1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
# This is open-source software licensed under a BSD license.
# Please see the file LICENSE.txt for details.
"""
Module wrapper for loading HDF5 files.
"""
import re
from collections import OrderedDict
import numpy as np
try:
import h5py # noqa
have_h5py = True
except ImportError:
have_h5py = False
from ginga.util import iohelper
from ginga.util.io import io_base
__all__ = ['have_h5py', 'load_file', 'HDF5FileHandler']
def load_file(filepath, idx=None, logger=None, **kwargs):
"""
Load an object from an H5PY file.
See :func:`ginga.util.loader` for more info.
"""
opener = HDF5FileHandler(logger)
with opener.open_file(filepath):
return opener.load_idx(idx, **kwargs)
class HDF5FileHandler(io_base.BaseIOHandler):
"""For loading HDF5 image files.
"""
name = 'h5py'
mimetypes = ['application/x-hdf']
@classmethod
def check_availability(cls):
if not have_h5py:
raise ValueError("Install 'h5py' to use this opener")
def __init__(self, logger):
if not have_h5py:
raise ValueError(
"Need 'h5py' module installed to use this file handler")
super().__init__(logger)
self.kind = 'hdf5'
self._f = None
def get_indexes(self):
return self._f.keys()
def get_header(self, idx):
items = [(key, val.decode() if isinstance(val, bytes) else val)
for key, val in self._f[idx].attrs.items()]
return OrderedDict(items)
def get_idx_type(self, idx):
header = self.get_header(idx)
if header.get('CLASS', None) in ['IMAGE']:
return 'image'
# TODO: is there a table spec for HDF5?
return None
def load_idx(self, idx, **kwargs):
if idx is None:
idx = self.find_first_good_idx()
typ = self.get_idx_type(idx)
if typ == 'image':
from ginga import AstroImage, RGBImage
header = self.get_header(idx)
data_np = np.copy(self._f[idx][()])
if 'PALETTE' in header:
p_idx = header['PALETTE']
p_data = self._f[p_idx][()]
data_np = p_data[data_np]
image = RGBImage.RGBImage(logger=self.logger)
else:
image = AstroImage.AstroImage(logger=self.logger)
image.update_keywords(header)
image.set_data(data_np)
name = iohelper.name_image_from_path(self._path, idx=idx)
image.set(path=self._path, name=name, idx=idx,
image_loader=load_file)
return image
raise ValueError("I don't know how to read dataset '{}'".format(idx))
def open_file(self, filespec, **kwargs):
# open the HDF5 file and make a full inventory of what is
# available to load
info = iohelper.get_fileinfo(filespec)
if not info.ondisk:
raise ValueError("File does not appear to be on disk: %s" % (
info.url))
self._path = info.filepath
self.logger.debug("Loading file '%s' ..." % (self._path))
self._f = h5py.File(self._path, 'r', **kwargs)
return self
def close(self):
_f = self._f
self._f = None
self._path = None
_f.close()
def __len__(self):
if self._f is None:
return 0
return len(self._f)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
return False
def load_idx_cont(self, idx_spec, loader_cont_fn, **kwargs):
if len(self) == 0:
raise ValueError("Please call open_file() first!")
idx_lst = self.get_matching_indexes(idx_spec)
for idx in idx_lst:
try:
dst_obj = self.load_idx(idx, **kwargs)
# call continuation function
loader_cont_fn(dst_obj)
except Exception as e:
self.logger.error("Error loading index '%s': %s" % (idx, str(e)))
def find_first_good_idx(self):
for idx in self.get_indexes():
# rule out Datasets we can't deal with
typ = self.get_idx_type(idx)
if typ not in ('image', 'table'):
continue
# Looks good, let's try it
return idx
return None
def get_matching_indexes(self, idx_spec):
"""
Parameters
----------
idx_spec : str
A string in the form of a pair of brackets enclosing some
index expression matching Datasets in the file
Returns
-------
result : list
A list of indexes that can be used to access each Dataset
matching the pattern
"""
# if index is missing, assume to open the first Dataset we know how
# to do something with
if idx_spec is None or idx_spec == '':
idx = self.find_first_good_idx()
return [idx]
match = re.match(r'^\[(.+)\]$', idx_spec)
if not match:
return []
name = match.group(1).strip()
if re.match(r'^\d+$', name):
# index just names a single dataset by number
# Assume this means by order in the list
return [int(name)]
# find all datasets matching the name
# TODO: could do some kind of regular expression matching
idx_lst = []
idx = 0
for d_name in self.get_indexes():
if name == '*' or name == d_name:
idx_lst.append(d_name)
return idx_lst
|