also, non-commutative products in GiNaC are more intelligent
than in other computer algebra systems; they can, for example, automatically
canonicalize themselves according to rules specified in the implementation
of the non-commutative classes. The drawback is that to work with other than
the built-in algebras you have to implement new classes yourself. Both
symbols and user-defined functions can be specified as being non-commutative.

@cindex @code{return_type()}
@cindex @code{return_type_tinfo()}
Information about the commutativity of an object or expression can be
obtained with the two member functions

@example
unsigned      ex::return_type() const;
return_type_t ex::return_type_tinfo() const;
@end example

The @code{return_type()} function returns one of three values (defined in
the header file @file{flags.h}), corresponding to three categories of
expressions in GiNaC:

@itemize @bullet
@item @code{return_types::commutative}: Commutates with everything. Most GiNaC
  classes are of this kind.
@item @code{return_types::noncommutative}: Non-commutative, belonging to a
  certain class of non-commutative objects which can be determined with the
  @code{return_type_tinfo()} method. Expressions of this category commutate
  with everything except @code{noncommutative} expressions of the same
  class.
@item @code{return_types::noncommutative_composite}: Non-commutative, composed
  of non-commutative objects of different classes. Expressions of this
  category don't commutate with any other @code{noncommutative} or
  @code{noncommutative_composite} expressions.
@end itemize

The @code{return_type_tinfo()} method returns an object of type
@code{return_type_t} that contains information about the type of the expression
and, if given, its representation label (see section on dirac gamma matrices for
more details).  The objects of type @code{return_type_t} can be tested for
equality to test whether two expressions belong to the same category and
therefore may not commute.

Here are a couple of examples:

@cartouche
@multitable @columnfractions .6 .4
@item @strong{Expression} @tab @strong{@code{return_type()}}
@item @code{42} @tab @code{commutative}
@item @code{2*x-y} @tab @code{commutative}
@item @code{dirac_ONE()} @tab @code{noncommutative}
@item @code{dirac_gamma(mu)*dirac_gamma(nu)} @tab @code{noncommutative}
@item @code{2*color_T(a)} @tab @code{noncommutative}
@item @code{dirac_ONE()*color_T(a)} @tab @code{noncommutative_composite}
@end multitable
@end cartouche

A last note: With the exception of matrices, positive integer powers of
non-commutative objects are automatically expanded in GiNaC. For example,
@code{pow(a*b, 2)} becomes @samp{a*b*a*b} if @samp{a} and @samp{b} are
non-commutative expressions).


@cindex @code{clifford} (class)
@subsection Clifford algebra


Clifford algebras are supported in two flavours: Dirac gamma
matrices (more physical) and generic Clifford algebras (more
mathematical). 

@cindex @code{dirac_gamma()}
@subsubsection Dirac gamma matrices
Dirac gamma matrices (note that GiNaC doesn't treat them
as matrices) are designated as @samp{gamma~mu} and satisfy
@samp{gamma~mu*gamma~nu + gamma~nu*gamma~mu = 2*eta~mu~nu} where
@samp{eta~mu~nu} is the Minkowski metric tensor. Dirac gammas are
constructed by the function

@example
ex dirac_gamma(const ex & mu, unsigned char rl = 0);
@end example

which takes two arguments: the index and a @dfn{representation label} in the
range 0 to 255 which is used to distinguish elements of different Clifford
algebras (this is also called a @dfn{spin line index}). Gammas with different
labels commutate with each other. The dimension of the index can be 4 or (in
the framework of dimensional regularization) any symbolic value. Spinor
indices on Dirac gammas are not supported in GiNaC.

@cindex @code{dirac_ONE()}
The unity element of a Clifford algebra is constructed by

@example
ex dirac_ONE(unsigned char rl = 0);
@end example

@strong{Please notice:} You must always use @code{dirac_ONE()} when referring to
multiples of the unity element, even though it's customary to omit it.
E.g. instead of @code{dirac_gamma(mu)*(dirac_slash(q,4)+m)} you have to
write @code{dirac_gamma(mu)*(dirac_slash(q,4)+m*dirac_ONE())}. Otherwise,
GiNaC will complain and/or produce incorrect results.

@cindex @code{dirac_gamma5()}
There is a special element @samp{gamma5} that commutates with all other
gammas, has a unit square, and in 4 dimensions equals
@samp{gamma~0 gamma~1 gamma~2 gamma~3}, provided by

@example
ex dirac_gamma5(unsigned char rl = 0);
@end example

@cindex @code{dirac_gammaL()}
@cindex @code{dirac_gammaR()}
The chiral projectors @samp{(1+/-gamma5)/2} are also available as proper
objects, constructed by

@example
ex dirac_gammaL(unsigned char rl = 0);
ex dirac_gammaR(unsigned char rl = 0);
@end example

They observe the relations @samp{gammaL^2 = gammaL}, @samp{gammaR^2 = gammaR},
and @samp{gammaL gammaR = gammaR gammaL = 0}.

@cindex @code{dirac_slash()}
Finally, the function

@example
ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);
@end example

creates a term that represents a contraction of @samp{e} with the Dirac
Lorentz vector (it behaves like a term of the form @samp{e.mu gamma~mu}
with a unique index whose dimension is given by the @code{dim} argument).
Such slashed expressions are printed with a trailing backslash, e.g. @samp{e\}.

In products of dirac gammas, superfluous unity elements are automatically
removed, squares are replaced by their values, and @samp{gamma5}, @samp{gammaL}
and @samp{gammaR} are moved to the front.

The @code{simplify_indexed()} function performs contractions in gamma strings,
for example

@example
@{
    ...
    symbol a("a"), b("b"), D("D");
    varidx mu(symbol("mu"), D);
    ex e = dirac_gamma(mu) * dirac_slash(a, D)
         * dirac_gamma(mu.toggle_variance());
    cout << e << endl;
     // -> gamma~mu*a\*gamma.mu
    e = e.simplify_indexed();
    cout << e << endl;
     // -> -D*a\+2*a\
    cout << e.subs(D == 4) << endl;
     // -> -2*a\
    ...
@}
@end example

@cindex @code{dirac_trace()}
To calculate the trace of an expression containing strings of Dirac gammas
you use one of the functions

@example
ex dirac_trace(const ex & e, const std::set<unsigned char> & rls,
               const ex & trONE = 4);
ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);
ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);
@end example

These functions take the trace over all gammas in the specified set @code{rls}
or list @code{rll} of representation labels, or the single label @code{rl};
gammas with other labels are left standing. The last argument to
@code{dirac_trace()} is the value to be returned for the trace of the unity
element, which defaults to 4.

The @code{dirac_trace()} function is a linear functional that is equal to the
ordinary matrix trace only in @math{D = 4} dimensions. In particular, the
functional is not cyclic in
@tex $D \ne 4$
@end tex
@ifnottex
@math{D != 4}
@end ifnottex
dimensions when acting on
expressions containing @samp{gamma5}, so it's not a proper trace. This
@samp{gamma5} scheme is described in greater detail in the article
@cite{The Role of gamma5 in Dimensional Regularization} (@ref{Bibliography}).

The value of the trace itself is also usually different in 4 and in
@tex $D \ne 4$
@end tex
@ifnottex
@math{D != 4}
@end ifnottex
dimensions:

@example
@{
    // 4 dimensions
    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4), rho(symbol("rho"), 4);
    ex e = dirac_gamma(mu) * dirac_gamma(nu) *
           dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
    cout << dirac_trace(e).simplify_indexed() << endl;
     // -> -8*eta~rho~nu
@}
...
@{
    // D dimensions
    symbol D("D");
    varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);
    ex e = dirac_gamma(mu) * dirac_gamma(nu) *
           dirac_gamma(mu.toggle_variance()) * dirac_gamma(rho);
    cout << dirac_trace(e).simplify_indexed() << endl;
     // -> 8*eta~rho~nu-4*eta~rho~nu*D
@}
@end example

Here is an example for using @code{dirac_trace()} to compute a value that
appears in the calculation of the one-loop vacuum polarization amplitude in
QED:

@example
@{
    symbol q("q"), l("l"), m("m"), ldotq("ldotq"), D("D");
    varidx mu(symbol("mu"), D), nu(symbol("nu"), D);

    scalar_products sp;
    sp.add(l, l, pow(l, 2));
    sp.add(l, q, ldotq);

    ex e = dirac_gamma(mu) *
           (dirac_slash(l, D) + dirac_slash(q, D) + m * dirac_ONE()) *    
           dirac_gamma(mu.toggle_variance()) *
           (dirac_slash(l, D) + m * dirac_ONE());   
    e = dirac_trace(e).simplify_indexed(sp);
    e = e.collect(lst(l, ldotq, m));
    cout << e << endl;
     // -> (8-4*D)*l^2+(8-4*D)*ldotq+4*D*m^2
@}
@end example

The @code{canonicalize_clifford()} function reorders all gamma products that
appear in an expression to a canonical (but not necessarily simple) form.
You can use this to compare two expressions or for further simplifications:

@example
@{
    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
    ex e = dirac_gamma(mu) * dirac_gamma(nu) + dirac_gamma(nu) * dirac_gamma(mu);
    cout << e << endl;
     // -> gamma~mu*gamma~nu+gamma~nu*gamma~mu

    e = canonicalize_clifford(e);
    cout << e << endl;
     // -> 2*ONE*eta~mu~nu
@}
@end example

@cindex @code{clifford_unit()}
@subsubsection A generic Clifford algebra

A generic Clifford algebra, i.e. a
@tex $2^n$
@end tex
@ifnottex
2^n
@end ifnottex
dimensional algebra with
generators 
@tex $e_k$
@end tex 
@ifnottex
e_k
@end ifnottex
satisfying the identities 
@tex
$e_i e_j + e_j e_i = M(i, j) + M(j, i)$
@end tex
@ifnottex
e~i e~j + e~j e~i = M(i, j) + M(j, i) 
@end ifnottex
for some bilinear form (@code{metric})
@math{M(i, j)}, which may be non-symmetric (see arXiv:math.QA/9911180) 
and contain symbolic entries. Such generators are created by the
function 

@example
    ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0);    
@end example

where @code{mu} should be a @code{idx} (or descendant) class object
indexing the generators.
Parameter @code{metr} defines the metric @math{M(i, j)} and can be
represented by a square @code{matrix}, @code{tensormetric} or @code{indexed} class
object. In fact, any expression either with two free indices or without
indices at all is admitted as @code{metr}. In the later case an @code{indexed}
object with two newly created indices with @code{metr} as its
@code{op(0)} will be used.
Optional parameter @code{rl} allows to distinguish different
Clifford algebras, which will commute with each other. 

Note that the call @code{clifford_unit(mu, minkmetric())} creates
something very close to @code{dirac_gamma(mu)}, although
@code{dirac_gamma} have more efficient simplification mechanism. 
@cindex @code{clifford::get_metric()}
The method @code{clifford::get_metric()} returns a metric defining this
Clifford number.

If the matrix @math{M(i, j)} is in fact symmetric you may prefer to create
the Clifford algebra units with a call like that

@example
    ex e = clifford_unit(mu, indexed(M, sy_symm(), i, j));
@end example

since this may yield some further automatic simplifications. Again, for a
metric defined through a @code{matrix} such a symmetry is detected
automatically. 

Individual generators of a Clifford algebra can be accessed in several
ways. For example 

@example
@{
    ... 
    idx i(symbol("i"), 4);
    realsymbol s("s");
    ex M = diag_matrix(lst(1, -1, 0, s));
    ex e = clifford_unit(i, M);
    ex e0 = e.subs(i == 0);
    ex e1 = e.subs(i == 1);
    ex e2 = e.subs(i == 2);
    ex e3 = e.subs(i == 3);
    ...
@}
@end example

will produce four anti-commuting generators of a Clifford algebra with properties
@tex
$e_0^2=1 $, $e_1^2=-1$,  $e_2^2=0$ and $e_3^2=s$.
@end tex
@ifnottex
@code{pow(e0, 2) = 1}, @code{pow(e1, 2) = -1}, @code{pow(e2, 2) = 0} and
@code{pow(e3, 2) = s}.
@end ifnottex

@cindex @code{lst_to_clifford()}
A similar effect can be achieved from the function

@example
    ex lst_to_clifford(const ex & v, const ex & mu,  const ex & metr,
                       unsigned char rl = 0);
    ex lst_to_clifford(const ex & v, const ex & e);
@end example

which converts a list or vector 
@tex
$v = (v^0, v^1, ..., v^n)$
@end tex
@ifnottex
@samp{v = (v~0, v~1, ..., v~n)} 
@end ifnottex
into the
Clifford number 
@tex
$v^0 e_0 + v^1 e_1 + ... + v^n e_n$
@end tex
@ifnottex
@samp{v~0 e.0 + v~1 e.1 + ... + v~n e.n}
@end ifnottex
with @samp{e.k}
directly supplied in the second form of the procedure. In the first form
the Clifford unit @samp{e.k} is generated by the call of
@code{clifford_unit(mu, metr, rl)}. 
@cindex pseudo-vector
If the number of components supplied
by @code{v} exceeds the dimensionality of the Clifford unit @code{e} by
1 then function @code{lst_to_clifford()} uses the following
pseudo-vector representation: 
@tex
$v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
@end tex
@ifnottex
@samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
@end ifnottex

The previous code may be rewritten with the help of @code{lst_to_clifford()} as follows

@example
@{
    ...
    idx i(symbol("i"), 4);
    realsymbol s("s");
    ex M = diag_matrix(lst(1, -1, 0, s));
    ex e0 = lst_to_clifford(lst(1, 0, 0, 0), i, M);
    ex e1 = lst_to_clifford(lst(0, 1, 0, 0), i, M);
    ex e2 = lst_to_clifford(lst(0, 0, 1, 0), i, M);
    ex e3 = lst_to_clifford(lst(0, 0, 0, 1), i, M);
  ...
@}
@end example

@cindex @code{clifford_to_lst()}
There is the inverse function 

@example
    lst clifford_to_lst(const ex & e, const ex & c, bool algebraic = true);
@end example

which takes an expression @code{e} and tries to find a list
@tex
$v = (v^0, v^1, ..., v^n)$
@end tex
@ifnottex
@samp{v = (v~0, v~1, ..., v~n)} 
@end ifnottex
such that the expression is either vector 
@tex
$e = v^0 c_0 + v^1 c_1 + ... + v^n c_n$
@end tex
@ifnottex
@samp{e = v~0 c.0 + v~1 c.1 + ... + v~n c.n}
@end ifnottex
or pseudo-vector 
@tex
$v^0 {\bf 1} + v^1 e_0 + v^2 e_1 + ... + v^{n+1} e_n$
@end tex
@ifnottex
@samp{v~0 ONE + v~1 e.0 + v~2 e.1 + ... + v~[n+1] e.n}
@end ifnottex
with respect to the given Clifford units @code{c}. Here none of the
@samp{v~k} should contain Clifford units @code{c} (of course, this
may be impossible). This function can use an @code{algebraic} method
(default) or a symbolic one. With the @code{algebraic} method the
@samp{v~k} are calculated as 
@tex
$(e c_k + c_k e)/c_k^2$. If $c_k^2$
@end tex
@ifnottex
@samp{(e c.k + c.k e)/pow(c.k, 2)}.   If @samp{pow(c.k, 2)} 
@end ifnottex
is zero or is not @code{numeric} for some @samp{k}
then the method will be automatically changed to symbolic. The same effect
is obtained by the assignment (@code{algebraic = false}) in the procedure call.

@cindex @code{clifford_prime()}
@cindex @code{clifford_star()}
@cindex @code{clifford_bar()}
There are several functions for (anti-)automorphisms of Clifford algebras:

@example
    ex clifford_prime(const ex & e)
    inline ex clifford_star(const ex & e) @{ return e.conjugate(); @}
    inline ex clifford_bar(const ex & e) @{ return clifford_prime(e.conjugate()); @}
@end example

The automorphism of a Clifford algebra @code{clifford_prime()} simply
changes signs of all Clifford units in the expression. The reversion
of a Clifford algebra @code{clifford_star()} coincides with the
@code{conjugate()} method and effectively reverses the order of Clifford
units in any product. Finally the main anti-automorphism
of a Clifford algebra @code{clifford_bar()} is the composition of the
previous two, i.e. it makes the reversion and changes signs of all Clifford units
in a product. These functions correspond to the notations
@math{e'},
@tex
$e^*$
@end tex
@ifnottex
e*
@end ifnottex
and
@tex
$\overline{e}$
@end tex
@ifnottex
@code{\bar@{e@}}
@end ifnottex
used in Clifford algebra textbooks.

@cindex @code{clifford_norm()}
The function

@example
    ex clifford_norm(const ex & e);
@end example

@cindex @code{clifford_inverse()}
calculates the norm of a Clifford number from the expression
@tex
$||e||^2 = e\overline{e}$.
@end tex
@ifnottex
@code{||e||^2 = e \bar@{e@}}
@end ifnottex
 The inverse of a Clifford expression is returned by the function

@example
    ex clifford_inverse(const ex & e);
@end example

which calculates it as 
@tex
$e^{-1} = \overline{e}/||e||^2$.
@end tex
@ifnottex
@math{e^@{-1@} = \bar@{e@}/||e||^2}
@end ifnottex
 If
@tex
$||e|| = 0$
@end tex
@ifnottex
@math{||e||=0}
@end ifnottex
then an exception is raised.

@cindex @code{remove_dirac_ONE()}
If a Clifford number happens to be a factor of
@code{dirac_ONE()} then we can convert it to a ``real'' (non-Clifford)
expression by the function

@example
    ex remove_dirac_ONE(const ex & e);
@end example

@cindex @code{canonicalize_clifford()}
The function @code{canonicalize_clifford()} works for a
generic Clifford algebra in a similar way as for Dirac gammas.

The next provided function is

@cindex @code{clifford_moebius_map()}
@example
    ex clifford_moebius_map(const ex & a, const ex & b, const ex & c,
                            const ex & d, const ex & v, const ex & G,
                            unsigned char rl = 0);
    ex clifford_moebius_map(const ex & M, const ex & v, const ex & G,
                            unsigned char rl = 0);
@end example 

It takes a list or vector @code{v} and makes the Moebius (conformal or
linear-fractional) transformation @samp{v -> (av+b)/(cv+d)} defined by
the matrix @samp{M = [[a, b], [c, d]]}. The parameter @code{G} defines
the metric of the surrounding (pseudo-)Euclidean space. This can be an
indexed object, tensormetric, matrix or a Clifford unit, in the later
case the optional parameter @code{rl} is ignored even if supplied.
Depending from the type of @code{v} the returned value of this function
is either a vector or a list holding vector's components.

@cindex @code{clifford_max_label()}
Finally the function

@example
char clifford_max_label(const ex & e, bool ignore_ONE = false);
@end example

can detect a presence of Clifford objects in the expression @code{e}: if
such objects are found it returns the maximal
@code{representation_label} of them, otherwise @code{-1}. The optional
parameter @code{ignore_ONE} indicates if @code{dirac_ONE} objects should
be ignored during the search.
 
LaTeX output for Clifford units looks like
@code{\clifford[1]@{e@}^@{@{\nu@}@}}, where @code{1} is the
@code{representation_label} and @code{\nu} is the index of the
corresponding unit. This provides a flexible typesetting with a suitable
definition of the @code{\clifford} command. For example, the definition
@example
    \newcommand@{\clifford@}[1][]@{@}
@end example
typesets all Clifford units identically, while the alternative definition
@example
    \newcommand@{\clifford@}[2][]@{\ifcase #1 #2\or \tilde@{#2@} \or \breve@{#2@} \fi@}
@end example
prints units with @code{representation_label=0} as 
@tex
$e$,
@end tex
@ifnottex
@code{e},
@end ifnottex
with @code{representation_label=1} as 
@tex
$\tilde{e}$
@end tex
@ifnottex
@code{\tilde@{e@}}
@end ifnottex
 and with @code{representation_label=2} as 
@tex
$\breve{e}$.
@end tex
@ifnottex
@code{\breve@{e@}}.
@end ifnottex

@cindex @code{color} (class)
@subsection Color algebra

@cindex @code{color_T()}
For computations in quantum chromodynamics, GiNaC implements the base elements
and structure constants of the su(3) Lie algebra (color algebra). The base
elements @math{T_a} are constructed by the function

@example
ex color_T(const ex & a, unsigned char rl = 0);
@end example

which takes two arguments: the index and a @dfn{representation label} in the
range 0 to 255 which is used to distinguish elements of different color
algebras. Objects with different labels commutate with each other. The
dimension of the index must be exactly 8 and it should be of class @code{idx},
not @code{varidx}.

@cindex @code{color_ONE()}
The unity element of a color algebra is constructed by

@example
ex color_ONE(unsigned char rl = 0);
@end example

@strong{Please notice:} You must always use @code{color_ONE()} when referring to
multiples of the unity element, even though it's customary to omit it.
E.g. instead of @code{color_T(a)*(color_T(b)*indexed(X,b)+1)} you have to
write @code{color_T(a)*(color_T(b)*indexed(X,b)+color_ONE())}. Otherwise,
GiNaC may produce incorrect results.

@cindex @code{color_d()}
@cindex @code{color_f()}
The functions

@example
ex color_d(const ex & a, const ex & b, const ex & c);
ex color_f(const ex & a, const ex & b, const ex & c);
@end example

create the symmetric and antisymmetric structure constants @math{d_abc} and
@math{f_abc} which satisfy @math{@{T_a, T_b@} = 1/3 delta_ab + d_abc T_c}
and @math{[T_a, T_b] = i f_abc T_c}.

These functions evaluate to their numerical values,
if you supply numeric indices to them. The index values should be in
the range from 1 to 8, not from 0 to 7. This departure from usual conventions
goes along better with the notations used in physical literature.

@cindex @code{color_h()}
There's an additional function

@example
ex color_h(const ex & a, const ex & b, const ex & c);
@end example

which returns the linear combination @samp{color_d(a, b, c)+I*color_f(a, b, c)}.

The function @code{simplify_indexed()} performs some simplifications on
expressions containing color objects:

@example
@{
    ...
    idx a(symbol("a"), 8), b(symbol("b"), 8), c(symbol("c"), 8),
        k(symbol("k"), 8), l(symbol("l"), 8);

    e = color_d(a, b, l) * color_f(a, b, k);
    cout << e.simplify_indexed() << endl;
     // -> 0

    e = color_d(a, b, l) * color_d(a, b, k);
    cout << e.simplify_indexed() << endl;
     // -> 5/3*delta.k.l

    e = color_f(l, a, b) * color_f(a, b, k);
    cout << e.simplify_indexed() << endl;
     // -> 3*delta.k.l

    e = color_h(a, b, c) * color_h(a, b, c);
    cout << e.simplify_indexed() << endl;
     // -> -32/3

    e = color_h(a, b, c) * color_T(b) * color_T(c);
    cout << e.simplify_indexed() << endl;
     // -> -2/3*T.a

    e = color_h(a, b, c) * color_T(a) * color_T(b) * color_T(c);
    cout << e.simplify_indexed() << endl;
     // -> -8/9*ONE

    e = color_T(k) * color_T(a) * color_T(b) * color_T(k);
    cout << e.simplify_indexed() << endl;
     // -> 1/4*delta.b.a*ONE-1/6*T.a*T.b
    ...
@end example

@cindex @code{color_trace()}
To calculate the trace of an expression containing color objects you use one
of the functions

@example
ex color_trace(const ex & e, const std::set<unsigned char> & rls);
ex color_trace(const ex & e, const lst & rll);
ex color_trace(const ex & e, unsigned char rl = 0);
@end example

These functions take the trace over all color @samp{T} objects in the
specified set @code{rls} or list @code{rll} of representation labels, or the
single label @code{rl}; @samp{T}s with other labels are left standing. For
example:

@example
    ...
    e = color_trace(4 * color_T(a) * color_T(b) * color_T(c));
    cout << e << endl;
     // -> -I*f.a.c.b+d.a.c.b
@}
@end example


@node Hash maps, Methods and functions, Non-commutative objects, Basic concepts
@c    node-name, next, previous, up
@section Hash Maps
@cindex hash maps
@cindex @code{exhashmap} (class)

For your convenience, GiNaC offers the container template @code{exhashmap<T>}
that can be used as a drop-in replacement for the STL
@code{std::map<ex, T, ex_is_less>}, using hash tables to provide faster,
typically constant-time, element look-up than @code{map<>}.

@code{exhashmap<>} supports all @code{map<>} members and operations, with the
following differences:

@itemize @bullet
@item
no @code{lower_bound()} and @code{upper_bound()} methods
@item
no reverse iterators, no @code{rbegin()}/@code{rend()}
@item 
no @code{operator<(exhashmap, exhashmap)}
@item
the comparison function object @code{key_compare} is hardcoded to
@code{ex_is_less}
@item
the constructor @code{exhashmap(size_t n)} allows specifying the minimum
initial hash table size (the actual table size after construction may be
larger than the specified value)
@item
the method @code{size_t bucket_count()} returns the current size of the hash
table
@item 
@code{insert()} and @code{erase()} operations invalidate all iterators
@end itemize


@node Methods and functions, Information about expressions, Hash maps, Top
@c    node-name, next, previous, up
@chapter Methods and functions
@cindex polynomial

In this chapter the most important algorithms provided by GiNaC will be
described.  Some of them are implemented as functions on expressions,
others are implemented as methods provided by expression objects.  If
they are methods, there exists a wrapper function around it, so you can
alternatively call it in a functional way as shown in the simple
example:

@example
    ...
    cout << "As method:   " << sin(1).evalf() << endl;
    cout << "As function: " << evalf(sin(1)) << endl;
    ...
@end example

@cindex @code{subs()}
The general rule is that wherever methods accept one or more parameters
(@var{arg1}, @var{arg2}, @dots{}) the order of arguments the function
wrapper accepts is the same but preceded by the object to act on
(@var{object}, @var{arg1}, @var{arg2}, @dots{}).  This approach is the
most natural one in an OO model but it may lead to confusion for MapleV
users because where they would type @code{A:=x+1; subs(x=2,A);} GiNaC
would require @code{A=x+1; subs(A,x==2);} (after proper declaration of
@code{A} and @code{x}).  On the other hand, since MapleV returns 3 on
@code{A:=x^2+3; coeff(A,x,0);} (GiNaC: @code{A=pow(x,2)+3;
coeff(A,x,0);}) it is clear that MapleV is not trying to be consistent
here.  Also, users of MuPAD will in most cases feel more comfortable
with GiNaC's convention.  All function wrappers are implemented
as simple inline functions which just call the corresponding method and
are only provided for users uncomfortable with OO who are dead set to
avoid method invocations.  Generally, nested function wrappers are much
harder to read than a sequence of methods and should therefore be
avoided if possible.  On the other hand, not everything in GiNaC is a
method on class @code{ex} and sometimes calling a function cannot be
avoided.

@menu
* Information about expressions::
* Numerical evaluation::
* Substituting expressions::
* Pattern matching and advanced substitutions::
* Applying a function on subexpressions::
* Visitors and tree traversal::
* Polynomial arithmetic::           Working with polynomials.
* Rational expressions::            Working with rational functions.
* Symbolic differentiation::
* Series expansion::                Taylor and Laurent expansion.
* Symmetrization::
* Built-in functions::              List of predefined mathematical functions.
* Multiple polylogarithms::
* Complex expressions::
* Solving linear systems of equations::
* Input/output::                    Input and output of expressions.
@end menu


@node Information about expressions, Numerical evaluation, Methods and functions, Methods and functions
@c    node-name, next, previous, up
@section Getting information about expressions

@subsection Checking expression types
@cindex @code{is_a<@dots{}>()}
@cindex @code{is_exactly_a<@dots{}>()}
@cindex @code{ex_to<@dots{}>()}
@cindex Converting @code{ex} to other classes
@cindex @code{info()}
@cindex @code{return_type()}
@cindex @code{return_type_tinfo()}

Sometimes it's useful to check whether a given expression is a plain number,
a sum, a polynomial with integer coefficients, or of some other specific type.
GiNaC provides a couple of functions for this:

@example
bool is_a<T>(const ex & e);
bool is_exactly_a<T>(const ex & e);
bool ex::info(unsigned flag);
unsigned ex::return_type() const;
return_type_t ex::return_type_tinfo() const;
@end example

When the test made by @code{is_a<T>()} returns true, it is safe to call
one of the functions @code{ex_to<T>()}, where @code{T} is one of the
class names (@xref{The class hierarchy}, for a list of all classes). For
example, assuming @code{e} is an @code{ex}:

@example
@{
    @dots{}
    if (is_a<numeric>(e))
        numeric n = ex_to<numeric>(e);
    @dots{}
@}
@end example

@code{is_a<T>(e)} allows you to check whether the top-level object of
an expression @samp{e} is an instance of the GiNaC class @samp{T}
(@xref{The class hierarchy}, for a list of all classes). This is most useful,
e.g., for checking whether an expression is a number, a sum, or a product:

@example
@{
    symbol x("x");
    ex e1 = 42;
    ex e2 = 4*x - 3;
    is_a<numeric>(e1);  // true
    is_a<numeric>(e2);  // false
    is_a<add>(e1);      // false
    is_a<add>(e2);      // true
    is_a<mul>(e1);      // false
    is_a<mul>(e2);      // false
@}
@end example

In contrast, @code{is_exactly_a<T>(e)} allows you to check whether the
top-level object of an expression @samp{e} is an instance of the GiNaC
class @samp{T}, not including parent classes.

The @code{info()} method is used for checking certain attributes of
expressions. The possible values for the @code{flag} argument are defined
in @file{ginac/flags.h}, the most important being explained in the following
table:

@cartouche
@multitable @columnfractions .30 .70
@item @strong{Flag} @tab @strong{Returns true if the object is@dots{}}
@item @code{numeric}
@tab @dots{}a number (same as @code{is_a<numeric>(...)})
@item @code{real}
@tab @dots{}a real number, symbol or constant (i.e. is not complex)
@item @code{rational}
@tab @dots{}an exact rational number (integers are rational, too)
@item @code{integer}
@tab @dots{}a (non-complex) integer
@item @code{crational}
@tab @dots{}an exact (complex) rational number (such as @math{2/3+7/2*I})
@item @code{cinteger}
@tab @dots{}a (complex) integer (such as @math{2-3*I})
@item @code{positive}
@tab @dots{}not complex and greater than 0
@item @code{negative}
@tab @dots{}not complex and less than 0
@item @code{nonnegative}
@tab @dots{}not complex and greater than or equal to 0
@item @code{posint}
@tab @dots{}an integer greater than 0
@item @code{negint}
@tab @dots{}an integer less than 0
@item @code{nonnegint}
@tab @dots{}an integer greater than or equal to 0
@item @code{even}
@tab @dots{}an even integer
@item @code{odd}
@tab @dots{}an odd integer
@item @code{prime}
@tab @dots{}a prime integer (probabilistic primality test)
@item @code{relation}
@tab @dots{}a relation (same as @code{is_a<relational>(...)})
@item @code{relation_equal}
@tab @dots{}a @code{==} relation
@item @code{relation_not_equal}
@tab @dots{}a @code{!=} relation
@item @code{relation_less}
@tab @dots{}a @code{<} relation
@item @code{relation_less_or_equal}
@tab @dots{}a @code{<=} relation
@item @code{relation_greater}
@tab @dots{}a @code{>} relation
@item @code{relation_greater_or_equal}
@tab @dots{}a @code{>=} relation
@item @code{symbol}
@tab @dots{}a symbol (same as @code{is_a<symbol>(...)})
@item @code{list}
@tab @dots{}a list (same as @code{is_a<lst>(...)})
@item @code{polynomial}
@tab @dots{}a polynomial (i.e. only consists of sums and products of numbers and symbols with positive integer powers)
@item @code{integer_polynomial}
@tab @dots{}a polynomial with (non-complex) integer coefficients
@item @code{cinteger_polynomial}
@tab @dots{}a polynomial with (possibly complex) integer coefficients (such as @math{2-3*I})
@item @code{rational_polynomial}
@tab @dots{}a polynomial with (non-complex) rational coefficients
@item @code{crational_polynomial}
@tab @dots{}a polynomial with (possibly complex) rational coefficients (such as @math{2/3+7/2*I})
@item @code{rational_function}
@tab @dots{}a rational function (@math{x+y}, @math{z/(x+y)})
@item @code{algebraic}
@tab @dots{}an algebraic object (@math{sqrt(2)}, @math{sqrt(x)-1})
@end multitable
@end cartouche

To determine whether an expression is commutative or non-commutative and if
so, with which other expressions it would commutate, you use the methods
@code{return_type()} and @code{return_type_tinfo()}. @xref{Non-commutative objects},
for an explanation of these.


@subsection Accessing subexpressions
@cindex container

Many GiNaC classes, like @code{add}, @code{mul}, @code{lst}, and
@code{function}, act as containers for subexpressions. For example, the
subexpressions of a sum (an @code{add} object) are the individual terms,
and the subexpressions of a @code{function} are the function's arguments.

@cindex @code{nops()}
@cindex @code{op()}
GiNaC provides several ways of accessing subexpressions. The first way is to
use the two methods

@example
size_t ex::nops();
ex ex::op(size_t i);
@end example

@code{nops()} determines the number of subexpressions (operands) contained
in the expression, while @code{op(i)} returns the @code{i}-th
(0..@code{nops()-1}) subexpression. In the case of a @code{power} object,
@code{op(0)} will return the basis and @code{op(1)} the exponent. For
@code{indexed} objects, @code{op(0)} is the base expression and @code{op(i)},
@math{i>0} are the indices.

@cindex iterators
@cindex @code{const_iterator}
The second way to access subexpressions is via the STL-style random-access
iterator class @code{const_iterator} and the methods

@example
const_iterator ex::begin();
const_iterator ex::end();
@end example

@code{begin()} returns an iterator referring to the first subexpression;
@code{end()} returns an iterator which is one-past the last subexpression.
If the expression has no subexpressions, then @code{begin() == end()}. These
iterators can also be used in conjunction with non-modifying STL algorithms.

Here is an example that (non-recursively) prints the subexpressions of a
given expression in three different ways:

@example
@{
    ex e = ...

    // with nops()/op()
    for (size_t i = 0; i != e.nops(); ++i)
        cout << e.op(i) << endl;

    // with iterators
    for (const_iterator i = e.begin(); i != e.end(); ++i)
        cout << *i << endl;

    // with iterators and STL copy()
    std::copy(e.begin(), e.end(), std::ostream_iterator<ex>(cout, "\n"));
@}
@end example

@cindex @code{const_preorder_iterator}
@cindex @code{const_postorder_iterator}
@code{op()}/@code{nops()} and @code{const_iterator} only access an
expression's immediate children. GiNaC provides two additional iterator
classes, @code{const_preorder_iterator} and @code{const_postorder_iterator},
that iterate over all objects in an expression tree, in preorder or postorder,
respectively. They are STL-style forward iterators, and are created with the
methods

@example
const_preorder_iterator ex::preorder_begin();
const_preorder_iterator ex::preorder_end();
const_postorder_iterator ex::postorder_begin();
const_postorder_iterator ex::postorder_end();
@end example

The following example illustrates the differences between
@code{const_iterator}, @code{const_preorder_iterator}, and
@code{const_postorder_iterator}:

@example
@{
    symbol A("A"), B("B"), C("C");
    ex e = lst(lst(A, B), C);

    std::copy(e.begin(), e.end(),
              std::ostream_iterator<ex>(cout, "\n"));
    // @{A,B@}
    // C

    std::copy(e.preorder_begin(), e.preorder_end(),
              std::ostream_iterator<ex>(cout, "\n"));
    // @{@{A,B@},C@}
    // @{A,B@}
    // A
    // B
    // C

    std::copy(e.postorder_begin(), e.postorder_end(),
              std::ostream_iterator<ex>(cout, "\n"));
    // A
    // B
    // @{A,B@}
    // C
    // @{@{A,B@},C@}
@}
@end example

@cindex @code{relational} (class)
Finally, the left-hand side and right-hand side expressions of objects of
class @code{relational} (and only of these) can also be accessed with the
methods

@example
ex ex::lhs();
ex ex::rhs();
@end example


@subsection Comparing expressions
@cindex @code{is_equal()}
@cindex @code{is_zero()}

Expressions can be compared with the usual C++ relational operators like
@code{==}, @code{>}, and @code{<} but if the expressions contain symbols,
the result is usually not determinable and the result will be @code{false},
except in the case of the @code{!=} operator. You should also be aware that
GiNaC will only do the most trivial test for equality (subtracting both
expressions), so something like @code{(pow(x,2)+x)/x==x+1} will return
@code{false}.

Actually, if you construct an expression like @code{a == b}, this will be
represented by an object of the @code{relational} class (@pxref{Relations})
which is not evaluated until (explicitly or implicitly) cast to a @code{bool}.

There are also two methods

@example
bool ex::is_equal(const ex & other);
bool ex::is_zero();
@end example

for checking whether one expression is equal to another, or equal to zero,
respectively. See also the method @code{ex::is_zero_matrix()}, 
@pxref{Matrices}. 


@subsection Ordering expressions
@cindex @code{ex_is_less} (class)
@cindex @code{ex_is_equal} (class)
@cindex @code{compare()}

Sometimes it is necessary to establish a mathematically well-defined ordering
on a set of arbitrary expressions, for example to use expressions as keys
in a @code{std::map<>} container, or to bring a vector of expressions into
a canonical order (which is done internally by GiNaC for sums and products).

The operators @code{<}, @code{>} etc. described in the last section cannot
be used for this, as they don't implement an ordering relation in the
mathematical sense. In particular, they are not guaranteed to be
antisymmetric: if @samp{a} and @samp{b} are different expressions, and
@code{a < b} yields @code{false}, then @code{b < a} doesn't necessarily
yield @code{true}.

By default, STL classes and algorithms use the @code{<} and @code{==}
operators to compare objects, which are unsuitable for expressions, but GiNaC
provides two functors that can be supplied as proper binary comparison
predicates to the STL:

@example
class ex_is_less : public std::binary_function<ex, ex, bool> @{
public:
    bool operator()(const ex &lh, const ex &rh) const;
@};

class ex_is_equal : public std::binary_function<ex, ex, bool> @{
public:
    bool operator()(const ex &lh, const ex &rh) const;
@};
@end example

For example, to define a @code{map} that maps expressions to strings you
have to use

@example
std::map<ex, std::string, ex_is_less> myMap;
@end example

Omitting the @code{ex_is_less} template parameter will introduce spurious
bugs because the map operates improperly.

Other examples for the use of the functors:

@example
std::vector<ex> v;
// fill vector
...

// sort vector
std::sort(v.begin(), v.end(), ex_is_less());

// count the number of expressions equal to '1'
unsigned num_ones = std::count_if(v.begin(), v.end(),
                                  std::bind2nd(ex_is_equal(), 1));
@end example

The implementation of @code{ex_is_less} uses the member function

@example
int ex::compare(const ex & other) const;
@end example

which returns @math{0} if @code{*this} and @code{other} are equal, @math{-1}
if @code{*this} sorts before @code{other}, and @math{1} if @code{*this} sorts
after @code{other}.


@node Numerical evaluation, Substituting expressions, Information about expressions, Methods and functions
@c    node-name, next, previous, up
@section Numerical evaluation
@cindex @code{evalf()}

GiNaC keeps algebraic expressions, numbers and constants in their exact form.
To evaluate them using floating-point arithmetic you need to call

@example
ex ex::evalf(int level = 0) const;
@end example

@cindex @code{Digits}
The accuracy of the evaluation is controlled by the global object @code{Digits}
which can be assigned an integer value. The default value of @code{Digits}
is 17. @xref{Numbers}, for more information and examples.

To evaluate an expression to a @code{double} floating-point number you can
call @code{evalf()} followed by @code{numeric::to_double()}, like this:

@example
@{
    // Approximate sin(x/Pi)
    symbol x("x");
    ex e = series(sin(x/Pi), x == 0, 6);

    // Evaluate numerically at x=0.1
    ex f = evalf(e.subs(x == 0.1));

    // ex_to<numeric> is an unsafe cast, so check the type first
    if (is_a<numeric>(f)) @{
        double d = ex_to<numeric>(f).to_double();
        cout << d << endl;
         // -> 0.0318256
    @} else
        // error
@}
@end example


@node Substituting expressions, Pattern matching and advanced substitutions, Numerical evaluation, Methods and functions
@c    node-name, next, previous, up
@section Substituting expressions
@cindex @code{subs()}

Algebraic objects inside expressions can be replaced with arbitrary
expressions via the @code{.subs()} method:

@example
ex ex::subs(const ex & e, unsigned options = 0);
ex ex::subs(const exmap & m, unsigned options = 0);
ex ex::subs(const lst & syms, const lst & repls, unsigned options = 0);
@end example

In the first form, @code{subs()} accepts a relational of the form
@samp{object == expression} or a @code{lst} of such relationals:

@example
@{
    symbol x("x"), y("y");

    ex e1 = 2*x^2-4*x+3;
    cout << "e1(7) = " << e1.subs(x == 7) << endl;
     // -> 73

    ex e2 = x*y + x;
    cout << "e2(-2, 4) = " << e2.subs(lst(x == -2, y == 4)) << endl;
     // -> -10
@}
@end example

If you specify multiple substitutions, they are performed in parallel, so e.g.
@code{subs(lst(x == y, y == x))} exchanges @samp{x} and @samp{y}.

The second form of @code{subs()} takes an @code{exmap} object which is a
pair associative container that maps expressions to expressions (currently
implemented as a @code{std::map}). This is the most efficient one of the
three @code{subs()} forms and should be used when the number of objects to
be substituted is large or unknown.

Using this form, the second example from above would look like this:

@example
@{
    symbol x("x"), y("y");
    ex e2 = x*y + x;

    exmap m;
    m[x] = -2;
    m[y] = 4;
    cout << "e2(-2, 4) = " << e2.subs(m) << endl;
@}
@end example

The third form of @code{subs()} takes two lists, one for the objects to be
replaced and one for the expressions to be substituted (both lists must
contain the same number of elements). Using this form, you would write

@example
@{
    symbol x("x"), y("y");
    ex e2 = x*y + x;

    cout << "e2(-2, 4) = " << e2.subs(lst(x, y), lst(-2, 4)) << endl;
@}
@end example

The optional last argument to @code{subs()} is a combination of
@code{subs_options} flags. There are three options available:
@code{subs_options::no_pattern} disables pattern matching, which makes
large @code{subs()} operations significantly faster if you are not using
patterns. The second option, @code{subs_options::algebraic} enables
algebraic substitutions in products and powers.
@xref{Pattern matching and advanced substitutions}, for more information
about patterns and algebraic substitutions. The third option,
@code{subs_options::no_index_renaming} disables the feature that dummy
indices are renamed if the substitution could give a result in which a
dummy index occurs more than two times. This is sometimes necessary if
you want to use @code{subs()} to rename your dummy indices.

@code{subs()} performs syntactic substitution of any complete algebraic
object; it does not try to match sub-expressions as is demonstrated by the
following example:

@example
@{
    symbol x("x"), y("y"), z("z");

    ex e1 = pow(x+y, 2);
    cout << e1.subs(x+y == 4) << endl;
     // -> 16

    ex e2 = sin(x)*sin(y)*cos(x);
    cout << e2.subs(sin(x) == cos(x)) << endl;
     // -> cos(x)^2*sin(y)

    ex e3 = x+y+z;
    cout << e3.subs(x+y == 4) << endl;
     // -> x+y+z
     // (and not 4+z as one might expect)
@}
@end example

A more powerful form of substitution using wildcards is described in the
next section.


@node Pattern matching and advanced substitutions, Applying a function on subexpressions, Substituting expressions, Methods and functions
@c    node-name, next, previous, up
@section Pattern matching and advanced substitutions
@cindex @code{wildcard} (class)
@cindex Pattern matching

GiNaC allows the use of patterns for checking whether an expression is of a
certain form or contains subexpressions of a certain form, and for
substituting expressions in a more general way.

A @dfn{pattern} is an algebraic expression that optionally contains wildcards.
A @dfn{wildcard} is a special kind of object (of class @code{wildcard}) that
represents an arbitrary expression. Every wildcard has a @dfn{label} which is
an unsigned integer number to allow having multiple different wildcards in a
pattern. Wildcards are printed as @samp{$label} (this is also the way they
are specified in @command{ginsh}). In C++ code, wildcard objects are created
with the call

@example
ex wild(unsigned label = 0);
@end example

which is simply a wrapper for the @code{wildcard()} constructor with a shorter
name.

Some examples for patterns:

@multitable @columnfractions .5 .5
@item @strong{Constructed as} @tab @strong{Output as}
@item @code{wild()} @tab @samp{$0}
@item @code{pow(x,wild())} @tab @samp{x^$0}
@item @code{atan2(wild(1),wild(2))} @tab @samp{atan2($1,$2)}
@item @code{indexed(A,idx(wild(),3))} @tab @samp{A.$0}
@end multitable

Notes:

@itemize @bullet
@item Wildcards behave like symbols and are subject to the same algebraic
  rules. E.g., @samp{$0+2*$0} is automatically transformed to @samp{3*$0}.
@item As shown in the last example, to use wildcards for indices you have to
  use them as the value of an @code{idx} object. This is because indices must
  always be of class @code{idx} (or a subclass).
@item Wildcards only represent expressions or subexpressions. It is not
  possible to use them as placeholders for other properties like index
  dimension or variance, representation labels, symmetry of indexed objects
  etc.
@item Because wildcards are commutative, it is not possible to use wildcards
  as part of noncommutative products.
@item A pattern does not have to contain wildcards. @samp{x} and @samp{x+y}
  are also valid patterns.
@end itemize

@subsection Matching expressions
@cindex @code{match()}
The most basic application of patterns is to check whether an expression
matches a given pattern. This is done by the function

@example
bool ex::match(const ex & pattern);
bool ex::match(const ex & pattern, exmap& repls);
@end example

This function returns @code{true} when the expression matches the pattern
and @code{false} if it doesn't. If used in the second form, the actual
subexpressions matched by the wildcards get returned in the associative
array @code{repls} with @samp{wildcard} as a key. If @code{match()}
returns false,  @code{repls} remains unmodified.

The matching algorithm works as follows:

@itemize
@item A single wildcard matches any expression. If one wildcard appears
  multiple times in a pattern, it must match the same expression in all
  places (e.g. @samp{$0} matches anything, and @samp{$0*($0+1)} matches
  @samp{x*(x+1)} but not @samp{x*(y+1)}).
@item If the expression is not of the same class as the pattern, the match
  fails (i.e. a sum only matches a sum, a function only matches a function,
  etc.).
@item If the pattern is a function, it only matches the same function
  (i.e. @samp{sin($0)} matches @samp{sin(x)} but doesn't match @samp{exp(x)}).
@item Except for sums and products, the match fails if the number of
  subexpressions (@code{nops()}) is not equal to the number of subexpressions
  of the pattern.
@item If there are no subexpressions, the expressions and the pattern must
  be equal (in the sense of @code{is_equal()}).
@item Except for sums and products, each subexpression (@code{op()}) must
  match the corresponding subexpression of the pattern.
@end itemize

Sums (@code{add}) and products (@code{mul}) are treated in a special way to
account for their commutativity and associativity:

@itemize
@item If the pattern contains a term or factor that is a single wildcard,
  this one is used as the @dfn{global wildcard}. If there is more than one
  such wildcard, one of them is chosen as the global wildcard in a random
  way.
@item Every term/factor of the pattern, except the global wildcard, is
  matched against every term of the expression in sequence. If no match is
  found, the whole match fails. Terms that did match are not considered in
  further matches.
@item If there are no unmatched terms left, the match succeeds. Otherwise
  the match fails unless there is a global wildcard in the pattern, in
  which case this wildcard matches the remaining terms.
@end itemize

In general, having more than one single wildcard as a term of a sum or a
factor of a product (such as @samp{a+$0+$1}) will lead to unpredictable or
ambiguous results.

Here are some examples in @command{ginsh} to demonstrate how it works (the
@code{match()} function in @command{ginsh} returns @samp{FAIL} if the
match fails, and the list of wildcard replacements otherwise):

@example
> match((x+y)^a,(x+y)^a);
@{@}
> match((x+y)^a,(x+y)^b);
FAIL
> match((x+y)^a,$1^$2);
@{$1==x+y,$2==a@}
> match((x+y)^a,$1^$1);
FAIL
> match((x+y)^(x+y),$1^$1);
@{$1==x+y@}
> match((x+y)^(x+y),$1^$2);
@{$1==x+y,$2==x+y@}
> match((a+b)*(a+c),($1+b)*($1+c));
@{$1==a@}
> match((a+b)*(a+c),(a+$1)*(a+$2));
@{$1==b,$2==c@}
  (Unpredictable. The result might also be [$1==c,$2==b].)
> match((a+b)*(a+c),($1+$2)*($1+$3));
  (The result is undefined. Due to the sequential nature of the algorithm
   and the re-ordering of terms in GiNaC, the match for the first factor
   may be @{$1==a,$2==b@} in which case the match for the second factor
   succeeds, or it may be @{$1==b,$2==a@} which causes the second match to
   fail.)
> match(a*(x+y)+a*z+b,a*$1+$2);
  (This is also ambiguous and may return either @{$1==z,$2==a*(x+y)+b@} or
   @{$1=x+y,$2=a*z+b@}.)
> match(a+b+c+d+e+f,c);
FAIL
> match(a+b+c+d+e+f,c+$0);
@{$0==a+e+b+f+d@}
> match(a+b+c+d+e+f,c+e+$0);
@{$0==a+b+f+d@}
> match(a+b,a+b+$0);
@{$0==0@}
> match(a*b^2,a^$1*b^$2);
FAIL
  (The matching is syntactic, not algebraic, and "a" doesn't match "a^$1"
   even though a==a^1.)
> match(x*atan2(x,x^2),$0*atan2($0,$0^2));
@{$0==x@}
> match(atan2(y,x^2),atan2(y,$0));
@{$0==x^2@}
@end example

@subsection Matching parts of expressions
@cindex @code{has()}
A more general way to look for patterns in expressions is provided by the
member function

@example
bool ex::has(const ex & pattern);
@end example

This function checks whether a pattern is matched by an expression itself or
by any of its subexpressions.

Again some examples in @command{ginsh} for illustration (in @command{ginsh},
@code{has()} returns @samp{1} for @code{true} and @samp{0} for @code{false}):

@example
> has(x*sin(x+y+2*a),y);
1
> has(x*sin(x+y+2*a),x+y);
0
  (This is because in GiNaC, "x+y" is not a subexpression of "x+y+2*a" (which
   has the subexpressions "x", "y" and "2*a".)
> has(x*sin(x+y+2*a),x+y+$1);
1
  (But this is possible.)
> has(x*sin(2*(x+y)+2*a),x+y);
0
  (This fails because "2*(x+y)" automatically gets converted to "2*x+2*y" of
   which "x+y" is not a subexpression.)
> has(x+1,x^$1);
0
  (Although x^1==x and x^0==1, neither "x" nor "1" are actually of the form
   "x^something".)
> has(4*x^2-x+3,$1*x);
1
> has(4*x^2+x+3,$1*x);
0
  (Another possible pitfall. The first expression matches because the term
   "-x" has the form "(-1)*x" in GiNaC. To check whether a polynomial
   contains a linear term you should use the coeff() function instead.)
@end example

@cindex @code{find()}
The method

@example
bool ex::find(const ex & pattern, exset& found);
@end example

works a bit like @code{has()} but it doesn't stop upon finding the first
match. Instead, it appends all found matches to the specified list. If there
are multiple occurrences of the same expression, it is entered only once to
the list. @code{find()} returns false if no matches were found (in
@command{ginsh}, it returns an empty list):

@example
> find(1+x+x^2+x^3,x);
@{x@}
> find(1+x+x^2+x^3,y);
@{@}
> find(1+x+x^2+x^3,x^$1);
@{x^3,x^2@}
  (Note the absence of "x".)
> expand((sin(x)+sin(y))*(a+b));
sin(y)*a+sin(x)*b+sin(x)*a+sin(y)*b
> find(%,sin($1));
@{sin(y),sin(x)@}
@end example

@subsection Substituting expressions
@cindex @code{subs()}
Probably the most useful application of patterns is to use them for
substituting expressions with the @code{subs()} method. Wildcards can be
used in the search patterns as well as in the replacement expressions, where
they get replaced by the expressions matched by them. @code{subs()} doesn't
know anything about algebra; it performs purely syntactic substitutions.

Some examples:

@example
> subs(a^2+b^2+(x+y)^2,$1^2==$1^3);
b^3+a^3+(x+y)^3
> subs(a^4+b^4+(x+y)^4,$1^2==$1^3);
b^4+a^4+(x+y)^4
> subs((a+b+c)^2,a+b==x);
(a+b+c)^2
> subs((a+b+c)^2,a+b+$1==x+$1);
(x+c)^2
> subs(a+2*b,a+b==x);
a+2*b
> subs(4*x^3-2*x^2+5*x-1,x==a);
-1+5*a-2*a^2+4*a^3
> subs(4*x^3-2*x^2+5*x-1,x^$0==a^$0);
-1+5*x-2*a^2+4*a^3
> subs(sin(1+sin(x)),sin($1)==cos($1));
cos(1+cos(x))
> expand(subs(a*sin(x+y)^2+a*cos(x+y)^2+b,cos($1)^2==1-sin($1)^2));
a+b
@end example

The last example would be written in C++ in this way:

@example
@{
    symbol a("a"), b("b"), x("x"), y("y");
    e = a*pow(sin(x+y), 2) + a*pow(cos(x+y), 2) + b;
    e = e.subs(pow(cos(wild()), 2) == 1-pow(sin(wild()), 2));
    cout << e.expand() << endl;
     // -> a+b
@}
@end example

@subsection The option algebraic
Both @code{has()} and @code{subs()} take an optional argument to pass them
extra options. This section describes what happens if you give the former
the option @code{has_options::algebraic} or the latter
@code{subs_options::algebraic}. In that case the matching condition for
powers and multiplications is changed in such a way that they become
more intuitive. Intuition says that @code{x*y} is a part of @code{x*y*z}.
If you use these options you will find that
@code{(x*y*z).has(x*y, has_options::algebraic)} indeed returns true.
Besides matching some of the factors of a product also powers match as
often as is possible without getting negative exponents. For example
@code{(x^5*y^2*z).subs(x^2*y^2==c, subs_options::algebraic)} will return
@code{x*c^2*z}. This also works with negative powers:
@code{(x^(-3)*y^(-2)*z).subs(1/(x*y)==c, subs_options::algebraic)} will
return @code{x^(-1)*c^2*z}. 

@strong{Please notice:} this only works for multiplications
and not for locating @code{x+y} within @code{x+y+z}.


@node Applying a function on subexpressions, Visitors and tree traversal, Pattern matching and advanced substitutions, Methods and functions
@c    node-name, next, previous, up
@section Applying a function on subexpressions
@cindex tree traversal
@cindex @code{map()}

Sometimes you may want to perform an operation on specific parts of an
expression while leaving the general structure of it intact. An example
of this would be a matrix trace operation: the trace of a sum is the sum
of the traces of the individual terms. That is, the trace should @dfn{map}
on the sum, by applying itself to each of the sum's operands. It is possible
to do this manually which usually results in code like this:

@example
ex calc_trace(ex e)
@{
    if (is_a<matrix>(e))
        return ex_to<matrix>(e).trace();
    else if (is_a<add>(e)) @{
        ex sum = 0;
        for (size_t i=0; i<e.nops(); i++)
            sum += calc_trace(e.op(i));
        return sum;
    @} else if (is_a<mul>)(e)) @{
        ...
    @} else @{
        ...
    @}
@}
@end example

This is, however, slightly inefficient (if the sum is very large it can take
a long time to add the terms one-by-one), and its applicability is limited to
a rather small class of expressions. If @code{calc_trace()} is called with
a relation or a list as its argument, you will probably want the trace to
be taken on both sides of the relation or of all elements of the list.

GiNaC offers the @code{map()} method to aid in the implementation of such
operations:

@example
ex ex::map(map_function & f) const;
ex ex::map(ex (*f)(const ex & e)) const;
@end example

In the first (preferred) form, @code{map()} takes a function object that
is subclassed from the @code{map_function} class. In the second form, it
takes a pointer to a function that accepts and returns an expression.
@code{map()} constructs a new expression of the same type, applying the
specified function on all subexpressions (in the sense of @code{op()}),
non-recursively.

The use of a function object makes it possible to supply more arguments to
the function that is being mapped, or to keep local state information.
The @code{map_function} class declares a virtual function call operator
that you can overload. Here is a sample implementation of @code{calc_trace()}
that uses @code{map()} in a recursive fashion:

@example
struct calc_trace : public map_function @{
    ex operator()(const ex &e)
    @{
        if (is_a<matrix>(e))
            return ex_to<matrix>(e).trace();
        else if (is_a<mul>(e)) @{
            ...
        @} else
            return e.map(*this);
    @}
@};
@end example

This function object could then be used like this:

@example
@{
    ex M = ... // expression with matrices
    calc_trace do_trace;
    ex tr = do_trace(M);
@}
@end example

Here is another example for you to meditate over.  It removes quadratic
terms in a variable from an expanded polynomial:

@example
struct map_rem_quad : public map_function @{
    ex var;
    map_rem_quad(const ex & var_) : var(var_) @{@}

    ex operator()(const ex & e)
    @{
        if (is_a<add>(e) || is_a<mul>(e))
     	    return e.map(*this);
        else if (is_a<power>(e) && 
                 e.op(0).is_equal(var) && e.op(1).info(info_flags::even))
            return 0;
        else
            return e;
    @}
@};

...

@{
    symbol x("x"), y("y");

    ex e;
    for (int i=0; i<8; i++)
        e += pow(x, i) * pow(y, 8-i) * (i+1);
    cout << e << endl;
     // -> 4*y^5*x^3+5*y^4*x^4+8*y*x^7+7*y^2*x^6+2*y^7*x+6*y^3*x^5+3*y^6*x^2+y^8

    map_rem_quad rem_quad(x);
    cout << rem_quad(e) << endl;
     // -> 4*y^5*x^3+8*y*x^7+2*y^7*x+6*y^3*x^5+y^8
@}
@end example

@command{ginsh} offers a slightly different implementation of @code{map()}
that allows applying algebraic functions to operands. The second argument
to @code{map()} is an expression containing the wildcard @samp{$0} which
acts as the placeholder for the operands:

@example
> map(a*b,sin($0));
sin(a)*sin(b)
> map(a+2*b,sin($0));
sin(a)+sin(2*b)
> map(@{a,b,c@},$0^2+$0);
@{a^2+a,b^2+b,c^2+c@}
@end example

Note that it is only possible to use algebraic functions in the second
argument. You can not use functions like @samp{diff()}, @samp{op()},
@samp{subs()} etc. because these are evaluated immediately:

@example
> map(@{a,b,c@},diff($0,a));
@{0,0,0@}
  This is because "diff($0,a)" evaluates to "0", so the command is equivalent
  to "map(@{a,b,c@},0)".
@end example


@node Visitors and tree traversal, Polynomial arithmetic, Applying a function on subexpressions, Methods and functions
@c    node-name, next, previous, up
@section Visitors and tree traversal
@cindex tree traversal
@cindex @code{visitor} (class)
@cindex @code{accept()}
@cindex @code{visit()}
@cindex @code{traverse()}
@cindex @code{traverse_preorder()}
@cindex @code{traverse_postorder()}

Suppose that you need a function that returns a list of all indices appearing
in an arbitrary expression. The indices can have any dimension, and for
indices with variance you always want the covariant version returned.

You can't use @code{get_free_indices()} because you also want to include
dummy indices in the list, and you can't use @code{find()} as it needs
specific index dimensions (and it would require two passes: one for indices
with variance, one for plain ones).

The obvious solution to this problem is a tree traversal with a type switch,
such as the following:

@example
void gather_indices_helper(const ex & e, lst & l)
@{
    if (is_a<varidx>(e)) @{
        const varidx & vi = ex_to<varidx>(e);
        l.append(vi.is_covariant() ? vi : vi.toggle_variance());
    @} else if (is_a<idx>(e)) @{
        l.append(e);
    @} else @{
        size_t n = e.nops();
        for (size_t i = 0; i < n; ++i)
            gather_indices_helper(e.op(i), l);
    @}
@}

lst gather_indices(const ex & e)
@{
    lst l;
    gather_indices_helper(e, l);
    l.sort();
    l.unique();
    return l;
@}
@end example

This works fine but fans of object-oriented programming will feel
uncomfortable with the type switch. One reason is that there is a possibility
for subtle bugs regarding derived classes. If we had, for example, written

@example
    if (is_a<idx>(e)) @{
      ...
    @} else if (is_a<varidx>(e)) @{
      ...
@end example

in @code{gather_indices_helper}, the code wouldn't have worked because the
first line "absorbs" all classes derived from @code{idx}, including
@code{varidx}, so the special case for @code{varidx} would never have been
executed.

Also, for a large number of classes, a type switch like the above can get
unwieldy and inefficient (it's a linear search, after all).
@code{gather_indices_helper} only checks for two classes, but if you had to
write a function that required a different implementation for nearly
every GiNaC class, the result would be very hard to maintain and extend.

The cleanest approach to the problem would be to add a new virtual function
to GiNaC's class hierarchy. In our example, there would be specializations
for @code{idx} and @code{varidx} while the default implementation in
@code{basic} performed the tree traversal. Unfortunately, in C++ it's
impossible to add virtual member functions to existing classes without
changing their source and recompiling everything. GiNaC comes with source,
so you could actually do this, but for a small algorithm like the one
presented this would be impractical.

One solution to this dilemma is the @dfn{Visitor} design pattern,
which is implemented in GiNaC (actually, Robert Martin's Acyclic Visitor
variation, described in detail in
@uref{http://objectmentor.com/publications/acv.pdf}). Instead of adding
virtual functions to the class hierarchy to implement operations, GiNaC
provides a single "bouncing" method @code{accept()} that takes an instance
of a special @code{visitor} class and redirects execution to the one
@code{visit()} virtual function of the visitor that matches the type of
object that @code{accept()} was being invoked on.

Visitors in GiNaC must derive from the global @code{visitor} class as well
as from the class @code{T::visitor} of each class @code{T} they want to
visit, and implement the member functions @code{void visit(const T &)} for
each class.

A call of

@example
void ex::accept(visitor & v) const;
@end example

will then dispatch to the correct @code{visit()} member function of the
specified visitor @code{v} for the type of GiNaC object at the root of the
expression tree (e.g. a @code{symbol}, an @code{idx} or a @code{mul}).

Here is an example of a visitor:

@example
class my_visitor
 : public visitor,          // this is required
   public add::visitor,     // visit add objects
   public numeric::visitor, // visit numeric objects
   public basic::visitor    // visit basic objects
@{
    void visit(const add & x)
    @{ cout << "called with an add object" << endl; @}

    void visit(const numeric & x)
    @{ cout << "called with a numeric object" << endl; @}

    void visit(const basic & x)
    @{ cout << "called with a basic object" << endl; @}
@};
@end example

which can be used as follows:

@example
...
    symbol x("x");
    ex e1 = 42;
    ex e2 = 4*x-3;
    ex e3 = 8*x;

    my_visitor v;
    e1.accept(v);
     // prints "called with a numeric object"
    e2.accept(v);
     // prints "called with an add object"
    e3.accept(v);
     // prints "called with a basic object"
...
@end example

The @code{visit(const basic &)} method gets called for all objects that are
not @code{numeric} or @code{add} and acts as an (optional) default.

From a conceptual point of view, the @code{visit()} methods of the visitor
behave like a newly added virtual function of the visited hierarchy.
In addition, visitors can store state in member variables, and they can
be extended by deriving a new visitor from an existing one, thus building
hierarchies of visitors.

We can now rewrite our index example from above with a visitor:

@example
class gather_indices_visitor
 : public visitor, public idx::visitor, public varidx::visitor
@{
    lst l;

    void visit(const idx & i)
    @{
        l.append(i);
    @}

    void visit(const varidx & vi)
    @{
        l.append(vi.is_covariant() ? vi : vi.toggle_variance());
    @}

public:
    const lst & get_result() // utility function
    @{
        l.sort();
        l.unique();
        return l;
    @}
@};
@end example

What's missing is the tree traversal. We could implement it in
@code{visit(const basic &)}, but GiNaC has predefined methods for this:

@example
void ex::traverse_preorder(visitor & v) const;
void ex::traverse_postorder(visitor & v) const;
void ex::traverse(visitor & v) const;
@end example

@code{traverse_preorder()} visits a node @emph{before} visiting its
subexpressions, while @code{traverse_postorder()} visits a node @emph{after}
visiting its subexpressions. @code{traverse()} is a synonym for
@code{traverse_preorder()}.

Here is a new implementation of @code{gather_indices()} that uses the visitor
and @code{traverse()}:

@example
lst gather_indices(const ex & e)
@{
    gather_indices_visitor v;
    e.traverse(v);
    return v.get_result();
@}
@end example

Alternatively, you could use pre- or postorder iterators for the tree
traversal:

@example
lst gather_indices(const ex & e)
@{
    gather_indices_visitor v;
    for (const_preorder_iterator i = e.preorder_begin();
         i != e.preorder_end(); ++i) @{
        i->accept(v);
    @}
    return v.get_result();
@}
@end example


@node Polynomial arithmetic, Rational expressions, Visitors and tree traversal, Methods and functions
@c    node-name, next, previous, up
@section Polynomial arithmetic

@subsection Testing whether an expression is a polynomial
@cindex @code{is_polynomial()}

Testing whether an expression is a polynomial in one or more variables
can be done with the method
@example
bool ex::is_polynomial(const ex & vars) const;
@end example
In the case of more than
one variable, the variables are given as a list.

@example
(x*y*sin(y)).is_polynomial(x)         // Returns true.
(x*y*sin(y)).is_polynomial(lst(x,y))  // Returns false.
@end example

@subsection Expanding and collecting
@cindex @code{expand()}
@cindex @code{collect()}
@cindex @code{collect_common_factors()}

A polynomial in one or more variables has many equivalent
representations.  Some useful ones serve a specific purpose.  Consider
for example the trivariate polynomial @math{4*x*y + x*z + 20*y^2 +
21*y*z + 4*z^2} (written down here in output-style).  It is equivalent
to the factorized polynomial @math{(x + 5*y + 4*z)*(4*y + z)}.  Other
representations are the recursive ones where one collects for exponents
in one of the three variable.  Since the factors are themselves
polynomials in the remaining two variables the procedure can be
repeated.  In our example, two possibilities would be @math{(4*y + z)*x
+ 20*y^2 + 21*y*z + 4*z^2} and @math{20*y^2 + (21*z + 4*x)*y + 4*z^2 +
x*z}.

To bring an expression into expanded form, its method

@example
ex ex::expand(unsigned options = 0);
@end example

may be called.  In our example above, this corresponds to @math{4*x*y +
x*z + 20*y^2 + 21*y*z + 4*z^2}.  Again, since the canonical form in
GiNaC is not easy to guess you should be prepared to see different
orderings of terms in such sums!

Another useful representation of multivariate polynomials is as a
univariate polynomial in one of the variables with the coefficients
being polynomials in the remaining variables.  The method
@code{collect()} accomplishes this task:

@example
ex ex::collect(const ex & s, bool distributed = false);
@end example

The first argument to @code{collect()} can also be a list of objects in which
case the result is either a recursively collected polynomial, or a polynomial
in a distributed form with terms like @math{c*x1^e1*...*xn^en}, as specified
by the @code{distributed} flag.

Note that the original polynomial needs to be in expanded form (for the
variables concerned) in order for @code{collect()} to be able to find the
coefficients properly.

The following @command{ginsh} transcript shows an application of @code{collect()}
together with @code{find()}:

@example
> a=expand((sin(x)+sin(y))*(1+p+q)*(1+d));
d*p*sin(x)+p*sin(x)+q*d*sin(x)+q*sin(y)+d*sin(x)+q*d*sin(y)+sin(y)+d*sin(y)
+q*sin(x)+d*sin(y)*p+sin(x)+sin(y)*p
> collect(a,@{p,q@});
d*sin(x)+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*p
+(d*sin(x)+sin(y)+d*sin(y)+sin(x))*q+sin(y)+d*sin(y)+sin(x)
> collect(a,find(a,sin($1)));
(1+q+d+q*d+d*p+p)*sin(y)+(1+q+d+q*d+d*p+p)*sin(x)
> collect(a,@{find(a,sin($1)),p,q@});
(1+(1+d)*p+d+q*(1+d))*sin(x)+(1+(1+d)*p+d+q*(1+d))*sin(y)
> collect(a,@{find(a,sin($1)),d@});
(1+q+d*(1+q+p)+p)*sin(y)+(1+q+d*(1+q+p)+p)*sin(x)
@end example

Polynomials can often be brought into a more compact form by collecting
common factors from the terms of sums. This is accomplished by the function

@example
ex collect_common_factors(const ex & e);
@end example

This function doesn't perform a full factorization but only looks for
factors which are already explicitly present:

@example
> collect_common_factors(a*x+a*y);
(x+y)*a
> collect_common_factors(a*x^2+2*a*x*y+a*y^2);
a*(2*x*y+y^2+x^2)
> collect_common_factors(a*(b*(a+c)*x+b*((a+c)*x+(a+c)*y)*y));
(c+a)*a*(x*y+y^2+x)*b
@end example

@subsection Degree and coefficients
@cindex @code{degree()}
@cindex @code{ldegree()}
@cindex @code{coeff()}

The degree and low degree of a polynomial can be obtained using the two
methods

@example
int ex::degree(const ex & s);
int ex::ldegree(const ex & s);
@end example

which also work reliably on non-expanded input polynomials (they even work
on rational functions, returning the asymptotic degree). By definition, the
degree of zero is zero. To extract a coefficient with a certain power from
an expanded polynomial you use

@example
ex ex::coeff(const ex & s, int n);
@end example

You can also obtain the leading and trailing coefficients with the methods

@example
ex ex::lcoeff(const ex & s);
ex ex::tcoeff(const ex & s);
@end example

which are equivalent to @code{coeff(s, degree(s))} and @code{coeff(s, ldegree(s))},
respectively.

An application is illustrated in the next example, where a multivariate
polynomial is analyzed:

@example
@{
    symbol x("x"), y("y");
    ex PolyInp = 4*pow(x,3)*y + 5*x*pow(y,2) + 3*y
                 - pow(x+y,2) + 2*pow(y+2,2) - 8;
    ex Poly = PolyInp.expand();
    
    for (int i=Poly.ldegree(x); i<=Poly.degree(x); ++i) @{
        cout << "The x^" << i << "-coefficient is "
             << Poly.coeff(x,i) << endl;
    @}
    cout << "As polynomial in y: " 
         << Poly.collect(y) << endl;
@}
@end example

When run, it returns an output in the following fashion:

@example
The x^0-coefficient is y^2+11*y
The x^1-coefficient is 5*y^2-2*y
The x^2-coefficient is -1
The x^3-coefficient is 4*y
As polynomial in y: -x^2+(5*x+1)*y^2+(-2*x+4*x^3+11)*y
@end example

As always, the exact output may vary between different versions of GiNaC
or even from run to run since the internal canonical ordering is not
within the user's sphere of influence.

@code{degree()}, @code{ldegree()}, @code{coeff()}, @code{lcoeff()},
@code{tcoeff()} and @code{collect()} can also be used to a certain degree
with non-polynomial expressions as they not only work with symbols but with
constants, functions and indexed objects as well:

@example
@{
    symbol a("a"), b("b"), c("c"), x("x");
    idx i(symbol("i"), 3);

    ex e = pow(sin(x) - cos(x), 4);
    cout << e.degree(cos(x)) << endl;
     // -> 4
    cout << e.expand().coeff(sin(x), 3) << endl;
     // -> -4*cos(x)

    e = indexed(a+b, i) * indexed(b+c, i); 
    e = e.expand(expand_options::expand_indexed);
    cout << e.collect(indexed(b, i)) << endl;
     // -> a.i*c.i+(a.i+c.i)*b.i+b.i^2
@}
@end example


@subsection Polynomial division
@cindex polynomial division
@cindex quotient
@cindex remainder
@cindex pseudo-remainder
@cindex @code{quo()}
@cindex @code{rem()}
@cindex @code{prem()}
@cindex @code{divide()}

The two functions

@example
ex quo(const ex & a, const ex & b, const ex & x);
ex rem(const ex & a, const ex & b, const ex & x);
@end example

compute the quotient and remainder of univariate polynomials in the variable
@samp{x}. The results satisfy @math{a = b*quo(a, b, x) + rem(a, b, x)}.

The additional function

@example
ex prem(const ex & a, const ex & b, const ex & x);
@end example

computes the pseudo-remainder of @samp{a} and @samp{b} which satisfies
@math{c*a = b*q + prem(a, b, x)}, where @math{c = b.lcoeff(x) ^ (a.degree(x) - b.degree(x) + 1)}.

Exact division of multivariate polynomials is performed by the function

@example
bool divide(const ex & a, const ex & b, ex & q);
@end example

If @samp{b} divides @samp{a} over the rationals, this function returns @code{true}
and returns the quotient in the variable @code{q}. Otherwise it returns @code{false}
in which case the value of @code{q} is undefined.


@subsection Unit, content and primitive part
@cindex @code{unit()}
@cindex @code{content()}
@cindex @code{primpart()}
@cindex @code{unitcontprim()}

The methods

@example
ex ex::unit(const ex & x);
ex ex::content(const ex & x);
ex ex::primpart(const ex & x);
ex ex::primpart(const ex & x, const ex & c);
@end example

return the unit part, content part, and primitive polynomial of a multivariate
polynomial with respect to the variable @samp{x} (the unit part being the sign
of the leading coefficient, the content part being the GCD of the coefficients,
and the primitive polynomial being the input polynomial divided by the unit and
content parts). The second variant of @code{primpart()} expects the previously
calculated content part of the polynomial in @code{c}, which enables it to
work faster in the case where the content part has already been computed. The
product of unit, content, and primitive part is the original polynomial.

Additionally, the method

@example
void ex::unitcontprim(const ex & x, ex & u, ex & c, ex & p);
@end example

computes the unit, content, and primitive parts in one go, returning them
in @code{u}, @code{c}, and @code{p}, respectively.


@subsection GCD, LCM and resultant
@cindex GCD
@cindex LCM
@cindex @code{gcd()}
@cindex @code{lcm()}

The functions for polynomial greatest common divisor and least common
multiple have the synopsis

@example
ex gcd(const ex & a, const ex & b);
ex lcm(const ex & a, const ex & b);
@end example

The functions @code{gcd()} and @code{lcm()} accept two expressions
@code{a} and @code{b} as arguments and return a new expression, their
greatest common divisor or least common multiple, respectively.  If the
polynomials @code{a} and @code{b} are coprime @code{gcd(a,b)} returns 1
and @code{lcm(a,b)} returns the product of @code{a} and @code{b}. Note that all
the coefficients must be rationals.

@example
#include <ginac/ginac.h>
using namespace GiNaC;

int main()
@{
    symbol x("x"), y("y"), z("z");
    ex P_a = 4*x*y + x*z + 20*pow(y, 2) + 21*y*z + 4*pow(z, 2);
    ex P_b = x*y + 3*x*z + 5*pow(y, 2) + 19*y*z + 12*pow(z, 2);

    ex P_gcd = gcd(P_a, P_b);
    // x + 5*y + 4*z
    ex P_lcm = lcm(P_a, P_b);
    // 4*x*y^2 + 13*y*x*z + 20*y^3 + 81*y^2*z + 67*y*z^2 + 3*x*z^2 + 12*z^3
@}
@end example

@cindex resultant
@cindex @code{resultant()}

The resultant of two expressions only makes sense with polynomials.
It is always computed with respect to a specific symbol within the
expressions. The function has the interface

@example
ex resultant(const ex & a, const ex & b, const ex & s);
@end example

Resultants are symmetric in @code{a} and @code{b}. The following example
computes the resultant of two expressions with respect to @code{x} and
@code{y}, respectively:

@example
#include <ginac/ginac.h>
using namespace GiNaC;

int main()
@{
    symbol x("x"), y("y");

    ex e1 = x+pow(y,2), e2 = 2*pow(x,3)-1; // x+y^2, 2*x^3-1
    ex r;
    
    r = resultant(e1, e2, x); 
    // -> 1+2*y^6
    r = resultant(e1, e2, y); 
    // -> 1-4*x^3+4*x^6
@}
@end example

@subsection Square-free decomposition
@cindex square-free decomposition
@cindex factorization
@cindex @code{sqrfree()}

Square-free decomposition is available in GiNaC:
@example
ex sqrfree(const ex & a, const lst & l = lst());
@end example
Here is an example that by the way illustrates how the exact form of the
result may slightly depend on the order of differentiation, calling for
some care with subsequent processing of the result:
@example
    ...
    symbol x("x"), y("y");
    ex BiVarPol = expand(pow(2-2*y,3) * pow(1+x*y,2) * pow(x-2*y,2) * (x+y));

    cout << sqrfree(BiVarPol, lst(x,y)) << endl;
     // -> 8*(1-y)^3*(y*x^2-2*y+x*(1-2*y^2))^2*(y+x)

    cout << sqrfree(BiVarPol, lst(y,x)) << endl;
     // -> 8*(1-y)^3*(-y*x^2+2*y+x*(-1+2*y^2))^2*(y+x)

    cout << sqrfree(BiVarPol) << endl;
     // -> depending on luck, any of the above
    ...
@end example
Note also, how factors with the same exponents are not fully factorized
with this method.

@subsection Polynomial factorization
@cindex factorization
@cindex polynomial factorization
@cindex @code{factor()}

Polynomials can also be fully factored with a call to the function
@example
ex factor(const ex & a, unsigned int options = 0);
@end example
The factorization works for univariate and multivariate polynomials with
rational coefficients. The following code snippet shows its capabilities:
@example
    ...
    cout << factor(pow(x,2)-1) << endl;
     // -> (1+x)*(-1+x)
    cout << factor(expand((x-y*z)*(x-pow(y,2)-pow(z,3))*(x+y+z))) << endl;
     // -> (y+z+x)*(y*z-x)*(y^2-x+z^3)
    cout << factor(pow(x,2)-1+sin(pow(x,2)-1)) << endl;
     // -> -1+sin(-1+x^2)+x^2
    ...
@end example
The results are as expected except for the last one where no factorization
seems to have been done. This is due to the default option
@command{factor_options::polynomial} (equals zero) to @command{factor()}, which
tells GiNaC to try a factorization only if the expression is a valid polynomial.
In the shown example this is not the case, because one term is a function.

There exists a second option @command{factor_options::all}, which tells GiNaC to
ignore non-polynomial parts of an expression and also to look inside function
arguments. With this option the example gives:
@example
    ...
    cout << factor(pow(x,2)-1+sin(pow(x,2)-1), factor_options::all)
         << endl;
     // -> (-1+x)*(1+x)+sin((-1+x)*(1+x))
    ...
@end example
GiNaC's factorization functions cannot handle algebraic extensions. Therefore
the following example does not factor:
@example
    ...
    cout << factor(pow(x,2)-2) << endl;
     // -> -2+x^2  and not  (x-sqrt(2))*(x+sqrt(2))
    ...
@end example
Factorization is useful in many applications. A lot of algorithms in computer
algebra depend on the ability to factor a polynomial. Of course, factorization
can also be used to simplify expressions, but it is costly and applying it to
complicated expressions (high degrees or many terms) may consume far too much
time. So usually, looking for a GCD at strategic points in a calculation is the
cheaper and more appropriate alternative.

@node Rational expressions, Symbolic differentiation, Polynomial arithmetic, Methods and functions
@c    node-name, next, previous, up
@section Rational expressions

@subsection The @code{normal} method
@cindex @code{normal()}
@cindex simplification
@cindex temporary replacement

Some basic form of simplification of expressions is called for frequently.
GiNaC provides the method @code{.normal()}, which converts a rational function
into an equivalent rational function of the form @samp{numerator/denominator}
where numerator and denominator are coprime.  If the input expression is already
a fraction, it just finds the GCD of numerator and denominator and cancels it,
otherwise it performs fraction addition and multiplication.

@code{.normal()} can also be used on expressions which are not rational functions
as it will replace all non-rational objects (like functions or non-integer
powers) by temporary symbols to bring the expression to the domain of rational
functions before performing the normalization, and re-substituting these
symbols afterwards. This algorithm is also available as a separate method
@code{.to_rational()}, described below.

This means that both expressions @code{t1} and @code{t2} are indeed
simplified in this little code snippet:

@example
@{
    symbol x("x");
    ex t1 = (pow(x,2) + 2*x + 1)/(x + 1);
    ex t2 = (pow(sin(x),2) + 2*sin(x) + 1)/(sin(x) + 1);
    std::cout << "t1 is " << t1.normal() << std::endl;
    std::cout << "t2 is " << t2.normal() << std::endl;
@}
@end example

Of course this works for multivariate polynomials too, so the ratio of
the sample-polynomials from the section about GCD and LCM above would be
normalized to @code{P_a/P_b} = @code{(4*y+z)/(y+3*z)}.


@subsection Numerator and denominator
@cindex numerator
@cindex denominator
@cindex @code{numer()}
@cindex @code{denom()}
@cindex @code{numer_denom()}

The numerator and denominator of an expression can be obtained with

@example
ex ex::numer();
ex ex::denom();
ex ex::numer_denom();
@end example

These functions will first normalize the expression as described above and
then return the numerator, denominator, or both as a list, respectively.
If you need both numerator and denominator, calling @code{numer_denom()} is
faster than using @code{numer()} and @code{denom()} separately.


@subsection Converting to a polynomial or rational expression
@cindex @code{to_polynomial()}
@cindex @code{to_rational()}

Some of the methods described so far only work on polynomials or rational
functions. GiNaC provides a way to extend the domain of these functions to
general expressions by using the temporary replacement algorithm described
above. You do this by calling

@example
ex ex::to_polynomial(exmap & m);
ex ex::to_polynomial(lst & l);
@end example
or
@example
ex ex::to_rational(exmap & m);
ex ex::to_rational(lst & l);
@end example

on the expression to be converted. The supplied @code{exmap} or @code{lst}
will be filled with the generated temporary symbols and their replacement
expressions in a format that can be used directly for the @code{subs()}
method. It can also already contain a list of replacements from an earlier
application of @code{.to_polynomial()} or @code{.to_rational()}, so it's
possible to use it on multiple expressions and get consistent results.

The difference between @code{.to_polynomial()} and @code{.to_rational()}
is probably best illustrated with an example:

@example
@{
    symbol x("x"), y("y");
    ex a = 2*x/sin(x) - y/(3*sin(x));
    cout << a << endl;

    lst lp;
    ex p = a.to_polynomial(lp);
    cout << " = " << p << "\n   with " << lp << endl;
     // = symbol3*symbol2*y+2*symbol2*x
     //   with @{symbol2==sin(x)^(-1),symbol3==-1/3@}

    lst lr;
    ex r = a.to_rational(lr);
    cout << " = " << r << "\n   with " << lr << endl;
     // = -1/3*symbol4^(-1)*y+2*symbol4^(-1)*x
     //   with @{symbol4==sin(x)@}
@}
@end example

The following more useful example will print @samp{sin(x)-cos(x)}:

@example
@{
    symbol x("x");
    ex a = pow(sin(x), 2) - pow(cos(x), 2);
    ex b = sin(x) + cos(x);
    ex q;
    exmap m;
    divide(a.to_polynomial(m), b.to_polynomial(m), q);
    cout << q.subs(m) << endl;
@}
@end example


@node Symbolic differentiation, Series expansion, Rational expressions, Methods and functions
@c    node-name, next, previous, up
@section Symbolic differentiation
@cindex differentiation
@cindex @code{diff()}
@cindex chain rule
@cindex product rule

GiNaC's objects know how to differentiate themselves.  Thus, a
polynomial (class @code{add}) knows that its derivative is the sum of
the derivatives of all the monomials:

@example
@{
    symbol x("x"), y("y"), z("z");
    ex P = pow(x, 5) + pow(x, 2) + y;

    cout << P.diff(x,2) << endl;
     // -> 20*x^3 + 2
    cout << P.diff(y) << endl;    // 1
     // -> 1
    cout << P.diff(z) << endl;    // 0
     // -> 0
@}
@end example

If a second integer parameter @var{n} is given, the @code{diff} method
returns the @var{n}th derivative.

If @emph{every} object and every function is told what its derivative
is, all derivatives of composed objects can be calculated using the
chain rule and the product rule.  Consider, for instance the expression
@code{1/cosh(x)}.  Since the derivative of @code{cosh(x)} is
@code{sinh(x)} and the derivative of @code{pow(x,-1)} is
@code{-pow(x,-2)}, GiNaC can readily compute the composition.  It turns
out that the composition is the generating function for Euler Numbers,
i.e. the so called @var{n}th Euler number is the coefficient of
@code{x^n/n!} in the expansion of @code{1/cosh(x)}.  We may use this
identity to code a function that generates Euler numbers in just three
lines:

@cindex Euler numbers
@example
#include <ginac/ginac.h>
using namespace GiNaC;

ex EulerNumber(unsigned n)
@{
    symbol x;
    const ex generator = pow(cosh(x),-1);
    return generator.diff(x,n).subs(x==0);
@}

int main()
@{
    for (unsigned i=0; i<11; i+=2)
        std::cout << EulerNumber(i) << std::endl;
    return 0;
@}
@end example

When you run it, it produces the sequence @code{1}, @code{-1}, @code{5},
@code{-61}, @code{1385}, @code{-50521}.  We increment the loop variable
@code{i} by two since all odd Euler numbers vanish anyways.


@node Series expansion, Symmetrization, Symbolic differentiation, Methods and functions
@c    node-name, next, previous, up
@section Series expansion
@cindex @code{series()}
@cindex Taylor expansion
@cindex Laurent expansion
@cindex @code{pseries} (class)
@cindex @code{Order()}

Expressions know how to expand themselves as a Taylor series or (more
generally) a Laurent series.  As in most conventional Computer Algebra
Systems, no distinction is made between those two.  There is a class of
its own for storing such series (@code{class pseries}) and a built-in
function (called @code{Order}) for storing the order term of the series.
As a consequence, if you want to work with series, i.e. multiply two
series, you need to call the method @code{ex::series} again to convert
it to a series object with the usual structure (expansion plus order
term).  A sample application from special relativity could read:

@example
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
@{
    symbol v("v"), c("c");
    
    ex gamma = 1/sqrt(1 - pow(v/c,2));
    ex mass_nonrel = gamma.series(v==0, 10);
    
    cout << "the relativistic mass increase with v is " << endl
         << mass_nonrel << endl;
    
    cout << "the inverse square of this series is " << endl
         << pow(mass_nonrel,-2).series(v==0, 10) << endl;
@}
@end example

Only calling the series method makes the last output simplify to
@math{1-v^2/c^2+O(v^10)}, without that call we would just have a long
series raised to the power @math{-2}.

@cindex Machin's formula
As another instructive application, let us calculate the numerical 
value of Archimedes' constant
@tex
$\pi$
@end tex
@ifnottex
@math{Pi}
@end ifnottex
(for which there already exists the built-in constant @code{Pi}) 
using John Machin's amazing formula
@tex
$\pi=16$~atan~$\!\left(1 \over 5 \right)-4$~atan~$\!\left(1 \over 239 \right)$.
@end tex
@ifnottex
@math{Pi==16*atan(1/5)-4*atan(1/239)}.
@end ifnottex
This equation (and similar ones) were used for over 200 years for
computing digits of pi (see @cite{Pi Unleashed}).  We may expand the
arcus tangent around @code{0} and insert the fractions @code{1/5} and
@code{1/239}.  However, as we have seen, a series in GiNaC carries an
order term with it and the question arises what the system is supposed
to do when the fractions are plugged into that order term.  The solution
is to use the function @code{series_to_poly()} to simply strip the order
term off:

@example
#include <ginac/ginac.h>
using namespace GiNaC;

ex machin_pi(int degr)
@{
    symbol x;
    ex pi_expansion = series_to_poly(atan(x).series(x,degr));
    ex pi_approx = 16*pi_expansion.subs(x==numeric(1,5))
                   -4*pi_expansion.subs(x==numeric(1,239));
    return pi_approx;
@}

int main()
@{
    using std::cout;  // just for fun, another way of...
    using std::endl;  // ...dealing with this namespace std.
    ex pi_frac;
    for (int i=2; i<12; i+=2) @{
        pi_frac = machin_pi(i);
        cout << i << ":\t" << pi_frac << endl
             << "\t" << pi_frac.evalf() << endl;
    @}
    return 0;
@}
@end example

Note how we just called @code{.series(x,degr)} instead of
@code{.series(x==0,degr)}.  This is a simple shortcut for @code{ex}'s
method @code{series()}: if the first argument is a symbol the expression
is expanded in that symbol around point @code{0}.  When you run this
program, it will type out:

@example
2:      3804/1195
        3.1832635983263598326
4:      5359397032/1706489875
        3.1405970293260603143
6:      38279241713339684/12184551018734375
        3.141621029325034425
8:      76528487109180192540976/24359780855939418203125
        3.141591772182177295
10:     327853873402258685803048818236/104359128170408663038552734375
        3.1415926824043995174
@end example


@node Symmetrization, Built-in functions, Series expansion, Methods and functions
@c    node-name, next, previous, up
@section Symmetrization
@cindex @code{symmetrize()}
@cindex @code{antisymmetrize()}
@cindex @code{symmetrize_cyclic()}

The three methods

@example
ex ex::symmetrize(const lst & l);
ex ex::antisymmetrize(const lst & l);
ex ex::symmetrize_cyclic(const lst & l);
@end example

symmetrize an expression by returning the sum over all symmetric,
antisymmetric or cyclic permutations of the specified list of objects,
weighted by the number of permutations.

The three additional methods

@example
ex ex::symmetrize();
ex ex::antisymmetrize();
ex ex::symmetrize_cyclic();
@end example

symmetrize or antisymmetrize an expression over its free indices.

Symmetrization is most useful with indexed expressions but can be used with
almost any kind of object (anything that is @code{subs()}able):

@example
@{
    idx i(symbol("i"), 3), j(symbol("j"), 3), k(symbol("k"), 3);
    symbol A("A"), B("B"), a("a"), b("b"), c("c");
                                           
    cout << indexed(A, i, j).symmetrize() << endl;
     // -> 1/2*A.j.i+1/2*A.i.j
    cout << indexed(A, i, j, k).antisymmetrize(lst(i, j)) << endl;
     // -> -1/2*A.j.i.k+1/2*A.i.j.k
    cout << lst(a, b, c).symmetrize_cyclic(lst(a, b, c)) << endl;
     // -> 1/3*@{a,b,c@}+1/3*@{b,c,a@}+1/3*@{c,a,b@}
@}
@end example

@page

@node Built-in functions, Multiple polylogarithms, Symmetrization, Methods and functions
@c    node-name, next, previous, up
@section Predefined mathematical functions
@c
@subsection Overview

GiNaC contains the following predefined mathematical functions:

@cartouche
@multitable @columnfractions .30 .70
@item @strong{Name} @tab @strong{Function}
@item @code{abs(x)}
@tab absolute value
@cindex @code{abs()}
@item @code{step(x)}
@tab step function
@cindex @code{step()}
@item @code{csgn(x)}
@tab complex sign
@cindex @code{conjugate()}
@item @code{conjugate(x)}
@tab complex conjugation
@cindex @code{real_part()}
@item @code{real_part(x)}
@tab real part
@cindex @code{imag_part()}
@item @code{imag_part(x)}
@tab imaginary part
@item @code{sqrt(x)}
@tab square root (not a GiNaC function, rather an alias for @code{pow(x, numeric(1, 2))})
@cindex @code{sqrt()}
@item @code{sin(x)}
@tab sine
@cindex @code{sin()}
@item @code{cos(x)}
@tab cosine
@cindex @code{cos()}
@item @code{tan(x)}
@tab tangent
@cindex @code{tan()}
@item @code{asin(x)}
@tab inverse sine
@cindex @code{asin()}
@item @code{acos(x)}
@tab inverse cosine
@cindex @code{acos()}
@item @code{atan(x)}
@tab inverse tangent
@cindex @code{atan()}
@item @code{atan2(y, x)}
@tab inverse tangent with two arguments
@item @code{sinh(x)}
@tab hyperbolic sine
@cindex @code{sinh()}
@item @code{cosh(x)}
@tab hyperbolic cosine
@cindex @code{cosh()}
@item @code{tanh(x)}
@tab hyperbolic tangent
@cindex @code{tanh()}
@item @code{asinh(x)}
@tab inverse hyperbolic sine
@cindex @code{asinh()}
@item @code{acosh(x)}
@tab inverse hyperbolic cosine
@cindex @code{acosh()}
@item @code{atanh(x)}
@tab inverse hyperbolic tangent
@cindex @code{atanh()}
@item @code{exp(x)}
@tab exponential function
@cindex @code{exp()}
@item @code{log(x)}
@tab natural logarithm
@cindex @code{log()}
@item @code{Li2(x)}
@tab dilogarithm
@cindex @code{Li2()}
@item @code{Li(m, x)}
@tab classical polylogarithm as well as multiple polylogarithm
@cindex @code{Li()}
@item @code{G(a, y)}
@tab multiple polylogarithm
@cindex @code{G()}
@item @code{G(a, s, y)}
@tab multiple polylogarithm with explicit signs for the imaginary parts
@cindex @code{G()}
@item @code{S(n, p, x)}
@tab Nielsen's generalized polylogarithm
@cindex @code{S()}
@item @code{H(m, x)}
@tab harmonic polylogarithm
@cindex @code{H()}
@item @code{zeta(m)}
@tab Riemann's zeta function as well as multiple zeta value
@cindex @code{zeta()}
@item @code{zeta(m, s)}
@tab alternating Euler sum
@cindex @code{zeta()}
@item @code{zetaderiv(n, x)}
@tab derivatives of Riemann's zeta function
@item @code{tgamma(x)}
@tab gamma function
@cindex @code{tgamma()}
@cindex gamma function
@item @code{lgamma(x)}
@tab logarithm of gamma function
@cindex @code{lgamma()}
@item @code{beta(x, y)}
@tab beta function (@code{tgamma(x)*tgamma(y)/tgamma(x+y)})
@cindex @code{beta()}
@item @code{psi(x)}
@tab psi (digamma) function
@cindex @code{psi()}
@item @code{psi(n, x)}
@tab derivatives of psi function (polygamma functions)
@item @code{factorial(n)}
@tab factorial function @math{n!}
@cindex @code{factorial()}
@item @code{binomial(n, k)}
@tab binomial coefficients
@cindex @code{binomial()}
@item @code{Order(x)}
@tab order term function in truncated power series
@cindex @code{Order()}
@end multitable
@end cartouche

@cindex branch cut
For functions that have a branch cut in the complex plane GiNaC follows
the conventions for C++ as defined in the ANSI standard as far as
possible.  In particular: the natural logarithm (@code{log}) and the
square root (@code{sqrt}) both have their branch cuts running along the
negative real axis where the points on the axis itself belong to the
upper part (i.e. continuous with quadrant II).  The inverse
trigonometric and hyperbolic functions are not defined for complex
arguments by the C++ standard, however.  In GiNaC we follow the
conventions used by CLN, which in turn follow the carefully designed
definitions in the Common Lisp standard.  It should be noted that this
convention is identical to the one used by the C99 standard and by most
serious CAS.  It is to be expected that future revisions of the C++
standard incorporate these functions in the complex domain in a manner
compatible with C99.

@node Multiple polylogarithms, Complex expressions, Built-in functions, Methods and functions
@c    node-name, next, previous, up
@subsection Multiple polylogarithms

@cindex polylogarithm
@cindex Nielsen's generalized polylogarithm
@cindex harmonic polylogarithm
@cindex multiple zeta value
@cindex alternating Euler sum
@cindex multiple polylogarithm

The multiple polylogarithm is the most generic member of a family of functions,
to which others like the harmonic polylogarithm, Nielsen's generalized
polylogarithm and the multiple zeta value belong.
Everyone of these functions can also be written as a multiple polylogarithm with specific
parameters. This whole family of functions is therefore often referred to simply as
multiple polylogarithms, containing @code{Li}, @code{G}, @code{H}, @code{S} and @code{zeta}.
The multiple polylogarithm itself comes in two variants: @code{Li} and @code{G}. While
@code{Li} and @code{G} in principle represent the same function, the different
notations are more natural to the series representation or the integral
representation, respectively.

To facilitate the discussion of these functions we distinguish between indices and
arguments as parameters. In the table above indices are printed as @code{m}, @code{s},
@code{n} or @code{p}, whereas arguments are printed as @code{x}, @code{a} and @code{y}.

To define a @code{Li}, @code{H} or @code{zeta} with a depth greater than one, you have to
pass a GiNaC @code{lst} for the indices @code{m} and @code{s}, and in the case of @code{Li}
for the argument @code{x} as well. The parameter @code{a} of @code{G} must always be a @code{lst} containing
the arguments in expanded form. If @code{G} is used with a third parameter @code{s}, @code{s} must
have the same length as @code{a}. It contains then the signs of the imaginary parts of the arguments. If
@code{s} is not given, the signs default to +1.
Note that @code{Li} and @code{zeta} are polymorphic in this respect. They can stand in for
the classical polylogarithm and Riemann's zeta function (if depth is one), as well as for
the multiple polylogarithm and the multiple zeta value, respectively. Note also, that
GiNaC doesn't check whether the @code{lst}s for two parameters do have the same length.
It is up to the user to ensure this, otherwise evaluating will result in undefined behavior.

The functions print in LaTeX format as
@tex
${\rm Li\;\!}_{m_1,m_2,\ldots,m_k}(x_1,x_2,\ldots,x_k)$, 
@end tex
@tex
${\rm S}_{n,p}(x)$, 
@end tex
@tex
${\rm H\;\!}_{m_1,m_2,\ldots,m_k}(x)$ and 
@end tex
@tex
$\zeta(m_1,m_2,\ldots,m_k)$.
@end tex
@ifnottex
@command{\mbox@{Li@}_@{m_1,m_2,...,m_k@}(x_1,x_2,...,x_k)},
@command{\mbox@{S@}_@{n,p@}(x)},
@command{\mbox@{H@}_@{m_1,m_2,...,m_k@}(x)} and 
@command{\zeta(m_1,m_2,...,m_k)} (with the dots replaced by actual parameters).
@end ifnottex
If @code{zeta} is an alternating zeta sum, i.e. @code{zeta(m,s)}, the indices with negative sign
are printed with a line above, e.g.
@tex
$\zeta(5,\overline{2})$.
@end tex
@ifnottex
@command{\zeta(5,\overline@{2@})}.
@end ifnottex
The order of indices and arguments in the GiNaC @code{lst}s and in the output is the same.

Definitions and analytical as well as numerical properties of multiple polylogarithms
are too numerous to be covered here. Instead, the user is referred to the publications listed at the
end of this section. The implementation in GiNaC adheres to the definitions and conventions therein,
except for a few differences which will be explicitly stated in the following.

One difference is about the order of the indices and arguments. For GiNaC we adopt the convention
that the indices and arguments are understood to be in the same order as in which they appear in
the series representation. This means
@tex
${\rm Li\;\!}_{m_1,m_2,m_3}(x,1,1) = {\rm H\;\!}_{m_1,m_2,m_3}(x)$ and 
@end tex
@tex
${\rm Li\;\!}_{2,1}(1,1) = \zeta(2,1) = \zeta(3)$, but
@end tex
@tex
$\zeta(1,2)$ evaluates to infinity.
@end tex
@ifnottex
@code{Li_@{m_1,m_2,m_3@}(x,1,1) = H_@{m_1,m_2,m_3@}(x)} and 
@code{Li_@{2,1@}(1,1) = zeta(2,1) = zeta(3)}, but
@code{zeta(1,2)} evaluates to infinity.
@end ifnottex
So in comparison to the older ones of the referenced publications the order of
indices and arguments for @code{Li} is reversed.

The functions only evaluate if the indices are integers greater than zero, except for the indices
@code{s} in @code{zeta} and @code{G} as well as @code{m} in @code{H}. Since @code{s}
will be interpreted as the sequence of signs for the corresponding indices
@code{m} or the sign of the imaginary part for the
corresponding arguments @code{a}, it must contain 1 or -1, e.g.
@code{zeta(lst(3,4), lst(-1,1))} means
@tex
$\zeta(\overline{3},4)$
@end tex
@ifnottex
@command{zeta(\overline@{3@},4)}
@end ifnottex
and
@code{G(lst(a,b), lst(-1,1), c)} means
@tex
$G(a-0\epsilon,b+0\epsilon;c)$.
@end tex
@ifnottex
@command{G(a-0\epsilon,b+0\epsilon;c)}.
@end ifnottex
The definition of @code{H} allows indices to be 0, 1 or -1 (in expanded notation) or equally to
be any integer (in compact notation). With GiNaC expanded and compact notation can be mixed,
e.g. @code{lst(0,0,-1,0,1,0,0)}, @code{lst(0,0,-1,2,0,0)} and @code{lst(-3,2,0,0)} are equivalent as
indices. The anonymous evaluator @code{eval()} tries to reduce the functions, if possible, to
the least-generic multiple polylogarithm. If all arguments are unit, it returns @code{zeta}.
Arguments equal to zero get considered, too. Riemann's zeta function @code{zeta} (with depth one)
evaluates also for negative integers and positive even integers. For example:

@example
> Li(@{3,1@},@{x,1@});
S(2,2,x)
> H(@{-3,2@},1);
-zeta(@{3,2@},@{-1,-1@})
> S(3,1,1);
1/90*Pi^4
@end example

It is easy to tell for a given function into which other function it can be rewritten, may
it be a less-generic or a more-generic one, except for harmonic polylogarithms @code{H}
with negative indices or trailing zeros (the example above gives a hint). Signs can
quickly be messed up, for example. Therefore GiNaC offers a C++ function
@code{convert_H_to_Li()} to deal with the upgrade of a @code{H} to a multiple polylogarithm
@code{Li} (@code{eval()} already cares for the possible downgrade):

@example
> convert_H_to_Li(@{0,-2,-1,3@},x);
Li(@{3,1,3@},@{-x,1,-1@})
> convert_H_to_Li(@{2,-1,0@},x);
-Li(@{2,1@},@{x,-1@})*log(x)+2*Li(@{3,1@},@{x,-1@})+Li(@{2,2@},@{x,-1@})
@end example

Every function can be numerically evaluated for
arbitrary real or complex arguments. The precision is arbitrary and can be set through the
global variable @code{Digits}:

@example
> Digits=100;
100
> evalf(zeta(@{3,1,3,1@}));
0.005229569563530960100930652283899231589890420784634635522547448972148869544...
@end example

Note that the convention for arguments on the branch cut in GiNaC as stated above is
different from the one Remiddi and Vermaseren have chosen for the harmonic polylogarithm.

If a function evaluates to infinity, no exceptions are raised, but the function is returned
unevaluated, e.g.
@tex
$\zeta(1)$.
@end tex
@ifnottex
@command{zeta(1)}.
@end ifnottex
In long expressions this helps a lot with debugging, because you can easily spot
the divergencies. But on the other hand, you have to make sure for yourself, that no illegal
cancellations of divergencies happen.

Useful publications:

@cite{Nested Sums, Expansion of Transcendental Functions and Multi-Scale Multi-Loop Integrals}, 
S.Moch, P.Uwer, S.Weinzierl, hep-ph/0110083

@cite{Harmonic Polylogarithms}, 
E.Remiddi, J.A.M.Vermaseren, Int.J.Mod.Phys. A15 (2000), pp. 725-754

@cite{Special Values of Multiple Polylogarithms}, 
J.Borwein, D.Bradley, D.Broadhurst, P.Lisonek, Trans.Amer.Math.Soc. 353/3 (2001), pp. 907-941

@cite{Numerical Evaluation of Multiple Polylogarithms}, 
J.Vollinga, S.Weinzierl, hep-ph/0410259

@node Complex expressions, Solving linear systems of equations, Multiple polylogarithms, Methods and functions
@c    node-name, next, previous, up
@section Complex expressions
@c
@cindex @code{conjugate()}

For dealing with complex expressions there are the methods

@example
ex ex::conjugate();
ex ex::real_part();
ex ex::imag_part();
@end example

that return respectively the complex conjugate, the real part and the
imaginary part of an expression. Complex conjugation works as expected
for all built-in functions and objects. Taking real and imaginary
parts has not yet been implemented for all built-in functions. In cases where
it is not known how to conjugate or take a real/imaginary part one
of the functions @code{conjugate}, @code{real_part} or @code{imag_part}
is returned. For instance, in case of a complex symbol @code{x}
(symbols are complex by default), one could not simplify
@code{conjugate(x)}. In the case of strings of gamma matrices,
the @code{conjugate} method takes the Dirac conjugate.

For example,
@example
@{
    varidx a(symbol("a"), 4), b(symbol("b"), 4);
    symbol x("x");
    realsymbol y("y");
                                           
    cout << (3*I*x*y + sin(2*Pi*I*y)).conjugate() << endl;
     // -> -3*I*conjugate(x)*y+sin(-2*I*Pi*y)
    cout << (dirac_gamma(a)*dirac_gamma(b)*dirac_gamma5()).conjugate() << endl;
     // -> -gamma5*gamma~b*gamma~a
@}
@end example

If you declare your own GiNaC functions and you want to conjugate them, you
will have to supply a specialized conjugation method for them (see
@ref{Symbolic functions} and the GiNaC source-code for @code{abs} as an
example). GiNaC does not automatically conjugate user-supplied functions
by conjugating their arguments because this would be incorrect on branch
cuts. Also, specialized methods can be provided to take real and imaginary
parts of user-defined functions.

@node Solving linear systems of equations, Input/output, Complex expressions, Methods and functions
@c    node-name, next, previous, up
@section Solving linear systems of equations
@cindex @code{lsolve()}

The function @code{lsolve()} provides a convenient wrapper around some
matrix operations that comes in handy when a system of linear equations
needs to be solved:

@example
ex lsolve(const ex & eqns, const ex & symbols,
          unsigned options = solve_algo::automatic);
@end example

Here, @code{eqns} is a @code{lst} of equalities (i.e. class
@code{relational}) while @code{symbols} is a @code{lst} of
indeterminates.  (@xref{The class hierarchy}, for an exposition of class
@code{lst}).

It returns the @code{lst} of solutions as an expression.  As an example,
let us solve the two equations @code{a*x+b*y==3} and @code{x-y==b}:

@example
@{
    symbol a("a"), b("b"), x("x"), y("y");
    lst eqns, vars;
    eqns = a*x+b*y==3, x-y==b;
    vars = x, y;
    cout << lsolve(eqns, vars) << endl;
     // -> @{x==(3+b^2)/(b+a),y==(3-b*a)/(b+a)@}
@end example

When the linear equations @code{eqns} are underdetermined, the solution
will contain one or more tautological entries like @code{x==x},
depending on the rank of the system.  When they are overdetermined, the
solution will be an empty @code{lst}.  Note the third optional parameter
to @code{lsolve()}: it accepts the same parameters as
@code{matrix::solve()}.  This is because @code{lsolve} is just a wrapper
around that method.


@node Input/output, Extending GiNaC, Solving linear systems of equations, Methods and functions
@c    node-name, next, previous, up
@section Input and output of expressions
@cindex I/O

@subsection Expression output
@cindex printing
@cindex output of expressions

Expressions can simply be written to any stream:

@example
@{
    symbol x("x");
    ex e = 4.5*I+pow(x,2)*3/2;
    cout << e << endl;    // prints '4.5*I+3/2*x^2'
    // ...
@end example

The default output format is identical to the @command{ginsh} input syntax and
to that used by most computer algebra systems, but not directly pastable
into a GiNaC C++ program (note that in the above example, @code{pow(x,2)}
is printed as @samp{x^2}).

It is possible to print expressions in a number of different formats with
a set of stream manipulators;

@example
std::ostream & dflt(std::ostream & os);
std::ostream & latex(std::ostream & os);
std::ostream & tree(std::ostream & os);
std::ostream & csrc(std::ostream & os);
std::ostream & csrc_float(std::ostream & os);
std::ostream & csrc_double(std::ostream & os);
std::ostream & csrc_cl_N(std::ostream & os);
std::ostream & index_dimensions(std::ostream & os);
std::ostream & no_index_dimensions(std::ostream & os);
@end example

The @code{tree}, @code{latex} and @code{csrc} formats are also available in
@command{ginsh} via the @code{print()}, @code{print_latex()} and
@code{print_csrc()} functions, respectively.

@cindex @code{dflt}
All manipulators affect the stream state permanently. To reset the output
format to the default, use the @code{dflt} manipulator:

@example
    // ...
    cout << latex;            // all output to cout will be in LaTeX format from
                              // now on
    cout << e << endl;        // prints '4.5 i+\frac@{3@}@{2@} x^@{2@}'
    cout << sin(x/2) << endl; // prints '\sin(\frac@{1@}@{2@} x)'
    cout << dflt;             // revert to default output format
    cout << e << endl;        // prints '4.5*I+3/2*x^2'
    // ...
@end example

If you don't want to affect the format of the stream you're working with,
you can output to a temporary @code{ostringstream} like this:

@example
    // ...
    ostringstream s;
    s << latex << e;         // format of cout remains unchanged
    cout << s.str() << endl; // prints '4.5 i+\frac@{3@}@{2@} x^@{2@}'
    // ...
@end example

@anchor{csrc printing}
@cindex @code{csrc}
@cindex @code{csrc_float}
@cindex @code{csrc_double}
@cindex @code{csrc_cl_N}
The @code{csrc} (an alias for @code{csrc_double}), @code{csrc_float},
@code{csrc_double} and @code{csrc_cl_N} manipulators set the output to a
format that can be directly used in a C or C++ program. The three possible
formats select the data types used for numbers (@code{csrc_cl_N} uses the
classes provided by the CLN library):

@example
    // ...
    cout << "f = " << csrc_float << e << ";\n";
    cout << "d = " << csrc_double << e << ";\n";
    cout << "n = " << csrc_cl_N << e << ";\n";
    // ...
@end example

The above example will produce (note the @code{x^2} being converted to
@code{x*x}):

@example
f = (3.0/2.0)*(x*x)+std::complex<float>(0.0,4.5000000e+00);
d = (3.0/2.0)*(x*x)+std::complex<double>(0.0,4.5000000000000000e+00);
n = cln::cl_RA("3/2")*(x*x)+cln::complex(cln::cl_I("0"),cln::cl_F("4.5_17"));
@end example

@cindex @code{tree}
The @code{tree} manipulator allows dumping the internal structure of an
expression for debugging purposes:

@example
    // ...
    cout << tree << e;
@}
@end example

produces

@example
add, hash=0x0, flags=0x3, nops=2
    power, hash=0x0, flags=0x3, nops=2
        x (symbol), serial=0, hash=0xc8d5bcdd, flags=0xf
        2 (numeric), hash=0x6526b0fa, flags=0xf
    3/2 (numeric), hash=0xf9828fbd, flags=0xf
    -----
    overall_coeff
    4.5L0i (numeric), hash=0xa40a97e0, flags=0xf
    =====
@end example

@cindex @code{latex}
The @code{latex} output format is for LaTeX parsing in mathematical mode.
It is rather similar to the default format but provides some braces needed
by LaTeX for delimiting boxes and also converts some common objects to
conventional LaTeX names. It is possible to give symbols a special name for
LaTeX output by supplying it as a second argument to the @code{symbol}
constructor.

For example, the code snippet

@example
@{
    symbol x("x", "\\circ");
    ex e = lgamma(x).series(x==0,3);
    cout << latex << e << endl;
@}
@end example

will print

@example
    @{(-\ln(\circ))@}+@{(-\gamma_E)@} \circ+@{(\frac@{1@}@{12@} \pi^@{2@})@} \circ^@{2@}
    +\mathcal@{O@}(\circ^@{3@})
@end example

@cindex @code{index_dimensions}
@cindex @code{no_index_dimensions}
Index dimensions are normally hidden in the output. To make them visible, use
the @code{index_dimensions} manipulator. The dimensions will be written in
square brackets behind each index value in the default and LaTeX output
formats:

@example
@{
    symbol x("x"), y("y");
    varidx mu(symbol("mu"), 4), nu(symbol("nu"), 4);
    ex e = indexed(x, mu) * indexed(y, nu);

    cout << e << endl;
     // prints 'x~mu*y~nu'
    cout << index_dimensions << e << endl;
     // prints 'x~mu[4]*y~nu[4]'
    cout << no_index_dimensions << e << endl;
     // prints 'x~mu*y~nu'
@}
@end example


@cindex Tree traversal
If you need any fancy special output format, e.g. for interfacing GiNaC
with other algebra systems or for producing code for different
programming languages, you can always traverse the expression tree yourself:

@example
static void my_print(const ex & e)
@{
    if (is_a<function>(e))
        cout << ex_to<function>(e).get_name();
    else
        cout << ex_to<basic>(e).class_name();
    cout << "(";
    size_t n = e.nops();
    if (n)
        for (size_t i=0; i<n; i++) @{
            my_print(e.op(i));
            if (i != n-1)
                cout << ",";
        @}
    else
        cout << e;
    cout << ")";
@}

int main()
@{
    my_print(pow(3, x) - 2 * sin(y / Pi)); cout << endl;
    return 0;
@}
@end example

This will produce

@example
add(power(numeric(3),symbol(x)),mul(sin(mul(power(constant(Pi),numeric(-1)),
symbol(y))),numeric(-2)))
@end example

If you need an output format that makes it possible to accurately
reconstruct an expression by feeding the output to a suitable parser or
object factory, you should consider storing the expression in an
@code{archive} object and reading the object properties from there.
See the section on archiving for more information.


@subsection Expression input
@cindex input of expressions

GiNaC provides no way to directly read an expression from a stream because
you will usually want the user to be able to enter something like @samp{2*x+sin(y)}
and have the @samp{x} and @samp{y} correspond to the symbols @code{x} and
@code{y} you defined in your program and there is no way to specify the
desired symbols to the @code{>>} stream input operator.

Instead, GiNaC lets you read an expression from a stream or a string,
specifying the mapping between the input strings and symbols to be used:

@example
@{
    symbol x, y;
    symtab table;
    table["x"] = x;
    table["y"] = y;
    parser reader(table);
    ex e = reader("2*x+sin(y)");
@}
@end example

The input syntax is the same as that used by @command{ginsh} and the stream
output operator @code{<<}. Matching between the input strings and expressions
is given by @samp{table}. The @samp{table} in this example instructs GiNaC
to substitute any input substring ``x'' with symbol @code{x}. Likewise,
the substring ``y'' will be replaced with symbol @code{y}. It's also possible
to map input (sub)strings to arbitrary expressions:

@example
@{
    symbol x, y;
    symtab table;
    table["x"] = x+log(y)+1;
    parser reader(table);
    ex e = reader("5*x^3 - x^2");
    // e = 5*(x+log(y)+1)^3 + (x+log(y)+1)^2
@}
@end example

If no mapping is specified for a particular string GiNaC will create a symbol
with corresponding name. Later on you can obtain all parser generated symbols
with @code{get_syms()} method:

@example
@{
    parser reader;
    ex e = reader("2*x+sin(y)");
    symtab table = reader.get_syms();
    symbol x = reader["x"];
    symbol y = reader["y"];
@}
@end example

Sometimes you might want to prevent GiNaC from inserting these extra symbols
(for example, you want treat an unexpected string in the input as an error).

@example
@{
	symtab table;
	table["x"] = symbol();
	parser reader(table);
	parser.strict = true;
	ex e;
	try @{
		e = reader("2*x+sin(y)");
	@} catch (parse_error& err) @{
		cerr << err.what() << endl;
		// prints "unknown symbol "y" in the input"
	@}
@}
@end example

With this parser, it's also easy to implement interactive GiNaC programs:

@example
#include <iostream>
#include <string>
#include <stdexcept>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
@{
	cout << "Enter an expression containing 'x': " << flush;
	parser reader;

	try @{
		ex e = reader(cin);
		symtab table = reader.get_syms();
		symbol x = table.find("x") != table.end() ? 
			   ex_to<symbol>(table["x"]) : symbol("x");
		cout << "The derivative of " << e << " with respect to x is ";
		cout << e.diff(x) << "." << endl;
	@} catch (exception &p) @{
		cerr << p.what() << endl;
	@}
@}
@end example

@subsection Compiling expressions to C function pointers
@cindex compiling expressions

Numerical evaluation of algebraic expressions is seamlessly integrated into
GiNaC by help of the CLN library. While CLN allows for very fast arbitrary
precision numerics, which is more than sufficient for most users, sometimes only
the speed of built-in floating point numbers is fast enough, e.g. for Monte
Carlo integration. The only viable option then is the following: print the
expression in C syntax format, manually add necessary C code, compile that
program and run is as a separate application. This is not only cumbersome and
involves a lot of manual intervention, but it also separates the algebraic and
the numerical evaluation into different execution stages.

GiNaC offers a couple of functions that help to avoid these inconveniences and
problems. The functions automatically perform the printing of a GiNaC expression
and the subsequent compiling of its associated C code. The created object code
is then dynamically linked to the currently running program. A function pointer
to the C function that performs the numerical evaluation is returned and can be
used instantly. This all happens automatically, no user intervention is needed.

The following example demonstrates the use of @code{compile_ex}:

@example
    // ...
    symbol x("x");
    ex myexpr = sin(x) / x;

    FUNCP_1P fp;
    compile_ex(myexpr, x, fp);

    cout << fp(3.2) << endl;
    // ...
@end example

The function @code{compile_ex} is called with the expression to be compiled and
its only free variable @code{x}. Upon successful completion the third parameter
contains a valid function pointer to the corresponding C code module. If called
like in the last line only built-in double precision numerics is involved.

@cindex FUNCP_1P
@cindex FUNCP_2P
@cindex FUNCP_CUBA
The function pointer has to be defined in advance. GiNaC offers three function
pointer types at the moment:

@example
    typedef double (*FUNCP_1P) (double);
    typedef double (*FUNCP_2P) (double, double);
    typedef void (*FUNCP_CUBA) (const int*, const double[], const int*, double[]);
@end example

@cindex CUBA library
@cindex Monte Carlo integration
@code{FUNCP_2P} allows for two variables in the expression. @code{FUNCP_CUBA} is
the correct type to be used with the CUBA library
(@uref{http://www.feynarts.de/cuba}) for numerical integrations. The details for the
parameters of @code{FUNCP_CUBA} are explained in the CUBA manual.

@cindex compile_ex
For every function pointer type there is a matching @code{compile_ex} available:

@example
    void compile_ex(const ex& expr, const symbol& sym, FUNCP_1P& fp,
                    const std::string filename = "");
    void compile_ex(const ex& expr, const symbol& sym1, const symbol& sym2,
                    FUNCP_2P& fp, const std::string filename = "");
    void compile_ex(const lst& exprs, const lst& syms, FUNCP_CUBA& fp,
                    const std::string filename = "");
@end example

When the last parameter @code{filename} is not supplied, @code{compile_ex} will
choose a unique random name for the intermediate source and object files it
produces. On program termination these files will be deleted. If one wishes to
keep the C code and the object files, one can supply the @code{filename}
parameter. The intermediate files will use that filename and will not be
deleted.

@cindex link_ex
@code{link_ex} is a function that allows to dynamically link an existing object
file and to make it available via a function pointer. This is useful if you
have already used @code{compile_ex} on an expression and want to avoid the
compilation step to be performed over and over again when you restart your
program. The precondition for this is of course, that you have chosen a
filename when you did call @code{compile_ex}. For every above mentioned
function pointer type there exists a corresponding @code{link_ex} function:

@example
    void link_ex(const std::string filename, FUNCP_1P& fp);
    void link_ex(const std::string filename, FUNCP_2P& fp);
    void link_ex(const std::string filename, FUNCP_CUBA& fp);
@end example

The complete filename (including the suffix @code{.so}) of the object file has
to be supplied.

The function

@cindex unlink_ex
@example
    void unlink_ex(const std::string filename);
@end example

is supplied for the rare cases when one wishes to close the dynamically linked
object files directly and have the intermediate files (only if filename has not
been given) deleted. Normally one doesn't need this function, because all the
clean-up will be done automatically upon (regular) program termination.

All the described functions will throw an exception in case they cannot perform
correctly, like for example when writing the file or starting the compiler
fails. Since internally the same printing methods as described in section
@ref{csrc printing} are used, only functions and objects that are available in
standard C will compile successfully (that excludes polylogarithms for example
at the moment). Another precondition for success is, of course, that it must be
possible to evaluate the expression numerically. No free variables despite the
ones supplied to @code{compile_ex} should appear in the expression.

@cindex ginac-excompiler
@code{compile_ex} uses the shell script @code{ginac-excompiler} to start the C
compiler and produce the object files. This shell script comes with GiNaC and
will be installed together with GiNaC in the configured @code{$PREFIX/bin}
directory.

@subsection Archiving
@cindex @code{archive} (class)
@cindex archiving

GiNaC allows creating @dfn{archives} of expressions which can be stored
to or retrieved from files. To create an archive, you declare an object
of class @code{archive} and archive expressions in it, giving each
expression a unique name:

@example
#include <fstream>
using namespace std;
#include <ginac/ginac.h>
using namespace GiNaC;

int main()
@{
    symbol x("x"), y("y"), z("z");

    ex foo = sin(x + 2*y) + 3*z + 41;
    ex bar = foo + 1;

    archive a;
    a.archive_ex(foo, "foo");
    a.archive_ex(bar, "the second one");
    // ...
@end example

The archive can then be written to a file:

@example
    // ...
    ofstream out("foobar.gar");
    out << a;
    out.close();
    // ...
@end example

The file @file{foobar.gar} contains all information that is needed to
reconstruct the expressions @code{foo} and @code{bar}.

@cindex @command{viewgar}
The tool @command{viewgar} that comes with GiNaC can be used to view
the contents of GiNaC archive files:

@example
$ viewgar foobar.gar
foo = 41+sin(x+2*y)+3*z
the second one = 42+sin(x+2*y)+3*z
@end example

The point of writing archive files is of course that they can later be
read in again:

@example
    // ...
    archive a2;
    ifstream in("foobar.gar");
    in >> a2;
    // ...
@end example

And the stored expressions can be retrieved by their name:

@example
    // ...
    lst syms;
    syms = x, y;

    ex ex1 = a2.unarchive_ex(syms, "foo");
    ex ex2 = a2.unarchive_ex(syms, "the second one");

    cout << ex1 << endl;              // prints "41+sin(x+2*y)+3*z"
    cout << ex2 << endl;              // prints "42+sin(x+2*y)+3*z"
    cout << ex1.subs(x == 2) << endl; // prints "41+sin(2+2*y)+3*z"
@}
@end example

Note that you have to supply a list of the symbols which are to be inserted
in the expressions. Symbols in archives are stored by their name only and
if you don't specify which symbols you have, unarchiving the expression will
create new symbols with that name. E.g. if you hadn't included @code{x} in
the @code{syms} list above, the @code{ex1.subs(x == 2)} statement would
have had no effect because the @code{x} in @code{ex1} would have been a
different symbol than the @code{x} which was defined at the beginning of
the program, although both would appear as @samp{x} when printed.

You can also use the information stored in an @code{archive} object to
output expressions in a format suitable for exact reconstruction. The
@code{archive} and @code{archive_node} classes have a couple of member
functions that let you access the stored properties:

@example
static void my_print2(const archive_node & n)
@{
    string class_name;
    n.find_string("class", class_name);
    cout << class_name << "(";

    archive_node::propinfovector p;
    n.get_properties(p);

    size_t num = p.size();
    for (size_t i=0; i<num; i++) @{
        const string &name = p[i].name;
        if (name == "class")
            continue;
        cout << name << "=";

        unsigned count = p[i].count;
        if (count > 1)
            cout << "@{";

        for (unsigned j=0; j<count; j++) @{
            switch (p[i].type) @{
                case archive_node::PTYPE_BOOL: @{
                    bool x;
                    n.find_bool(name, x, j);
                    cout << (x ? "true" : "false");
                    break;
                @}
                case archive_node::PTYPE_UNSIGNED: @{
                    unsigned x;
                    n.find_unsigned(name, x, j);
                    cout << x;
                    break;
                @}
                case archive_node::PTYPE_STRING: @{
                    string x;
                    n.find_string(name, x, j);
                    cout << '\"' << x << '\"';
                    break;
                @}
                case archive_node::PTYPE_NODE: @{
                    const archive_node &x = n.find_ex_node(name, j);
                    my_print2(x);
                    break;
                @}
            @}

            if (j != count-1)
                cout << ",";
        @}

        if (count > 1)
            cout << "@}";

        if (i != num-1)
            cout << ",";
    @}

    cout << ")";
@}

int main()
@{
    ex e = pow(2, x) - y;
    archive ar(e, "e");
    my_print2(ar.get_top_node(0)); cout << endl;
    return 0;
@}
@end example

This will produce:

@example
add(rest=@{power(basis=numeric(number="2"),exponent=symbol(name="x")),
symbol(name="y")@},coeff=@{numeric(number="1"),numeric(number="-1")@},
overall_coeff=numeric(number="0"))
@end example

Be warned, however, that the set of properties and their meaning for each
class may change between GiNaC versions.


@node Extending GiNaC, What does not belong into GiNaC, Input/output, Top
@c    node-name, next, previous, up
@chapter Extending GiNaC

By reading so far you should have gotten a fairly good understanding of
GiNaC's design patterns.  From here on you should start reading the
sources.  All we can do now is issue some recommendations how to tackle
GiNaC's many loose ends in order to fulfill everybody's dreams.  If you
develop some useful extension please don't hesitate to contact the GiNaC
authors---they will happily incorporate them into future versions.

@menu
* What does not belong into GiNaC::  What to avoid.
* Symbolic functions::               Implementing symbolic functions.
* Printing::                         Adding new output formats.
* Structures::                       Defining new algebraic classes (the easy way).
* Adding classes::                   Defining new algebraic classes (the hard way).
@end menu


@node What does not belong into GiNaC, Symbolic functions, Extending GiNaC, Extending GiNaC
@c    node-name, next, previous, up
@section What doesn't belong into GiNaC

@cindex @command{ginsh}
First of all, GiNaC's name must be read literally.  It is designed to be
a library for use within C++.  The tiny @command{ginsh} accompanying
GiNaC makes this even more clear: it doesn't even attempt to provide a
language.  There are no loops or conditional expressions in
@command{ginsh}, it is merely a window into the library for the
programmer to test stuff (or to show off).  Still, the design of a
complete CAS with a language of its own, graphical capabilities and all
this on top of GiNaC is possible and is without doubt a nice project for
the future.

There are many built-in functions in GiNaC that do not know how to
evaluate themselves numerically to a precision declared at runtime
(using @code{Digits}).  Some may be evaluated at certain points, but not
generally.  This ought to be fixed.  However, doing numerical
computations with GiNaC's quite abstract classes is doomed to be
inefficient.  For this purpose, the underlying foundation classes
provided by CLN are much better suited.


@node Symbolic functions, Printing, What does not belong into GiNaC, Extending GiNaC
@c    node-name, next, previous, up
@section Symbolic functions

The easiest and most instructive way to start extending GiNaC is probably to
create your own symbolic functions. These are implemented with the help of
two preprocessor macros:

@cindex @code{DECLARE_FUNCTION}
@cindex @code{REGISTER_FUNCTION}
@example
DECLARE_FUNCTION_<n>P(<name>)
REGISTER_FUNCTION(<name>, <options>)
@end example

The @code{DECLARE_FUNCTION} macro will usually appear in a header file. It
declares a C++ function with the given @samp{name} that takes exactly @samp{n}
parameters of type @code{ex} and returns a newly constructed GiNaC
@code{function} object that represents your function.

The @code{REGISTER_FUNCTION} macro implements the function. It must be passed
the same @samp{name} as the respective @code{DECLARE_FUNCTION} macro, and a
set of options that associate the symbolic function with C++ functions you
provide to implement the various methods such as evaluation, derivative,
series expansion etc. They also describe additional attributes the function
might have, such as symmetry and commutation properties, and a name for
LaTeX output. Multiple options are separated by the member access operator
@samp{.} and can be given in an arbitrary order.

(By the way: in case you are worrying about all the macros above we can
assure you that functions are GiNaC's most macro-intense classes. We have
done our best to avoid macros where we can.)

@subsection A minimal example

Here is an example for the implementation of a function with two arguments
that is not further evaluated:

@example
DECLARE_FUNCTION_2P(myfcn)

REGISTER_FUNCTION(myfcn, dummy())
@end example

Any code that has seen the @code{DECLARE_FUNCTION} line can use @code{myfcn()}
in algebraic expressions:

@example
@{
    ...
    symbol x("x");
    ex e = 2*myfcn(42, 1+3*x) - x;
    cout << e << endl;
     // prints '2*myfcn(42,1+3*x)-x'
    ...
@}
@end example

The @code{dummy()} option in the @code{REGISTER_FUNCTION} line signifies
"no options". A function with no options specified merely acts as a kind of
container for its arguments. It is a pure "dummy" function with no associated
logic (which is, however, sometimes perfectly sufficient).

Let's now have a look at the implementation of GiNaC's cosine function for an
example of how to make an "intelligent" function.

@subsection The cosine function

The GiNaC header file @file{inifcns.h} contains the line

@example
DECLARE_FUNCTION_1P(cos)
@end example

which declares to all programs using GiNaC that there is a function @samp{cos}
that takes one @code{ex} as an argument. This is all they need to know to use
this function in expressions.

The implementation of the cosine function is in @file{inifcns_trans.cpp}. Here
is its @code{REGISTER_FUNCTION} line:

@example
REGISTER_FUNCTION(cos, eval_func(cos_eval).
                       evalf_func(cos_evalf).
                       derivative_func(cos_deriv).
                       latex_name("\\cos"));
@end example

There are four options defined for the cosine function. One of them
(@code{latex_name}) gives the function a proper name for LaTeX output; the
other three indicate the C++ functions in which the "brains" of the cosine
function are defined.

@cindex @code{hold()}
@cindex evaluation
The @code{eval_func()} option specifies the C++ function that implements
the @code{eval()} method, GiNaC's anonymous evaluator. This function takes
the same number of arguments as the associated symbolic function (one in this
case) and returns the (possibly transformed or in some way simplified)
symbolically evaluated function (@xref{Automatic evaluation}, for a description
of the automatic evaluation process). If no (further) evaluation is to take
place, the @code{eval_func()} function must return the original function
with @code{.hold()}, to avoid a potential infinite recursion. If your
symbolic functions produce a segmentation fault or stack overflow when
using them in expressions, you are probably missing a @code{.hold()}
somewhere.

The @code{eval_func()} function for the cosine looks something like this
(actually, it doesn't look like this at all, but it should give you an idea
what is going on):

@example
static ex cos_eval(const ex & x)
@{
    if ("x is a multiple of 2*Pi")
        return 1;
    else if ("x is a multiple of Pi")
        return -1;
    else if ("x is a multiple of Pi/2")
        return 0;
    // more rules...

    else if ("x has the form 'acos(y)'")
        return y;
    else if ("x has the form 'asin(y)'")
        return sqrt(1-y^2);
    // more rules...

    else
        return cos(x).hold();
@}
@end example

This function is called every time the cosine is used in a symbolic expression:

@example
@{
    ...
    e = cos(Pi);
     // this calls cos_eval(Pi), and inserts its return value into
     // the actual expression
    cout << e << endl;
     // prints '-1'
    ...
@}
@end example

In this way, @code{cos(4*Pi)} automatically becomes @math{1},
@code{cos(asin(a+b))} becomes @code{sqrt(1-(a+b)^2)}, etc. If no reasonable
symbolic transformation can be done, the unmodified function is returned
with @code{.hold()}.

GiNaC doesn't automatically transform @code{cos(2)} to @samp{-0.416146...}.
The user has to call @code{evalf()} for that. This is implemented in a
different function:

@example
static ex cos_evalf(const ex & x)
@{
    if (is_a<numeric>(x))
        return cos(ex_to<numeric>(x));
    else
        return cos(x).hold();
@}
@end example

Since we are lazy we defer the problem of numeric evaluation to somebody else,
in this case the @code{cos()} function for @code{numeric} objects, which in
turn hands it over to the @code{cos()} function in CLN. The @code{.hold()}
isn't really needed here, but reminds us that the corresponding @code{eval()}
function would require it in this place.

Differentiation will surely turn up and so we need to tell @code{cos}
what its first derivative is (higher derivatives, @code{.diff(x,3)} for
instance, are then handled automatically by @code{basic::diff} and
@code{ex::diff}):

@example
static ex cos_deriv(const ex & x, unsigned diff_param)
@{
    return -sin(x);
@}
@end example

@cindex product rule
The second parameter is obligatory but uninteresting at this point.  It
specifies which parameter to differentiate in a partial derivative in
case the function has more than one parameter, and its main application
is for correct handling of the chain rule.

An implementation of the series expansion is not needed for @code{cos()} as
it doesn't have any poles and GiNaC can do Taylor expansion by itself (as
long as it knows what the derivative of @code{cos()} is). @code{tan()}, on
the other hand, does have poles and may need to do Laurent expansion:

@example
static ex tan_series(const ex & x, const relational & rel,
                     int order, unsigned options)
@{
    // Find the actual expansion point
    const ex x_pt = x.subs(rel);

    if ("x_pt is not an odd multiple of Pi/2")
        throw do_taylor();  // tell function::series() to do Taylor expansion

    // On a pole, expand sin()/cos()
    return (sin(x)/cos(x)).series(rel, order+2, options);
@}
@end example

The @code{series()} implementation of a function @emph{must} return a
@code{pseries} object, otherwise your code will crash.

@subsection Function options

GiNaC functions understand several more options which are always
specified as @code{.option(params)}. None of them are required, but you
need to specify at least one option to @code{REGISTER_FUNCTION()}. There
is a do-nothing option called @code{dummy()} which you can use to define
functions without any special options.

@example
eval_func(<C++ function>)
evalf_func(<C++ function>)
derivative_func(<C++ function>)
series_func(<C++ function>)
conjugate_func(<C++ function>)
@end example

These specify the C++ functions that implement symbolic evaluation,
numeric evaluation, partial derivatives, and series expansion, respectively.
They correspond to the GiNaC methods @code{eval()}, @code{evalf()},
@code{diff()} and @code{series()}.

The @code{eval_func()} function needs to use @code{.hold()} if no further
automatic evaluation is desired or possible.

If no @code{series_func()} is given, GiNaC defaults to simple Taylor
expansion, which is correct if there are no poles involved. If the function
has poles in the complex plane, the @code{series_func()} needs to check
whether the expansion point is on a pole and fall back to Taylor expansion
if it isn't. Otherwise, the pole usually needs to be regularized by some
suitable transformation.

@example
latex_name(const string & n)
@end example

specifies the LaTeX code that represents the name of the function in LaTeX
output. The default is to put the function name in an @code{\mbox@{@}}.

@example
do_not_evalf_params()
@end example

This tells @code{evalf()} to not recursively evaluate the parameters of the
function before calling the @code{evalf_func()}.

@example
set_return_type(unsigned return_type, const return_type_t * return_type_tinfo)
@end example

This allows you to explicitly specify the commutation properties of the
function (@xref{Non-commutative objects}, for an explanation of
(non)commutativity in GiNaC). For example, with an object of type
@code{return_type_t} created like

@example
return_type_t my_type = make_return_type_t<matrix>();
@end example

you can use @code{set_return_type(return_types::noncommutative, &my_type)} to
make GiNaC treat your function like a matrix. By default, functions inherit the
commutation properties of their first argument. The utilized template function
@code{make_return_type_t<>()} 

@example
template<typename T> inline return_type_t make_return_type_t(const unsigned rl = 0)
@end example

can also be called with an argument specifying the representation label of the
non-commutative function (see section on dirac gamma matrices for more
details).

@example
set_symmetry(const symmetry & s)
@end example

specifies the symmetry properties of the function with respect to its
arguments. @xref{Indexed objects}, for an explanation of symmetry
specifications. GiNaC will automatically rearrange the arguments of
symmetric functions into a canonical order.

Sometimes you may want to have finer control over how functions are
displayed in the output. For example, the @code{abs()} function prints
itself as @samp{abs(x)} in the default output format, but as @samp{|x|}
in LaTeX mode, and @code{fabs(x)} in C source output. This is achieved
with the

@example
print_func<C>(<C++ function>)
@end example

option which is explained in the next section.

@subsection Functions with a variable number of arguments

The @code{DECLARE_FUNCTION} and @code{REGISTER_FUNCTION} macros define
functions with a fixed number of arguments. Sometimes, though, you may need
to have a function that accepts a variable number of expressions. One way to
accomplish this is to pass variable-length lists as arguments. The
@code{Li()} function uses this method for multiple polylogarithms.

It is also possible to define functions that accept a different number of
parameters under the same function name, such as the @code{psi()} function
which can be called either as @code{psi(z)} (the digamma function) or as
@code{psi(n, z)} (polygamma functions). These are actually two different
functions in GiNaC that, however, have the same name. Defining such
functions is not possible with the macros but requires manually fiddling
with GiNaC internals. If you are interested, please consult the GiNaC source
code for the @code{psi()} function (@file{inifcns.h} and
@file{inifcns_gamma.cpp}).


@node Printing, Structures, Symbolic functions, Extending GiNaC
@c    node-name, next, previous, up
@section GiNaC's expression output system

GiNaC allows the output of expressions in a variety of different formats
(@pxref{Input/output}). This section will explain how expression output
is implemented internally, and how to define your own output formats or
change the output format of built-in algebraic objects. You will also want
to read this section if you plan to write your own algebraic classes or
functions.

@cindex @code{print_context} (class)
@cindex @code{print_dflt} (class)
@cindex @code{print_latex} (class)
@cindex @code{print_tree} (class)
@cindex @code{print_csrc} (class)
All the different output formats are represented by a hierarchy of classes
rooted in the @code{print_context} class, defined in the @file{print.h}
header file:

@table @code
@item print_dflt
the default output format
@item print_latex
output in LaTeX mathematical mode
@item print_tree
a dump of the internal expression structure (for debugging)
@item print_csrc
the base class for C source output
@item print_csrc_float
C source output using the @code{float} type
@item print_csrc_double
C source output using the @code{double} type
@item print_csrc_cl_N
C source output using CLN types
@end table

The @code{print_context} base class provides two public data members:

@example
class print_context
@{
    ...
public:
    std::ostream & s;
    unsigned options;
@};
@end example

@code{s} is a reference to the stream to output to, while @code{options}
holds flags and modifiers. Currently, there is only one flag defined:
@code{print_options::print_index_dimensions} instructs the @code{idx} class
to print the index dimension which is normally hidden.

When you write something like @code{std::cout << e}, where @code{e} is
an object of class @code{ex}, GiNaC will construct an appropriate
@code{print_context} object (of a class depending on the selected output
format), fill in the @code{s} and @code{options} members, and call

@cindex @code{print()}
@example
void ex::print(const print_context & c, unsigned level = 0) const;
@end example

which in turn forwards the call to the @code{print()} method of the
top-level algebraic object contained in the expression.

Unlike other methods, GiNaC classes don't usually override their
@code{print()} method to implement expression output. Instead, the default
implementation @code{basic::print(c, level)} performs a run-time double
dispatch to a function selected by the dynamic type of the object and the
passed @code{print_context}. To this end, GiNaC maintains a separate method
table for each class, similar to the virtual function table used for ordinary
(single) virtual function dispatch.

The method table contains one slot for each possible @code{print_context}
type, indexed by the (internally assigned) serial number of the type. Slots
may be empty, in which case GiNaC will retry the method lookup with the
@code{print_context} object's parent class, possibly repeating the process
until it reaches the @code{print_context} base class. If there's still no
method defined, the method table of the algebraic object's parent class
is consulted, and so on, until a matching method is found (eventually it
will reach the combination @code{basic/print_context}, which prints the
object's class name enclosed in square brackets).

You can think of the print methods of all the different classes and output
formats as being arranged in a two-dimensional matrix with one axis listing
the algebraic classes and the other axis listing the @code{print_context}
classes.

Subclasses of @code{basic} can, of course, also overload @code{basic::print()}
to implement printing, but then they won't get any of the benefits of the
double dispatch mechanism (such as the ability for derived classes to
inherit only certain print methods from its parent, or the replacement of
methods at run-time).

@subsection Print methods for classes

The method table for a class is set up either in the definition of the class,
by passing the appropriate @code{print_func<C>()} option to
@code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT()} (@xref{Adding classes}, for
an example), or at run-time using @code{set_print_func<T, C>()}. The latter
can also be used to override existing methods dynamically.

The argument to @code{print_func<C>()} and @code{set_print_func<T, C>()} can
be a member function of the class (or one of its parent classes), a static
member function, or an ordinary (global) C++ function. The @code{C} template
parameter specifies the appropriate @code{print_context} type for which the
method should be invoked, while, in the case of @code{set_print_func<>()}, the
@code{T} parameter specifies the algebraic class (for @code{print_func<>()},
the class is the one being implemented by
@code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT}).

For print methods that are member functions, their first argument must be of
a type convertible to a @code{const C &}, and the second argument must be an
@code{unsigned}.

For static members and global functions, the first argument must be of a type
convertible to a @code{const T &}, the second argument must be of a type
convertible to a @code{const C &}, and the third argument must be an
@code{unsigned}. A global function will, of course, not have access to
private and protected members of @code{T}.

The @code{unsigned} argument of the print methods (and of @code{ex::print()}
and @code{basic::print()}) is used for proper parenthesizing of the output
(and by @code{print_tree} for proper indentation). It can be used for similar
purposes if you write your own output formats.

The explanations given above may seem complicated, but in practice it's
really simple, as shown in the following example. Suppose that we want to
display exponents in LaTeX output not as superscripts but with little
upwards-pointing arrows. This can be achieved in the following way:

@example
void my_print_power_as_latex(const power & p,
                             const print_latex & c,
                             unsigned level)
@{
    // get the precedence of the 'power' class
    unsigned power_prec = p.precedence();

    // if the parent operator has the same or a higher precedence
    // we need parentheses around the power
    if (level >= power_prec)
        c.s << '(';

    // print the basis and exponent, each enclosed in braces, and
    // separated by an uparrow
    c.s << '@{';
    p.op(0).print(c, power_prec);
    c.s << "@}\\uparrow@{";
    p.op(1).print(c, power_prec);
    c.s << '@}';

    // don't forget the closing parenthesis
    if (level >= power_prec)
        c.s << ')';
@}
                                                                                
int main()
@{
    // a sample expression
    symbol x("x"), y("y");
    ex e = -3*pow(x, 3)*pow(y, -2) + pow(x+y, 2) - 1;

    // switch to LaTeX mode
    cout << latex;

    // this prints "-1+@{(y+x)@}^@{2@}-3 \frac@{x^@{3@}@}@{y^@{2@}@}"
    cout << e << endl;

    // now we replace the method for the LaTeX output of powers with
    // our own one
    set_print_func<power, print_latex>(my_print_power_as_latex);

    // this prints "-1+@{@{(y+x)@}@}\uparrow@{2@}-3 \frac@{@{x@}\uparrow@{3@}@}@{@{y@}
    //              \uparrow@{2@}@}"
    cout << e << endl;
@}
@end example

Some notes:

@itemize

@item
The first argument of @code{my_print_power_as_latex} could also have been
a @code{const basic &}, the second one a @code{const print_context &}.

@item
The above code depends on @code{mul} objects converting their operands to
@code{power} objects for the purpose of printing.

@item
The output of products including negative powers as fractions is also
controlled by the @code{mul} class.

@item
The @code{power/print_latex} method provided by GiNaC prints square roots
using @code{\sqrt}, but the above code doesn't.

@end itemize

It's not possible to restore a method table entry to its previous or default
value. Once you have called @code{set_print_func()}, you can only override
it with another call to @code{set_print_func()}, but you can't easily go back
to the default behavior again (you can, of course, dig around in the GiNaC
sources, find the method that is installed at startup
(@code{power::do_print_latex} in this case), and @code{set_print_func} that
one; that is, after you circumvent the C++ member access control@dots{}).

@subsection Print methods for functions

Symbolic functions employ a print method dispatch mechanism similar to the
one used for classes. The methods are specified with @code{print_func<C>()}
function options. If you don't specify any special print methods, the function
will be printed with its name (or LaTeX name, if supplied), followed by a
comma-separated list of arguments enclosed in parentheses.

For example, this is what GiNaC's @samp{abs()} function is defined like:

@example
static ex abs_eval(const ex & arg) @{ ... @}
static ex abs_evalf(const ex & arg) @{ ... @}
                                                                                
static void abs_print_latex(const ex & arg, const print_context & c)
@{
    c.s << "@{|"; arg.print(c); c.s << "|@}";
@}
                                                                                
static void abs_print_csrc_float(const ex & arg, const print_context & c)
@{
    c.s << "fabs("; arg.print(c); c.s << ")";
@}
                                                                                
REGISTER_FUNCTION(abs, eval_func(abs_eval).
                       evalf_func(abs_evalf).
                       print_func<print_latex>(abs_print_latex).
                       print_func<print_csrc_float>(abs_print_csrc_float).
                       print_func<print_csrc_double>(abs_print_csrc_float));
@end example

This will display @samp{abs(x)} as @samp{|x|} in LaTeX mode and @code{fabs(x)}
in non-CLN C source output, but as @code{abs(x)} in all other formats.

There is currently no equivalent of @code{set_print_func()} for functions.

@subsection Adding new output formats

Creating a new output format involves subclassing @code{print_context},
which is somewhat similar to adding a new algebraic class
(@pxref{Adding classes}). There is a macro @code{GINAC_DECLARE_PRINT_CONTEXT}
that needs to go into the class definition, and a corresponding macro
@code{GINAC_IMPLEMENT_PRINT_CONTEXT} that has to appear at global scope.
Every @code{print_context} class needs to provide a default constructor
and a constructor from an @code{std::ostream} and an @code{unsigned}
options value.

Here is an example for a user-defined @code{print_context} class:

@example
class print_myformat : public print_dflt
@{
    GINAC_DECLARE_PRINT_CONTEXT(print_myformat, print_dflt)
public:
    print_myformat(std::ostream & os, unsigned opt = 0)
     : print_dflt(os, opt) @{@}
@};

print_myformat::print_myformat() : print_dflt(std::cout) @{@}

GINAC_IMPLEMENT_PRINT_CONTEXT(print_myformat, print_dflt)
@end example

That's all there is to it. None of the actual expression output logic is
implemented in this class. It merely serves as a selector for choosing
a particular format. The algorithms for printing expressions in the new
format are implemented as print methods, as described above.

@code{print_myformat} is a subclass of @code{print_dflt}, so it behaves
exactly like GiNaC's default output format:

@example
@{
    symbol x("x");
    ex e = pow(x, 2) + 1;

    // this prints "1+x^2"
    cout << e << endl;
    
    // this also prints "1+x^2"
    e.print(print_myformat()); cout << endl;

    ...
@}
@end example

To fill @code{print_myformat} with life, we need to supply appropriate
print methods with @code{set_print_func()}, like this:

@example
// This prints powers with '**' instead of '^'. See the LaTeX output
// example above for explanations.
void print_power_as_myformat(const power & p,
                             const print_myformat & c,
                             unsigned level)
@{
    unsigned power_prec = p.precedence();
    if (level >= power_prec)
        c.s << '(';
    p.op(0).print(c, power_prec);
    c.s << "**";
    p.op(1).print(c, power_prec);
    if (level >= power_prec)
        c.s << ')';
@}

@{
    ...
    // install a new print method for power objects
    set_print_func<power, print_myformat>(print_power_as_myformat);

    // now this prints "1+x**2"
    e.print(print_myformat()); cout << endl;

    // but the default format is still "1+x^2"
    cout << e << endl;
@}
@end example


@node Structures, Adding classes, Printing, Extending GiNaC
@c    node-name, next, previous, up
@section Structures

If you are doing some very specialized things with GiNaC, or if you just
need some more organized way to store data in your expressions instead of
anonymous lists, you may want to implement your own algebraic classes.
('algebraic class' means any class directly or indirectly derived from
@code{basic} that can be used in GiNaC expressions).

GiNaC offers two ways of accomplishing this: either by using the
@code{structure<T>} template class, or by rolling your own class from
scratch. This section will discuss the @code{structure<T>} template which
is easier to use but more limited, while the implementation of custom
GiNaC classes is the topic of the next section. However, you may want to
read both sections because many common concepts and member functions are
shared by both concepts, and it will also allow you to decide which approach
is most suited to your needs.

The @code{structure<T>} template, defined in the GiNaC header file
@file{structure.h}, wraps a type that you supply (usually a C++ @code{struct}
or @code{class}) into a GiNaC object that can be used in expressions.

@subsection Example: scalar products

Let's suppose that we need a way to handle some kind of abstract scalar
product of the form @samp{<x|y>} in expressions. Objects of the scalar
product class have to store their left and right operands, which can in turn
be arbitrary expressions. Here is a possible way to represent such a
product in a C++ @code{struct}:

@example
#include <iostream>
using namespace std;

#include <ginac/ginac.h>
using namespace GiNaC;

struct sprod_s @{
    ex left, right;

    sprod_s() @{@}
    sprod_s(ex l, ex r) : left(l), right(r) @{@}
@};
@end example

The default constructor is required. Now, to make a GiNaC class out of this
data structure, we need only one line:

@example
typedef structure<sprod_s> sprod;
@end example

That's it. This line constructs an algebraic class @code{sprod} which
contains objects of type @code{sprod_s}. We can now use @code{sprod} in
expressions like any other GiNaC class:

@example
...
    symbol a("a"), b("b");
    ex e = sprod(sprod_s(a, b));
...
@end example

Note the difference between @code{sprod} which is the algebraic class, and
@code{sprod_s} which is the unadorned C++ structure containing the @code{left}
and @code{right} data members. As shown above, an @code{sprod} can be
constructed from an @code{sprod_s} object.

If you find the nested @code{sprod(sprod_s())} constructor too unwieldy,
you could define a little wrapper function like this:

@example
inline ex make_sprod(ex left, ex right)
@{
    return sprod(sprod_s(left, right));
@}
@end example

The @code{sprod_s} object contained in @code{sprod} can be accessed with
the GiNaC @code{ex_to<>()} function followed by the @code{->} operator or
@code{get_struct()}:

@example
...
    cout << ex_to<sprod>(e)->left << endl;
     // -> a
    cout << ex_to<sprod>(e).get_struct().right << endl;
     // -> b
...
@end example

You only have read access to the members of @code{sprod_s}.

The type definition of @code{sprod} is enough to write your own algorithms
that deal with scalar products, for example:

@example
ex swap_sprod(ex p)
@{
    if (is_a<sprod>(p)) @{
        const sprod_s & sp = ex_to<sprod>(p).get_struct();
        return make_sprod(sp.right, sp.left);
    @} else
        return p;
@}

...
    f = swap_sprod(e);
     // f is now <b|a>
...
@end example

@subsection Structure output

While the @code{sprod} type is useable it still leaves something to be
desired, most notably proper output:

@example
...
    cout << e << endl;
     // -> [structure object]
...
@end example

By default, any structure types you define will be printed as
@samp{[structure object]}. To override this you can either specialize the
template's @code{print()} member function, or specify print methods with
@code{set_print_func<>()}, as described in @ref{Printing}. Unfortunately,
it's not possible to supply class options like @code{print_func<>()} to
structures, so for a self-contained structure type you need to resort to
overriding the @code{print()} function, which is also what we will do here.

The member functions of GiNaC classes are described in more detail in the
next section, but it shouldn't be hard to figure out what's going on here:

@example
void sprod::print(const print_context & c, unsigned level) const
@{
    // tree debug output handled by superclass
    if (is_a<print_tree>(c))
        inherited::print(c, level);

    // get the contained sprod_s object
    const sprod_s & sp = get_struct();

    // print_context::s is a reference to an ostream
    c.s << "<" << sp.left << "|" << sp.right << ">";
@}
@end example

Now we can print expressions containing scalar products:

@example
...
    cout << e << endl;
     // -> <a|b>
    cout << swap_sprod(e) << endl;
     // -> <b|a>
...
@end example

@subsection Comparing structures

The @code{sprod} class defined so far still has one important drawback: all
scalar products are treated as being equal because GiNaC doesn't know how to
compare objects of type @code{sprod_s}. This can lead to some confusing
and undesired behavior:

@example
...
    cout << make_sprod(a, b) - make_sprod(a*a, b*b) << endl;
     // -> 0
    cout << make_sprod(a, b) + make_sprod(a*a, b*b) << endl;
     // -> 2*<a|b> or 2*<a^2|b^2> (which one is undefined)
...
@end example

To remedy this, we first need to define the operators @code{==} and @code{<}
for objects of type @code{sprod_s}:

@example
inline bool operator==(const sprod_s & lhs, const sprod_s & rhs)
@{
    return lhs.left.is_equal(rhs.left) && lhs.right.is_equal(rhs.right);
@}

inline bool operator<(const sprod_s & lhs, const sprod_s & rhs)
@{
    return lhs.left.compare(rhs.left) < 0
           ? true : lhs.right.compare(rhs.right) < 0;
@}
@end example

The ordering established by the @code{<} operator doesn't have to make any
algebraic sense, but it needs to be well defined. Note that we can't use
expressions like @code{lhs.left == rhs.left} or @code{lhs.left < rhs.left}
in the implementation of these operators because they would construct
GiNaC @code{relational} objects which in the case of @code{<} do not
establish a well defined ordering (for arbitrary expressions, GiNaC can't
decide which one is algebraically 'less').

Next, we need to change our definition of the @code{sprod} type to let
GiNaC know that an ordering relation exists for the embedded objects:

@example
typedef structure<sprod_s, compare_std_less> sprod;
@end example

@code{sprod} objects then behave as expected:

@example
...
    cout << make_sprod(a, b) - make_sprod(a*a, b*b) << endl;
     // -> <a|b>-<a^2|b^2>
    cout << make_sprod(a, b) + make_sprod(a*a, b*b) << endl;
     // -> <a|b>+<a^2|b^2>
    cout << make_sprod(a, b) - make_sprod(a, b) << endl;
     // -> 0
    cout << make_sprod(a, b) + make_sprod(a, b) << endl;
     // -> 2*<a|b>
...
@end example

The @code{compare_std_less} policy parameter tells GiNaC to use the
@code{std::less} and @code{std::equal_to} functors to compare objects of
type @code{sprod_s}. By default, these functors forward their work to the
standard @code{<} and @code{==} operators, which we have overloaded.
Alternatively, we could have specialized @code{std::less} and
@code{std::equal_to} for class @code{sprod_s}.

GiNaC provides two other comparison policies for @code{structure<T>}
objects: the default @code{compare_all_equal}, and @code{compare_bitwise}
which does a bit-wise comparison of the contained @code{T} objects.
This should be used with extreme care because it only works reliably with
built-in integral types, and it also compares any padding (filler bytes of
undefined value) that the @code{T} class might have.

@subsection Subexpressions

Our scalar product class has two subexpressions: the left and right
operands. It might be a good idea to make them accessible via the standard
@code{nops()} and @code{op()} methods:

@example
size_t sprod::nops() const
@{
    return 2;
@}

ex sprod::op(size_t i) const
@{
    switch (i) @{
    case 0:
        return get_struct().left;
    case 1:
        return get_struct().right;
    default:
        throw std::range_error("sprod::op(): no such operand");
    @}
@}
@end example

Implementing @code{nops()} and @code{op()} for container types such as
@code{sprod} has two other nice side effects:

@itemize @bullet
@item
@code{has()} works as expected
@item
GiNaC generates better hash keys for the objects (the default implementation
of @code{calchash()} takes subexpressions into account)
@end itemize

@cindex @code{let_op()}
There is a non-const variant of @code{op()} called @code{let_op()} that
allows replacing subexpressions:

@example
ex & sprod::let_op(size_t i)
@{
    // every non-const member function must call this
    ensure_if_modifiable();

    switch (i) @{
    case 0:
        return get_struct().left;
    case 1:
        return get_struct().right;
    default:
        throw std::range_error("sprod::let_op(): no such operand");
    @}
@}
@end example

Once we have provided @code{let_op()} we also get @code{subs()} and
@code{map()} for free. In fact, every container class that returns a non-null
@code{nops()} value must either implement @code{let_op()} or provide custom
implementations of @code{subs()} and @code{map()}.

In turn, the availability of @code{map()} enables the recursive behavior of a
couple of other default method implementations, in particular @code{evalf()},
@code{evalm()}, @code{normal()}, @code{diff()} and @code{expand()}. Although
we probably want to provide our own version of @code{expand()} for scalar
products that turns expressions like @samp{<a+b|c>} into @samp{<a|c>+<b|c>}.
This is left as an exercise for the reader.

The @code{structure<T>} template defines many more member functions that
you can override by specialization to customize the behavior of your
structures. You are referred to the next section for a description of
some of these (especially @code{eval()}). There is, however, one topic
that shall be addressed here, as it demonstrates one peculiarity of the
@code{structure<T>} template: archiving.

@subsection Archiving structures

If you don't know how the archiving of GiNaC objects is implemented, you
should first read the next section and then come back here. You're back?
Good.

To implement archiving for structures it is not enough to provide
specializations for the @code{archive()} member function and the
unarchiving constructor (the @code{unarchive()} function has a default
implementation). You also need to provide a unique name (as a string literal)
for each structure type you define. This is because in GiNaC archives,
the class of an object is stored as a string, the class name.

By default, this class name (as returned by the @code{class_name()} member
function) is @samp{structure} for all structure classes. This works as long
as you have only defined one structure type, but if you use two or more you
need to provide a different name for each by specializing the
@code{get_class_name()} member function. Here is a sample implementation
for enabling archiving of the scalar product type defined above:

@example
const char *sprod::get_class_name() @{ return "sprod"; @}

void sprod::archive(archive_node & n) const
@{
    inherited::archive(n);
    n.add_ex("left", get_struct().left);
    n.add_ex("right", get_struct().right);
@}

sprod::structure(const archive_node & n, lst & sym_lst) : inherited(n, sym_lst)
@{
    n.find_ex("left", get_struct().left, sym_lst);
    n.find_ex("right", get_struct().right, sym_lst);
@}
@end example

Note that the unarchiving constructor is @code{sprod::structure} and not
@code{sprod::sprod}, and that we don't need to supply an
@code{sprod::unarchive()} function.


@node Adding classes, A comparison with other CAS, Structures, Extending GiNaC
@c    node-name, next, previous, up
@section Adding classes

The @code{structure<T>} template provides an way to extend GiNaC with custom
algebraic classes that is easy to use but has its limitations, the most
severe of which being that you can't add any new member functions to
structures. To be able to do this, you need to write a new class definition
from scratch.

This section will explain how to implement new algebraic classes in GiNaC by
giving the example of a simple 'string' class. After reading this section
you will know how to properly declare a GiNaC class and what the minimum
required member functions are that you have to implement. We only cover the
implementation of a 'leaf' class here (i.e. one that doesn't contain
subexpressions). Creating a container class like, for example, a class
representing tensor products is more involved but this section should give
you enough information so you can consult the source to GiNaC's predefined
classes if you want to implement something more complicated.

@subsection Hierarchy of algebraic classes.

@cindex hierarchy of classes
All algebraic classes (that is, all classes that can appear in expressions)
in GiNaC are direct or indirect subclasses of the class @code{basic}. So a
@code{basic *} represents a generic pointer to an algebraic class. Working
with such pointers directly is cumbersome (think of memory management), hence
GiNaC wraps them into @code{ex} (@pxref{Expressions are reference counted}).
To make such wrapping possible every algebraic class has to implement several
methods. Visitors (@pxref{Visitors and tree traversal}), printing, and 
(un)archiving (@pxref{Input/output}) require helper methods too. But don't
worry, most of the work is simplified by the following macros (defined
in @file{registrar.h}):
@itemize @bullet
@item @code{GINAC_DECLARE_REGISTERED_CLASS}
@item @code{GINAC_IMPLEMENT_REGISTERED_CLASS}
@item @code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT}
@end itemize

The @code{GINAC_DECLARE_REGISTERED_CLASS} macro inserts declarations
required for memory management, visitors, printing, and (un)archiving.
It takes the name of the class and its direct superclass as arguments.
The @code{GINAC_DECLARE_REGISTERED_CLASS} should be the first line after
the opening brace of the class definition.

@code{GINAC_IMPLEMENT_REGISTERED_CLASS} takes the same arguments as
@code{GINAC_DECLARE_REGISTERED_CLASS}. It initializes certain static
members of a class so that printing and (un)archiving works. The
@code{GINAC_IMPLEMENT_REGISTERED_CLASS} may appear anywhere else in
the source (at global scope, of course, not inside a function).

@code{GINAC_IMPLEMENT_REGISTERED_CLASS_OPT} is a variant of
@code{GINAC_IMPLEMENT_REGISTERED_CLASS}. It allows specifying additional
options, such as custom printing functions.

@subsection A minimalistic example

Now we will start implementing a new class @code{mystring} that allows
placing character strings in algebraic expressions (this is not very useful,
but it's just an example). This class will be a direct subclass of
@code{basic}. You can use this sample implementation as a starting point
for your own classes @footnote{The self-contained source for this example is
included in GiNaC, see the @file{doc/examples/mystring.cpp} file.}.

The code snippets given here assume that you have included some header files
as follows:

@example
#include <iostream>
#include <string>   
#include <stdexcept>
using namespace std;

#include <ginac/ginac.h>
using namespace GiNaC;
@end example

Now we can write down the class declaration. The class stores a C++
@code{string} and the user shall be able to construct a @code{mystring}
object from a string:

@example
class mystring : public basic
@{
    GINAC_DECLARE_REGISTERED_CLASS(mystring, basic)
  
public:
    mystring(const string & s);

private:
    string str;
@};

GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
@end example

The @code{GINAC_DECLARE_REGISTERED_CLASS} macro insert declarations required
for memory management, visitors, printing, and (un)archiving.
@code{GINAC_IMPLEMENT_REGISTERED_CLASS} initializes certain static members
of a class so that printing and (un)archiving works.

Now there are three member functions we have to implement to get a working
class:

@itemize

@item
@code{mystring()}, the default constructor.

@item
@cindex @code{compare_same_type()}
@code{int compare_same_type(const basic & other)}, which is used internally
by GiNaC to establish a canonical sort order for terms. It returns 0, +1 or
-1, depending on the relative order of this object and the @code{other}
object. If it returns 0, the objects are considered equal.
@strong{Please notice:} This has nothing to do with the (numeric) ordering
relationship expressed by @code{<}, @code{>=} etc (which cannot be defined
for non-numeric classes). For example, @code{numeric(1).compare_same_type(numeric(2))}
may return +1 even though 1 is clearly smaller than 2. Every GiNaC class
must provide a @code{compare_same_type()} function, even those representing
objects for which no reasonable algebraic ordering relationship can be
defined.

@item
And, of course, @code{mystring(const string& s)} which is the constructor
we declared.

@end itemize

Let's proceed step-by-step. The default constructor looks like this:

@example
mystring::mystring() @{ @}
@end example

In the default constructor you should set all other member variables to
reasonable default values (we don't need that here since our @code{str}
member gets set to an empty string automatically).

Our @code{compare_same_type()} function uses a provided function to compare
the string members:

@example
int mystring::compare_same_type(const basic & other) const
@{
    const mystring &o = static_cast<const mystring &>(other);
    int cmpval = str.compare(o.str);
    if (cmpval == 0)
        return 0;
    else if (cmpval < 0)
        return -1;
    else
        return 1;
@}
@end example

Although this function takes a @code{basic &}, it will always be a reference
to an object of exactly the same class (objects of different classes are not
comparable), so the cast is safe. If this function returns 0, the two objects
are considered equal (in the sense that @math{A-B=0}), so you should compare
all relevant member variables.

Now the only thing missing is our constructor:

@example
mystring::mystring(const string& s) : str(s) @{ @}
@end example

No surprises here. We set the @code{str} member from the argument.

That's it! We now have a minimal working GiNaC class that can store
strings in algebraic expressions. Let's confirm that the RTTI works:

@example
ex e = mystring("Hello, world!");
cout << is_a<mystring>(e) << endl;
 // -> 1 (true)

cout << ex_to<basic>(e).class_name() << endl;
 // -> mystring
@end example

Obviously it does. Let's see what the expression @code{e} looks like:

@example
cout << e << endl;
 // -> [mystring object]
@end example

Hm, not exactly what we expect, but of course the @code{mystring} class
doesn't yet know how to print itself. This can be done either by implementing
the @code{print()} member function, or, preferably, by specifying a
@code{print_func<>()} class option. Let's say that we want to print the string
surrounded by double quotes:

@example
class mystring : public basic
@{
    ...
protected:
    void do_print(const print_context & c, unsigned level = 0) const;
    ...
@};

void mystring::do_print(const print_context & c, unsigned level) const
@{
    // print_context::s is a reference to an ostream
    c.s << '\"' << str << '\"';
@}
@end example

The @code{level} argument is only required for container classes to
correctly parenthesize the output.

Now we need to tell GiNaC that @code{mystring} objects should use the
@code{do_print()} member function for printing themselves. For this, we
replace the line

@example
GINAC_IMPLEMENT_REGISTERED_CLASS(mystring, basic)
@end example

with

@example
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mystring, basic,
  print_func<print_context>(&mystring::do_print))
@end example

Let's try again to print the expression:

@example
cout << e << endl;
 // -> "Hello, world!"
@end example

Much better. If we wanted to have @code{mystring} objects displayed in a
different way depending on the output format (default, LaTeX, etc.), we
would have supplied multiple @code{print_func<>()} options with different
template parameters (@code{print_dflt}, @code{print_latex}, etc.),
separated by dots. This is similar to the way options are specified for
symbolic functions. @xref{Printing}, for a more in-depth description of the
way expression output is implemented in GiNaC.

The @code{mystring} class can be used in arbitrary expressions:

@example
e += mystring("GiNaC rulez"); 
cout << e << endl;
 // -> "GiNaC rulez"+"Hello, world!"
@end example

(GiNaC's automatic term reordering is in effect here), or even

@example
e = pow(mystring("One string"), 2*sin(Pi-mystring("Another string")));
cout << e << endl;
 // -> "One string"^(2*sin(-"Another string"+Pi))
@end example

Whether this makes sense is debatable but remember that this is only an
example. At least it allows you to implement your own symbolic algorithms
for your objects.

Note that GiNaC's algebraic rules remain unchanged:

@example
e = mystring("Wow") * mystring("Wow");
cout << e << endl;
 // -> "Wow"^2

e = pow(mystring("First")-mystring("Second"), 2);
cout << e.expand() << endl;
 // -> -2*"First"*"Second"+"First"^2+"Second"^2
@end example

There's no way to, for example, make GiNaC's @code{add} class perform string
concatenation. You would have to implement this yourself.

@subsection Automatic evaluation

@cindex evaluation
@cindex @code{eval()}
@cindex @code{hold()}
When dealing with objects that are just a little more complicated than the
simple string objects we have implemented, chances are that you will want to
have some automatic simplifications or canonicalizations performed on them.
This is done in the evaluation member function @code{eval()}. Let's say that
we wanted all strings automatically converted to lowercase with
non-alphabetic characters stripped, and empty strings removed:

@example
class mystring : public basic
@{
    ...
public:
    ex eval(int level = 0) const;
    ...
@};

ex mystring::eval(int level) const
@{
    string new_str;
    for (size_t i=0; i<str.length(); i++) @{
        char c = str[i];
        if (c >= 'A' && c <= 'Z') 
            new_str += tolower(c);
        else if (c >= 'a' && c <= 'z')
            new_str += c;
    @}

    if (new_str.length() == 0)
        return 0;
    else
        return mystring(new_str).hold();
@}
@end example

The @code{level} argument is used to limit the recursion depth of the
evaluation.  We don't have any subexpressions in the @code{mystring}
class so we are not concerned with this.  If we had, we would call the
@code{eval()} functions of the subexpressions with @code{level - 1} as
the argument if @code{level != 1}.  The @code{hold()} member function
sets a flag in the object that prevents further evaluation.  Otherwise
we might end up in an endless loop.  When you want to return the object
unmodified, use @code{return this->hold();}.

Let's confirm that it works:

@example
ex e = mystring("Hello, world!") + mystring("!?#");
cout << e << endl;
 // -> "helloworld"

e = mystring("Wow!") + mystring("WOW") + mystring(" W ** o ** W");  
cout << e << endl;
 // -> 3*"wow"
@end example

@subsection Optional member functions

We have implemented only a small set of member functions to make the class
work in the GiNaC framework. There are two functions that are not strictly
required but will make operations with objects of the class more efficient:

@cindex @code{calchash()}
@cindex @code{is_equal_same_type()}
@example
unsigned calchash() const;
bool is_equal_same_type(const basic & other) const;
@end example

The @code{calchash()} method returns an @code{unsigned} hash value for the
object which will allow GiNaC to compare and canonicalize expressions much
more efficiently. You should consult the implementation of some of the built-in
GiNaC classes for examples of hash functions. The default implementation of
@code{calchash()} calculates a hash value out of the @code{tinfo_key} of the
class and all subexpressions that are accessible via @code{op()}.

@code{is_equal_same_type()} works like @code{compare_same_type()} but only
tests for equality without establishing an ordering relation, which is often
faster. The default implementation of @code{is_equal_same_type()} just calls
@code{compare_same_type()} and tests its result for zero.

@subsection Other member functions

For a real algebraic class, there are probably some more functions that you
might want to provide:

@example
bool info(unsigned inf) const;
ex evalf(int level = 0) const;
ex series(const relational & r, int order, unsigned options = 0) const;
ex derivative(const symbol & s) const;
@end example

If your class stores sub-expressions (see the scalar product example in the
previous section) you will probably want to override

@cindex @code{let_op()}
@example
size_t nops() cont;
ex op(size_t i) const;
ex & let_op(size_t i);
ex subs(const lst & ls, const lst & lr, unsigned options = 0) const;
ex map(map_function & f) const;
@end example

@code{let_op()} is a variant of @code{op()} that allows write access. The
default implementations of @code{subs()} and @code{map()} use it, so you have
to implement either @code{let_op()}, or @code{subs()} and @code{map()}.

You can, of course, also add your own new member functions. Remember
that the RTTI may be used to get information about what kinds of objects
you are dealing with (the position in the class hierarchy) and that you
can always extract the bare object from an @code{ex} by stripping the
@code{ex} off using the @code{ex_to<mystring>(e)} function when that
should become a need.

That's it. May the source be with you!

@subsection Upgrading extension classes from older version of GiNaC

GiNaC used to use a custom run time type information system (RTTI). It was
removed from GiNaC. Thus, one needs to rewrite constructors which set
@code{tinfo_key} (which does not exist any more). For example,

@example
myclass::myclass() : inherited(&myclass::tinfo_static) @{@}
@end example

needs to be rewritten as

@example
myclass::myclass() @{@}
@end example

@node A comparison with other CAS, Advantages, Adding classes, Top
@c    node-name, next, previous, up
@chapter A Comparison With Other CAS
@cindex advocacy

This chapter will give you some information on how GiNaC compares to
other, traditional Computer Algebra Systems, like @emph{Maple},
@emph{Mathematica} or @emph{Reduce}, where it has advantages and
disadvantages over these systems.

@menu
* Advantages::                       Strengths of the GiNaC approach.
* Disadvantages::                    Weaknesses of the GiNaC approach.
* Why C++?::                         Attractiveness of C++.
@end menu

@node Advantages, Disadvantages, A comparison with other CAS, A comparison with other CAS
@c    node-name, next, previous, up
@section Advantages

GiNaC has several advantages over traditional Computer
Algebra Systems, like 

@itemize @bullet

@item
familiar language: all common CAS implement their own proprietary
grammar which you have to learn first (and maybe learn again when your
vendor decides to `enhance' it).  With GiNaC you can write your program
in common C++, which is standardized.

@cindex STL
@item
structured data types: you can build up structured data types using
@code{struct}s or @code{class}es together with STL features instead of
using unnamed lists of lists of lists.

@item
strongly typed: in CAS, you usually have only one kind of variables
which can hold contents of an arbitrary type.  This 4GL like feature is
nice for novice programmers, but dangerous.
    
@item
development tools: powerful development tools exist for C++, like fancy
editors (e.g. with automatic indentation and syntax highlighting),
debuggers, visualization tools, documentation generators@dots{}

@item
modularization: C++ programs can easily be split into modules by
separating interface and implementation.

@item
price: GiNaC is distributed under the GNU Public License which means
that it is free and available with source code.  And there are excellent
C++-compilers for free, too.
    
@item
extendable: you can add your own classes to GiNaC, thus extending it on
a very low level.  Compare this to a traditional CAS that you can
usually only extend on a high level by writing in the language defined
by the parser.  In particular, it turns out to be almost impossible to
fix bugs in a traditional system.

@item
multiple interfaces: Though real GiNaC programs have to be written in
some editor, then be compiled, linked and executed, there are more ways
to work with the GiNaC engine.  Many people want to play with
expressions interactively, as in traditional CASs.  Currently, two such
windows into GiNaC have been implemented and many more are possible: the
tiny @command{ginsh} that is part of the distribution exposes GiNaC's
types to a command line and second, as a more consistent approach, an
interactive interface to the Cint C++ interpreter has been put together
(called GiNaC-cint) that allows an interactive scripting interface
consistent with the C++ language.  It is available from the usual GiNaC
FTP-site.

@item
seamless integration: it is somewhere between difficult and impossible
to call CAS functions from within a program written in C++ or any other
programming language and vice versa.  With GiNaC, your symbolic routines
are part of your program.  You can easily call third party libraries,
e.g. for numerical evaluation or graphical interaction.  All other
approaches are much more cumbersome: they range from simply ignoring the
problem (i.e. @emph{Maple}) to providing a method for `embedding' the
system (i.e. @emph{Yacas}).

@item
efficiency: often large parts of a program do not need symbolic
calculations at all.  Why use large integers for loop variables or
arbitrary precision arithmetics where @code{int} and @code{double} are
sufficient?  For pure symbolic applications, GiNaC is comparable in
speed with other CAS.

@end itemize


@node Disadvantages, Why C++?, Advantages, A comparison with other CAS
@c    node-name, next, previous, up
@section Disadvantages

Of course it also has some disadvantages:

@itemize @bullet

@item
advanced features: GiNaC cannot compete with a program like
@emph{Reduce} which exists for more than 30 years now or @emph{Maple}
which grows since 1981 by the work of dozens of programmers, with
respect to mathematical features.  Integration, 
non-trivial simplifications, limits etc. are missing in GiNaC (and are
not planned for the near future).

@item
portability: While the GiNaC library itself is designed to avoid any
platform dependent features (it should compile on any ANSI compliant C++
compiler), the currently used version of the CLN library (fast large
integer and arbitrary precision arithmetics) can only by compiled
without hassle on systems with the C++ compiler from the GNU Compiler
Collection (GCC).@footnote{This is because CLN uses PROVIDE/REQUIRE like
macros to let the compiler gather all static initializations, which
works for GNU C++ only.  Feel free to contact the authors in case you
really believe that you need to use a different compiler.  We have
occasionally used other compilers and may be able to give you advice.}
GiNaC uses recent language features like explicit constructors, mutable
members, RTTI, @code{dynamic_cast}s and STL, so ANSI compliance is meant
literally.  Recent GCC versions starting at 2.95.3, although itself not
yet ANSI compliant, support all needed features.
    
@end itemize


@node Why C++?, Internal structures, Disadvantages, A comparison with other CAS
@c    node-name, next, previous, up
@section Why C++?

Why did we choose to implement GiNaC in C++ instead of Java or any other
language?  C++ is not perfect: type checking is not strict (casting is
possible), separation between interface and implementation is not
complete, object oriented design is not enforced.  The main reason is
the often scolded feature of operator overloading in C++.  While it may
be true that operating on classes with a @code{+} operator is rarely
meaningful, it is perfectly suited for algebraic expressions.  Writing
@math{3x+5y} as @code{3*x+5*y} instead of
@code{x.times(3).plus(y.times(5))} looks much more natural.
Furthermore, the main developers are more familiar with C++ than with
any other programming language.


@node Internal structures, Expressions are reference counted, Why C++? , Top
@c    node-name, next, previous, up
@appendix Internal structures

@menu
* Expressions are reference counted::
* Internal representation of products and sums::
@end menu

@node Expressions are reference counted, Internal representation of products and sums, Internal structures, Internal structures
@c    node-name, next, previous, up
@appendixsection Expressions are reference counted

@cindex reference counting
@cindex copy-on-write
@cindex garbage collection
In GiNaC, there is an @emph{intrusive reference-counting} mechanism at work
where the counter belongs to the algebraic objects derived from class
@code{basic} but is maintained by the smart pointer class @code{ptr}, of
which @code{ex} contains an instance. If you understood that, you can safely
skip the rest of this passage.

Expressions are extremely light-weight since internally they work like
handles to the actual representation.  They really hold nothing more
than a pointer to some other object.  What this means in practice is
that whenever you create two @code{ex} and set the second equal to the
first no copying process is involved. Instead, the copying takes place
as soon as you try to change the second.  Consider the simple sequence
of code:

@example
#include <iostream>
#include <ginac/ginac.h>
using namespace std;
using namespace GiNaC;

int main()
@{
    symbol x("x"), y("y"), z("z");
    ex e1, e2;

    e1 = sin(x + 2*y) + 3*z + 41;
    e2 = e1;                // e2 points to same object as e1
    cout << e2 << endl;     // prints sin(x+2*y)+3*z+41
    e2 += 1;                // e2 is copied into a new object
    cout << e2 << endl;     // prints sin(x+2*y)+3*z+42
@}
@end example

The line @code{e2 = e1;} creates a second expression pointing to the
object held already by @code{e1}.  The time involved for this operation
is therefore constant, no matter how large @code{e1} was.  Actual
copying, however, must take place in the line @code{e2 += 1;} because
@code{e1} and @code{e2} are not handles for the same object any more.
This concept is called @dfn{copy-on-write semantics}.  It increases
performance considerably whenever one object occurs multiple times and
represents a simple garbage collection scheme because when an @code{ex}
runs out of scope its destructor checks whether other expressions handle
the object it points to too and deletes the object from memory if that
turns out not to be the case.  A slightly less trivial example of
differentiation using the chain-rule should make clear how powerful this
can be:

@example
@{
    symbol x("x"), y("y");

    ex e1 = x + 3*y;
    ex e2 = pow(e1, 3);
    ex e3 = diff(sin(e2), x);   // first derivative of sin(e2) by x
    cout << e1 << endl          // prints x+3*y
         << e2 << endl          // prints (x+3*y)^3
         << e3 << endl;         // prints 3*(x+3*y)^2*cos((x+3*y)^3)
@}
@end example

Here, @code{e1} will actually be referenced three times while @code{e2}
will be referenced two times.  When the power of an expression is built,
that expression needs not be copied.  Likewise, since the derivative of
a power of an expression can be easily expressed in terms of that
expression, no copying of @code{e1} is involved when @code{e3} is
constructed.  So, when @code{e3} is constructed it will print as
@code{3*(x+3*y)^2*cos((x+3*y)^3)} but the argument of @code{cos()} only
holds a reference to @code{e2} and the factor in front is just
@code{3*e1^2}.

As a user of GiNaC, you cannot see this mechanism of copy-on-write
semantics.  When you insert an expression into a second expression, the
result behaves exactly as if the contents of the first expression were
inserted.  But it may be useful to remember that this is not what
happens.  Knowing this will enable you to write much more efficient
code.  If you still have an uncertain feeling with copy-on-write
semantics, we recommend you have a look at the
@uref{http://www.parashift.com/c++-faq-lite/, C++-FAQ lite} by
Marshall Cline.  Chapter 16 covers this issue and presents an
implementation which is pretty close to the one in GiNaC.


@node Internal representation of products and sums, Package tools, Expressions are reference counted, Internal structures
@c    node-name, next, previous, up
@appendixsection Internal representation of products and sums

@cindex representation
@cindex @code{add}
@cindex @code{mul}
@cindex @code{power}
Although it should be completely transparent for the user of
GiNaC a short discussion of this topic helps to understand the sources
and also explain performance to a large degree.  Consider the 
unexpanded symbolic expression 
@tex
$2d^3 \left( 4a + 5b - 3 \right)$
@end tex
@ifnottex
@math{2*d^3*(4*a+5*b-3)}
@end ifnottex
which could naively be represented by a tree of linear containers for
addition and multiplication, one container for exponentiation with base
and exponent and some atomic leaves of symbols and numbers in this
fashion:

@ifnotinfo
@image{repnaive}
@end ifnotinfo
@ifinfo
<PICTURE MISSING>
@end ifinfo

@cindex pair-wise representation
However, doing so results in a rather deeply nested tree which will
quickly become inefficient to manipulate.  We can improve on this by
representing the sum as a sequence of terms, each one being a pair of a
purely numeric multiplicative coefficient and its rest.  In the same
spirit we can store the multiplication as a sequence of terms, each
having a numeric exponent and a possibly complicated base, the tree
becomes much more flat:

@ifnotinfo
@image{reppair}
@end ifnotinfo
@ifinfo
<PICTURE MISSING>
@end ifinfo

The number @code{3} above the symbol @code{d} shows that @code{mul}
objects are treated similarly where the coefficients are interpreted as
@emph{exponents} now.  Addition of sums of terms or multiplication of
products with numerical exponents can be coded to be very efficient with
such a pair-wise representation.  Internally, this handling is performed
by most CAS in this way.  It typically speeds up manipulations by an
order of magnitude.  The overall multiplicative factor @code{2} and the
additive term @code{-3} look somewhat out of place in this
representation, however, since they are still carrying a trivial
exponent and multiplicative factor @code{1} respectively.  Within GiNaC,
this is avoided by adding a field that carries an overall numeric
coefficient.  This results in the realistic picture of internal
representation for
@tex
$2d^3 \left( 4a + 5b - 3 \right)$:
@end tex
@ifnottex
@math{2*d^3*(4*a+5*b-3)}:
@end ifnottex

@ifnotinfo
@image{repreal}
@end ifnotinfo
@ifinfo
<PICTURE MISSING>
@end ifinfo

@cindex radical
This also allows for a better handling of numeric radicals, since
@code{sqrt(2)} can now be carried along calculations.  Now it should be
clear, why both classes @code{add} and @code{mul} are derived from the
same abstract class: the data representation is the same, only the
semantics differs.  In the class hierarchy, methods for polynomial
expansion and the like are reimplemented for @code{add} and @code{mul},
but the data structure is inherited from @code{expairseq}.


@node Package tools, Configure script options, Internal representation of products and sums, Top
@c    node-name, next, previous, up
@appendix Package tools

If you are creating a software package that uses the GiNaC library,
setting the correct command line options for the compiler and linker can
be difficult.  The @command{pkg-config} utility makes this process
easier.  GiNaC supplies all necessary data in @file{ginac.pc} (installed
into @code{/usr/local/lib/pkgconfig} by default). To compile a simple
program use @footnote{If GiNaC is installed into some non-standard
directory @var{prefix} one should set the @var{PKG_CONFIG_PATH}
environment variable to @var{prefix}/lib/pkgconfig for this to work.}
@example
g++ -o simple `pkg-config --cflags --libs ginac` simple.cpp
@end example

This command line might expand to (for example):
@example
g++ -o simple -lginac -lcln simple.cpp
@end example

Not only is the form using @command{pkg-config} easier to type, it will
work on any system, no matter how GiNaC was configured.

For packages configured using GNU automake, @command{pkg-config} also
provides the @code{PKG_CHECK_MODULES} macro to automate the process of
checking for libraries

@example
PKG_CHECK_MODULES(MYAPP, ginac >= MINIMUM_VERSION, 
                  [@var{ACTION-IF-FOUND}],
                  [@var{ACTION-IF-NOT-FOUND}])
@end example

This macro:

@itemize @bullet

@item
Determines the location of GiNaC using data from @file{ginac.pc}, which is
either found in the default @command{pkg-config} search path, or from 
the environment variable @env{PKG_CONFIG_PATH}.

@item
Tests the installed libraries to make sure that their version
is later than @var{MINIMUM-VERSION}.

@item
If the required version was found, sets the @env{MYAPP_CFLAGS} variable
to the output of @command{pkg-config --cflags ginac} and the @env{MYAPP_LIBS}
variable to the output of @command{pkg-config --libs ginac}, and calls
@samp{AC_SUBST()} for these variables so they can be used in generated
makefiles, and then executes @var{ACTION-IF-FOUND}.

@item
If the required version was not found, executes @var{ACTION-IF-NOT-FOUND}.

@end itemize

@menu
* Configure script options::  Configuring a package that uses GiNaC
* Example package::           Example of a package using GiNaC
@end menu


@node Configure script options, Example package, Package tools, Package tools 
@c    node-name, next, previous, up
@subsection Configuring a package that uses GiNaC

The directory where the GiNaC libraries are installed needs
to be found by your system's dynamic linkers (both compile- and run-time
ones).  See the documentation of your system linker for details.  Also
make sure that @file{ginac.pc} is in @command{pkg-config}'s search path,
@xref{pkg-config, ,pkg-config, *manpages*}.

The short summary below describes how to do this on a GNU/Linux
system.

Suppose GiNaC is installed into the directory @samp{PREFIX}. To tell
the linkers where to find the library one should

@itemize @bullet
@item
edit @file{/etc/ld.so.conf} and run @command{ldconfig}. For example,
@example
# echo PREFIX/lib >> /etc/ld.so.conf
# ldconfig
@end example

@item
or set the environment variables @env{LD_LIBRARY_PATH} and @env{LD_RUN_PATH}
@example
$ export LD_LIBRARY_PATH=PREFIX/lib
$ export LD_RUN_PATH=PREFIX/lib
@end example

@item
or give a @samp{-L} and @samp{--rpath} flags when running configure,
for instance:

@example
$ LDFLAGS='-Wl,-LPREFIX/lib -Wl,--rpath=PREFIX/lib' ./configure
@end example
@end itemize

To tell @command{pkg-config} where the @file{ginac.pc} file is,
set the @env{PKG_CONFIG_PATH} environment variable:
@example
$ export PKG_CONFIG_PATH=PREFIX/lib/pkgconfig
@end example

Finally, run the @command{configure} script
@example
$ ./configure 
@end example

@c There are many other ways to do the same, @xref{Options, ,Command Line Options, ld, GNU ld manual}.

@node Example package, Bibliography, Configure script options, Package tools
@c    node-name, next, previous, up
@subsection Example of a package using GiNaC

The following shows how to build a simple package using automake
and the @samp{PKG_CHECK_MODULES} macro. The program used here is @file{simple.cpp}:

@example
#include <iostream>
#include <ginac/ginac.h>

int main()
@{
    GiNaC::symbol x("x");
    GiNaC::ex a = GiNaC::sin(x);
    std::cout << "Derivative of " << a 
              << " is " << a.diff(x) << std::endl;
    return 0;
@}
@end example

You should first read the introductory portions of the automake
Manual, if you are not already familiar with it.

Two files are needed, @file{configure.ac}, which is used to build the
configure script:

@example
dnl Process this file with autoreconf to produce a configure script.
AC_INIT([simple], 1.0.0, bogus@@example.net)
AC_CONFIG_SRCDIR(simple.cpp)
AM_INIT_AUTOMAKE([foreign 1.8])

AC_PROG_CXX
AC_PROG_INSTALL
AC_LANG([C++])

PKG_CHECK_MODULES(SIMPLE, ginac >= 1.3.7)

AC_OUTPUT(Makefile)
@end example

The @samp{PKG_CHECK_MODULES} macro does the following: If a GiNaC version
greater or equal than 1.3.7 is found, then it defines @var{SIMPLE_CFLAGS}
and @var{SIMPLE_LIBS}. Otherwise, it dies with the error message like
@example
configure: error: Package requirements (ginac >= 1.3.7) were not met:

Requested 'ginac >= 1.3.7' but version of GiNaC is 1.3.5

Consider adjusting the PKG_CONFIG_PATH environment variable if you
installed software in a non-standard prefix.

Alternatively, you may set the environment variables SIMPLE_CFLAGS
and SIMPLE_LIBS to avoid the need to call pkg-config.
See the pkg-config man page for more details.
@end example

And the @file{Makefile.am}, which will be used to build the Makefile.

@example
## Process this file with automake to produce Makefile.in
bin_PROGRAMS = simple
simple_SOURCES = simple.cpp
simple_CPPFLAGS = $(SIMPLE_CFLAGS)
simple_LDADD = $(SIMPLE_LIBS)
@end example

This @file{Makefile.am}, says that we are building a single executable,
from a single source file @file{simple.cpp}. Since every program
we are building uses GiNaC we could have simply added @var{SIMPLE_CFLAGS}
to @var{CPPFLAGS} and @var{SIMPLE_LIBS} to @var{LIBS}. However, it is
more flexible to specify libraries and complier options on a per-program
basis.

To try this example out, create a new directory and add the three
files above to it.

Now execute the following command:

@example
$ autoreconf -i
@end example

You now have a package that can be built in the normal fashion

@example
$ ./configure
$ make
$ make install
@end example


@node Bibliography, Concept index, Example package, Top
@c    node-name, next, previous, up
@appendix Bibliography

@itemize @minus{}

@item
@cite{ISO/IEC 14882:1998: Programming Languages: C++}

@item
@cite{CLN: A Class Library for Numbers}, @email{haible@@ilog.fr, Bruno Haible}

@item
@cite{The C++ Programming Language}, Bjarne Stroustrup, 3rd Edition, ISBN 0-201-88954-4, Addison Wesley

@item
@cite{C++ FAQs}, Marshall Cline, ISBN 0-201-58958-3, 1995, Addison Wesley

@item
@cite{Algorithms for Computer Algebra}, Keith O. Geddes, Stephen R. Czapor,
and George Labahn, ISBN 0-7923-9259-0, 1992, Kluwer Academic Publishers, Norwell, Massachusetts

@item
@cite{Computer Algebra: Systems and Algorithms for Algebraic Computation},
James H. Davenport, Yvon Siret and Evelyne Tournier, ISBN 0-12-204230-1, 1988, 
Academic Press, London

@item
@cite{Computer Algebra Systems - A Practical Guide},
Michael J. Wester (editor), ISBN 0-471-98353-5, 1999, Wiley, Chichester

@item
@cite{The Art of Computer Programming, Vol 2: Seminumerical Algorithms},
Donald E. Knuth, ISBN 0-201-89684-2, 1998, Addison Wesley

@item
@cite{Pi Unleashed}, J@"org Arndt and Christoph Haenel,
ISBN 3-540-66572-2, 2001, Springer, Heidelberg

@item
@cite{The Role of gamma5 in Dimensional Regularization}, Dirk Kreimer, hep-ph/9401354

@end itemize


@node Concept index, , Bibliography, Top
@c    node-name, next, previous, up
@unnumbered Concept index

@printindex cp

@bye