1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/** @file exam_matrices.cpp
*
* Here we examine manipulations on GiNaC's symbolic matrices. */
/*
* GiNaC Copyright (C) 1999-2025 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "ginac.h"
using namespace GiNaC;
#include <iostream>
#include <stdexcept>
using namespace std;
static unsigned matrix_determinants()
{
unsigned result = 0;
ex det;
matrix m1(1,1), m2(2,2), m3(3,3), m4(4,4);
symbol a("a"), b("b"), c("c");
symbol d("d"), e("e"), f("f");
symbol g("g"), h("h"), i("i");
// check symbolic trivial matrix determinant
m1 = matrix{{a}};
det = m1.determinant();
if (det != a) {
clog << "determinant of 1x1 matrix " << m1
<< " erroneously returned " << det << endl;
++result;
}
// check generic dense symbolic 2x2 matrix determinant
m2 = matrix{{a, b},
{c, d}};
det = m2.determinant();
if (det != (a*d-b*c)) {
clog << "determinant of 2x2 matrix " << m2
<< " erroneously returned " << det << endl;
++result;
}
// check generic dense symbolic 3x3 matrix determinant
m3 = matrix{{a, b, c},
{d, e, f},
{g, h, i}};
det = m3.determinant();
if (det != (a*e*i - a*f*h - d*b*i + d*c*h + g*b*f - g*c*e)) {
clog << "determinant of 3x3 matrix " << m3
<< " erroneously returned " << det << endl;
++result;
}
// check dense numeric 3x3 matrix determinant
m3 = matrix{{0, -1, 3},
{3, -2, 2},
{3, 4, -2}};
det = m3.determinant();
if (det != 42) {
clog << "determinant of 3x3 matrix " << m3
<< " erroneously returned " << det << endl;
++result;
}
// check dense symbolic 2x2 matrix determinant
m2 = matrix{{a/(a-b), 1},
{b/(a-b), 1}};
det = m2.determinant();
if (det != 1) {
if (det.normal() == 1) // only half wrong
clog << "determinant of 2x2 matrix " << m2
<< " was returned unnormalized as " << det << endl;
else // totally wrong
clog << "determinant of 2x2 matrix " << m2
<< " erroneously returned " << det << endl;
++result;
}
// check sparse symbolic 4x4 matrix determinant
m4.set(0,1,a).set(1,0,b).set(3,2,c).set(2,3,d);
det = m4.determinant();
if (det != a*b*c*d) {
clog << "determinant of 4x4 matrix " << m4
<< " erroneously returned " << det << endl;
++result;
}
// check characteristic polynomial
m3 = matrix{{a, -2, 2},
{3, a-1, 2},
{3, 4, a-3}};
ex p = m3.charpoly(a);
if (p != 0) {
clog << "charpoly of 3x3 matrix " << m3
<< " erroneously returned " << p << endl;
++result;
}
return result;
}
static unsigned matrix_invert1()
{
unsigned result = 0;
matrix m(1,1);
symbol a("a");
m.set(0,0,a);
matrix m_i = m.inverse();
if (m_i(0,0) != pow(a,-1)) {
clog << "inversion of 1x1 matrix " << m
<< " erroneously returned " << m_i << endl;
++result;
}
return result;
}
static unsigned matrix_invert2()
{
unsigned result = 0;
symbol a("a"), b("b"), c("c"), d("d");
matrix m = {{a, b},
{c, d}};
matrix m_i = m.inverse();
ex det = m.determinant();
if ((normal(m_i(0,0)*det) != d) ||
(normal(m_i(0,1)*det) != -b) ||
(normal(m_i(1,0)*det) != -c) ||
(normal(m_i(1,1)*det) != a)) {
clog << "inversion of 2x2 matrix " << m
<< " erroneously returned " << m_i << endl;
++result;
}
return result;
}
static unsigned matrix_invert3()
{
unsigned result = 0;
symbol a("a"), b("b"), c("c");
symbol d("d"), e("e"), f("f");
symbol g("g"), h("h"), i("i");
matrix m = {{a, b, c},
{d, e, f},
{g, h, i}};
matrix m_i = m.inverse();
ex det = m.determinant();
if ((normal(m_i(0,0)*det) != (e*i-f*h)) ||
(normal(m_i(0,1)*det) != (c*h-b*i)) ||
(normal(m_i(0,2)*det) != (b*f-c*e)) ||
(normal(m_i(1,0)*det) != (f*g-d*i)) ||
(normal(m_i(1,1)*det) != (a*i-c*g)) ||
(normal(m_i(1,2)*det) != (c*d-a*f)) ||
(normal(m_i(2,0)*det) != (d*h-e*g)) ||
(normal(m_i(2,1)*det) != (b*g-a*h)) ||
(normal(m_i(2,2)*det) != (a*e-b*d))) {
clog << "inversion of 3x3 matrix " << m
<< " erroneously returned " << m_i << endl;
++result;
}
return result;
}
static unsigned matrix_solve2()
{
// check the solution of the multiple system A*X = B:
// [ 1 2 -1 ] [ x0 y0 ] [ 4 0 ]
// [ 1 4 -2 ]*[ x1 y1 ] = [ 7 0 ]
// [ a -2 2 ] [ x2 y2 ] [ a 4 ]
unsigned result = 0;
symbol a("a");
symbol x0("x0"), x1("x1"), x2("x2");
symbol y0("y0"), y1("y1"), y2("y2");
matrix A = {{1, 2, -1},
{1, 4, -2},
{a, -2, 2}};
matrix B = {{4, 0},
{7, 0},
{a, 4}};
matrix X = {{x0 ,y0},
{x1, y1},
{x2, y2}};
matrix cmp = {{1, 0},
{3, 2},
{3, 4}};
matrix sol(A.solve(X, B));
if (cmp != sol) {
clog << "Solving " << A << " * " << X << " == " << B << endl
<< "erroneously returned " << sol << endl;
result = 1;
}
return result;
}
static unsigned matrix_solve3()
{
unsigned result = 0;
symbol x("x");
symbol t1("t1"), t2("t2"), t3("t3");
matrix A = {
{3+6*x, 6*(x+x*x)/(2+3*x), 0},
{-(2+7*x+6*x*x)/x, -2-2*x, 0},
{-2*(2+3*x)/(1+2*x), -6*x/(1+2*x), 1+4*x}
};
matrix B = {{0}, {0}, {0}};
matrix X = {{t1}, {t2}, {t3}};
for (auto algo : vector<int>({
solve_algo::gauss, solve_algo::divfree, solve_algo::bareiss, solve_algo::markowitz
})) {
matrix sol(A.solve(X, B, algo));
if (!normal((A*sol - B).evalm()).is_zero_matrix()) {
clog << "Solving " << A << " * " << X << " == " << B << " with algo=" << algo << endl
<< "erroneously returned " << sol << endl;
result += 1;
}
}
return result;
}
static unsigned matrix_evalm()
{
unsigned result = 0;
matrix S {{1, 2},
{3, 4}};
matrix T {{1, 1},
{2, -1}};
matrix R {{27, 14},
{36, 26}};
ex e = ((S + T) * (S + 2*T));
ex f = e.evalm();
if (!f.is_equal(R)) {
clog << "Evaluating " << e << " erroneously returned " << f << " instead of " << R << endl;
result++;
}
return result;
}
static unsigned matrix_rank()
{
unsigned result = 0;
symbol x("x"), y("y");
matrix m(3,3);
// the zero matrix always has rank 0
if (m.rank() != 0) {
clog << "The rank of " << m << " was not computed correctly." << endl;
++result;
}
// a trivial rank one example
m = {{1, 0, 0},
{2, 0, 0},
{3, 0, 0}};
if (m.rank() != 1) {
clog << "The rank of " << m << " was not computed correctly." << endl;
++result;
}
// an example from Maple's help with rank two
m = {{x, 1, 0},
{0, 0, 1},
{x*y, y, 1}};
if (m.rank() != 2) {
clog << "The rank of " << m << " was not computed correctly." << endl;
++result;
}
// the 3x3 unit matrix has rank 3
m = ex_to<matrix>(unit_matrix(3,3));
if (m.rank() != 3) {
clog << "The rank of " << m << " was not computed correctly." << endl;
++result;
}
return result;
}
unsigned matrix_solve_nonnormal()
{
symbol a("a"), b("b"), c("c"), x("x");
// This matrix has a non-normal zero element!
matrix mx {{1,0,0},
{0,1/(x+1)-(x-1)/(x*x-1),1},
{0,0,0}};
matrix zero {{0}, {0}, {0}};
matrix vars {{a}, {b}, {c}};
try {
matrix sol_gauss = mx.solve(vars, zero, solve_algo::gauss);
matrix sol_divfree = mx.solve(vars, zero, solve_algo::divfree);
matrix sol_bareiss = mx.solve(vars, zero, solve_algo::bareiss);
if (sol_gauss != sol_divfree || sol_gauss != sol_bareiss) {
clog << "different solutions while solving "
<< mx << " * " << vars << " == " << zero << endl
<< "gauss: " << sol_gauss << endl
<< "divfree: " << sol_divfree << endl
<< "bareiss: " << sol_bareiss << endl;
return 1;
}
} catch (const exception & e) {
clog << "exception thrown while solving "
<< mx << " * " << vars << " == " << zero << endl;
return 1;
}
return 0;
}
static unsigned matrix_misc()
{
unsigned result = 0;
symbol a("a"), b("b"), c("c"), d("d"), e("e"), f("f");
matrix m1 = {{a, b},
{c, d}};
ex tr = trace(m1);
// check a simple trace
if (tr.compare(a+d)) {
clog << "trace of 2x2 matrix " << m1
<< " erroneously returned " << tr << endl;
++result;
}
// and two simple transpositions
matrix m2 = transpose(m1);
if (m2(0,0) != a || m2(0,1) != c || m2(1,0) != b || m2(1,1) != d) {
clog << "transpose of 2x2 matrix " << m1
<< " erroneously returned " << m2 << endl;
++result;
}
matrix m3 = {{a, b},
{c, d},
{e, f}};
if (transpose(transpose(m3)) != m3) {
clog << "transposing 3x2 matrix " << m3 << " twice"
<< " erroneously returned " << transpose(transpose(m3)) << endl;
++result;
}
// produce a runtime-error by inverting a singular matrix and catch it
matrix m4(2,2);
matrix m5;
bool caught = false;
try {
m5 = inverse(m4);
} catch (std::runtime_error &err) {
caught = true;
}
if (!caught) {
cerr << "singular 2x2 matrix " << m4
<< " erroneously inverted to " << m5 << endl;
++result;
}
return result;
}
unsigned exam_matrices()
{
unsigned result = 0;
cout << "examining symbolic matrix manipulations" << flush;
result += matrix_determinants(); cout << '.' << flush;
result += matrix_invert1(); cout << '.' << flush;
result += matrix_invert2(); cout << '.' << flush;
result += matrix_invert3(); cout << '.' << flush;
result += matrix_solve2(); cout << '.' << flush;
result += matrix_solve3(); cout << '.' << flush;
result += matrix_evalm(); cout << "." << flush;
result += matrix_rank(); cout << "." << flush;
result += matrix_solve_nonnormal(); cout << "." << flush;
result += matrix_misc(); cout << '.' << flush;
return result;
}
int main(int argc, char** argv)
{
return exam_matrices();
}
|