1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/** @file exam_misc.cpp
*
*/
/*
* GiNaC Copyright (C) 1999-2025 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "ginac.h"
using namespace GiNaC;
#include <iostream>
using namespace std;
#define VECSIZE 30
static unsigned exam_expand_subs()
{
unsigned result = 0;
symbol a[VECSIZE];
ex e, aux;
for (unsigned i=0; i<VECSIZE; ++i)
e = e + a[i];
// prepare aux so it will swallow anything but a1^2:
aux = -e + a[0] + a[1];
e = expand(subs(expand(pow(e, 2)), a[0] == aux));
if (e != pow(a[1],2)) {
clog << "Denny Fliegner's quick consistency check erroneously returned "
<< e << "." << endl;
++result;
}
return result;
}
/* A simple modification of Denny Fliegner's three step consistency test:
* 1) e = (a0 + a1)^200
* 2) expand e
* 3) substitute a0 by -a1 in e
* after which e should return 0 (without expanding). */
static unsigned exam_expand_subs2()
{
unsigned result = 0;
symbol a("a"), b("b");
ex e, f;
e = pow(a+b,200).expand();
f = e.subs(a == -b);
if (f != 0) {
clog << "e = pow(a+b,200).expand(); f = e.subs(a == -b); erroneously returned "
<< f << " instead of simplifying to 0." << endl;
++result;
}
return result;
}
static unsigned exam_expand_power()
{
unsigned result = 0;
symbol x("x"), a("a"), b("b");
ex e;
e = pow(x,pow(a+b,2)-pow(a,2)-pow(b,2)-a*b*2).expand();
if (e != 1) {
clog << "e = pow(x,pow(a+b,2)-pow(a,2)-pow(b,2)-a*b*2).expand(); erroneously returned "
<< e << " instead of simplifying to 1." << endl;
++result;
}
return result;
}
/* Arithmetic Operators should behave just as one expects from built-in types.
* When somebody screws up the operators this routine will most probably fail
* to compile. Unfortunately we can only test the stuff that is allowed, not
* what is forbidden (e.g. e1+e2 = 42) since that must not compile. :-( */
static unsigned exam_operator_semantics()
{
unsigned result = 0;
ex e1, e2;
int i1, i2;
// Assignment should not return const ex though it may be obfuscated:
e1 = 7; e2 = 4;
i1 = 7; i2 = 4;
(e1 = e2) = 2;
(i1 = i2) = 2;
if (e1!=i1 || e2!=i2) {
clog << "Semantics of ex::operator=() screwed." << endl;
++result;
}
(e1 += e2) = 2;
(i1 += i2) = 2;
if (e1!=i1 || e2!=i2) {
clog << "Semantics of ex::operator=() screwed." << endl;
++result;
}
(e1 -= e2) = 2;
(i1 -= i2) = 2;
if (e1!=i1 || e2!=i2) {
clog << "Semantics of ex::operator=() screwed." << endl;
++result;
}
// Prefix/postfix increment/decrement behavior:
e1 = 7; e2 = 4;
i1 = 7; i2 = 4;
e1 = (--e2 = 2)++;
i1 = (--i2 = 2)++;
if (e1!=i1 || e2!=i2) {
clog << "Semantics of increment/decrement operators screwed." << endl;
++result;
}
e1 = (++e2 = 2)--;
i1 = (++i2 = 2)--;
if (e1!=i1 || e2!=i2) {
clog << "Semantics of increment/decrement operators screwed." << endl;
++result;
}
// prefix increment/decrement must return an lvalue (contrary to postfix):
e1 = 7; e2 = 4;
i1 = 7; i2 = 4;
--++----e1; ++(++++++++(++++e2));
--++----i1; ++(++++++++(++++i2));
if (e1!=i1 || e2!=i2) {
clog << "Semantics of prefix increment/decrement operators screwed." << endl;
++result;
}
// This one has a good chance of detecting problems in self-assignment:
// (which incidentally was severely broken from version 0.7.3 to 0.8.2).
ex selfprobe = numeric("65536");
selfprobe = selfprobe;
if (!is_exactly_a<numeric>(selfprobe)) {
clog << "ex (of numeric) after self-assignment became " << selfprobe << endl;
++result;
}
return result;
}
/* This checks whether subs() works as intended in some special cases. */
static unsigned exam_subs()
{
unsigned result = 0;
symbol x("x");
ex e1, e2;
// This used to fail in GiNaC 1.0.5 because it first substituted
// x+1 -> (x-1)+1 -> x, and then substituted again x -> x-1, giving
// the wrong result
e1 = x+1;
e2 = e1.subs(x == x-1);
if (!e2.is_equal(x)) {
clog << "(x+1).subs(x==x-1) erroneously returned " << e2 << " instead of x" << endl;
++result;
}
// And this used to fail in GiNaC 1.5.8 because it first substituted
// exp(x) -> exp(log(x)) -> x, and then substituted again x -> log(x)
e1 = exp(x);
e2 = e1.subs(x == log(x));
if (!e2.is_equal(x)) {
clog << "exp(x).subs(x==log(x)) erroneously returned " << e2 << " instead of x" << endl;
++result;
}
e1 = sin(1+sin(x));
e2 = e1.subs(sin(wild()) == cos(wild()));
if (!e2.is_equal(cos(1+cos(x)))) {
clog << "sin(1+sin(x)).subs(sin($1)==cos($1)) erroneously returned " << e2 << " instead of cos(1+cos(x))" << endl;
++result;
}
// This used to fail in GiNaC 1.8.2 with subs_options::no_pattern
e1 = 1/x;
e2 = e1.subs(x == 1/x);
if (!e2.is_equal(x)) {
clog << "(1/x).subs(x==1/x) erroneously returned " << e2 << " instead of x" << endl;
++result;
}
e2 = e1.subs(x == 1/x, subs_options::no_pattern);
if (!e2.is_equal(x)) {
clog << "(1/x).subs(x==1/x, subs_options::no_pattern) erroneously returned " << e2 << " instead of x" << endl;
++result;
}
e2 = e1.subs(x == 1/x, subs_options::algebraic);
if (!e2.is_equal(x)) {
clog << "(1/x).subs(x==1/x, subs_options::algebraic) erroneously returned " << e2 << " instead of x" << endl;
++result;
}
return result;
}
/* Joris van der Hoeven (he of TeXmacs fame) is a funny guy. He has his own
* ideas what a symbolic system should do. Let's make sure we won't disappoint
* him some day. Incidentally, this seems to always have worked. */
static unsigned exam_joris()
{
unsigned result = 0;
symbol x("x");
ex e = expand(pow(x, x-1) * x);
if (e != pow(x, x)) {
clog << "x^(x-1)*x did not expand to x^x. Please call Joris!" << endl;
++result;
}
return result;
}
/* Test Chris Dams' algebraic substitutions. */
static unsigned exam_subs_algebraic()
{
unsigned result = 0;
symbol x("x"), y("y");
ex e = ex(x*x*x*y*y).subs(x*y==2, subs_options::algebraic);
if (e != 4*x) {
clog << "(x^3*y^2).subs(x*y==2,subs_options::algebraic) erroneously returned " << e << endl;
++result;
}
e = ex(x*x*x*x*x).subs(x*x==y, subs_options::algebraic);
if (e != y*y*x) {
clog << "x^5.subs(x^2==y,subs_options::algebraic) erroneously returned " << e << endl;
++result;
}
e=x*x*y;
if (!e.has(x*y, has_options::algebraic))
{ clog << "(x^2*y).has(x*y, has_options::algebraic) erroneously returned false." << endl;
++result;
}
if (e.has(x*y*y, has_options::algebraic))
{ clog << "(x^2*y).has(x*y*y, has_options::algebraic) erroneously returned true." << endl;
++result;
}
e=x*x*x*y;
if (!e.has(x*x, has_options::algebraic))
{ clog << "(x^3*y).has(x*x, has_options::algebraic) erroneously returned false." << endl;
++result;
}
if (e.has(y*y, has_options::algebraic))
{ clog << "(x^3*y).has(y*y, has_options::algebraic) erroneously returned true." << endl;
++result;
}
return result;
}
/* Test suitable cases of the exponent power law: (e^t)^s=e^(ts). */
static unsigned exam_exponent_power_law()
{
unsigned result = 0;
symbol x("x");
realsymbol s("s");
possymbol t("t");
exmap pwr_exp =
{ {pow(exp(x), 2), exp(2*x)},
{pow(exp(s), t), exp(s*t)},
{exp(x)*pow(exp(x),-1), 1} };
for (auto e : pwr_exp) {
if (! (e.first.is_equal(e.second)) ) {
clog << "power of exponent " << e.first << " produces error.\n";
++result;
}
}
return result;
}
unsigned exam_misc()
{
unsigned result = 0;
cout << "examining miscellaneous other things" << flush;
result += exam_expand_subs(); cout << '.' << flush;
result += exam_expand_subs2(); cout << '.' << flush;
result += exam_expand_power(); cout << '.' << flush;
result += exam_operator_semantics(); cout << '.' << flush;
result += exam_subs(); cout << '.' << flush;
result += exam_joris(); cout << '.' << flush;
result += exam_subs_algebraic(); cout << '.' << flush;
result += exam_exponent_power_law(); cout << '.' << flush;
return result;
}
int main(int argc, char** argv)
{
return exam_misc();
}
|