1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
{- A generic matcher.
-
- Can be used to check if a user-supplied condition,
- like "foo and ( bar or not baz )" matches. The condition must already
- be tokenized, and can contain arbitrary operations.
-
- If operations are not separated by and/or, they are defaulted to being
- anded together, so "foo bar baz" all must match.
-
- Is forgiving about misplaced closing parens, so "foo and (bar or baz"
- will be handled, as will "foo and ( bar or baz ) )"
-
- Copyright 2011-2021 Joey Hess <id@joeyh.name>
-
- License: BSD-2-clause
-}
{-# LANGUAGE Rank2Types, KindSignatures, DeriveFoldable #-}
module Utility.Matcher (
Token(..),
Matcher(..),
syntaxToken,
generate,
match,
matchM,
matchMrun,
isEmpty,
combineMatchers,
introspect,
prop_matcher_sane
) where
import Common
{- A Token can be an Operation of an arbitrary type, or one of a few
- predefined peices of syntax. -}
data Token op = Operation op | And | Or | Not | Open | Close
deriving (Show, Eq)
data Matcher op = MAny
| MAnd (Matcher op) (Matcher op)
| MOr (Matcher op) (Matcher op)
| MNot (Matcher op)
| MOp op
deriving (Show, Eq, Foldable)
{- Converts a word of syntax into a token. Doesn't handle operations. -}
syntaxToken :: String -> Either String (Token op)
syntaxToken "and" = Right And
syntaxToken "or" = Right Or
syntaxToken "not" = Right Not
syntaxToken "(" = Right Open
syntaxToken ")" = Right Close
syntaxToken t = Left $ "unknown token " ++ t
{- Converts a list of Tokens into a Matcher. -}
generate :: [Token op] -> Matcher op
generate = simplify . process MAny . implicitAnd . tokenGroups
where
process m [] = m
process m ts = uncurry process $ consume m ts
consume m (One And:rest) = term (m `MAnd`) rest
consume m (One Or:rest) = term (m `MOr`) rest
consume m (One Not:rest) = term (\p -> m `MAnd` (MNot p)) rest
consume m (One (Operation o):rest) = (m `MAnd` MOp o, rest)
consume m (Group g:rest) = (process m g, rest)
consume m (_:rest) = consume m rest
consume m [] = (m, [])
term a l =
let (p, l') = consume MAny l
in (a p, l')
simplify (MAnd MAny x) = simplify x
simplify (MAnd x MAny) = simplify x
simplify (MAnd x y) = MAnd (simplify x) (simplify y)
simplify (MOr x y) = MOr (simplify x) (simplify y)
simplify (MNot x) = MNot (simplify x)
simplify x = x
data TokenGroup op = One (Token op) | Group [TokenGroup op]
deriving (Show, Eq)
tokenGroups :: [Token op] -> [TokenGroup op]
tokenGroups [] = []
tokenGroups (t:ts) = go t
where
go Open =
let (gr, rest) = findClose ts
in gr : tokenGroups rest
go Close = tokenGroups ts -- not picky about missing Close
go _ = One t : tokenGroups ts
findClose :: [Token op] -> (TokenGroup op, [Token op])
findClose l =
let (g, rest) = go [] l
in (Group (reverse g), rest)
where
go c [] = (c, []) -- not picky about extra Close
go c (t:ts) = dispatch t
where
dispatch Close = (c, ts)
dispatch Open =
let (c', ts') = go [] ts
in go (Group (reverse c') : c) ts'
dispatch _ = go (One t:c) ts
implicitAnd :: [TokenGroup op] -> [TokenGroup op]
implicitAnd [] = []
implicitAnd [v] = [v]
implicitAnd (a:b:rest) | need a && need b = a : One And : implicitAnd (b:rest)
where
need (One (Operation _)) = True
need (Group _) = True
need _ = False
implicitAnd (a:rest) = a : implicitAnd rest
{- Checks if a Matcher matches, using a supplied function to check
- the value of Operations. -}
match :: (op -> v -> Bool) -> Matcher op -> v -> Bool
match a m v = go m
where
go MAny = True
go (MAnd m1 m2) = go m1 && go m2
go (MOr m1 m2) = go m1 || go m2
go (MNot m1) = not $ go m1
go (MOp o) = a o v
{- Runs a monadic Matcher, where Operations are actions in the monad. -}
matchM :: Monad m => Matcher (v -> m Bool) -> v -> m Bool
matchM m v = matchMrun m $ \o -> o v
{- More generic running of a monadic Matcher, with full control over running
- of Operations. Mostly useful in order to match on more than one
- parameter. -}
matchMrun :: forall o (m :: * -> *). Monad m => Matcher o -> (o -> m Bool) -> m Bool
matchMrun m run = go m
where
go MAny = return True
go (MAnd m1 m2) = go m1 <&&> go m2
go (MOr m1 m2) = go m1 <||> go m2
go (MNot m1) = liftM not (go m1)
go (MOp o) = run o
{- Checks if a matcher contains no limits. -}
isEmpty :: Matcher a -> Bool
isEmpty MAny = True
isEmpty _ = False
{- Combines two matchers, yielding a matcher that will match anything
- both do. But, if one matcher contains no limits, yield the other one. -}
combineMatchers :: Matcher a -> Matcher a -> Matcher a
combineMatchers a b
| isEmpty a = b
| isEmpty b = a
| otherwise = a `MOr` b
{- Checks if anything in the matcher meets the condition. -}
introspect :: (a -> Bool) -> Matcher a -> Bool
introspect = any
prop_matcher_sane :: Bool
prop_matcher_sane = and
[ all (\m -> match (\b _ -> b) m ()) (map generate evaltrue)
, all (\(x,y) -> generate x == generate y) evalsame
]
where
evaltrue =
[ [Operation True]
, []
, [Operation False, Or, Operation True, Or, Operation False]
, [Operation True, Or, Operation True]
, [Operation True, And, Operation True]
, [Not, Open, Operation True, And, Operation False, Close]
, [Not, Open, Not, Open, Not, Operation False, Close, Close]
, [Not, Open, Not, Open, Not, Open, Not, Operation True, Close, Close]
, [Operation True, And, Not, Operation False]
, [Operation True, Not, Operation False]
, [Operation True, Not, Not, Not, Operation False]
, [Operation True, Not, Not, Not, Operation False, And, Operation True]
, [Operation True, Not, Not, Not, Operation False, Operation True]
, [Not, Open, Operation True, And, Operation False, Close,
And, Open,
Open, Operation True, And, Operation False, Close,
Or,
Open, Operation True, And, Open, Not, Operation False, Close, Close,
Close, And,
Open, Not, Operation False, Close]
]
evalsame =
[
( [Operation "foo", Open, Operation "bar", Or, Operation "baz", Close]
, [Operation "foo", And, Open, Operation "bar", Or, Operation "baz", Close]
)
,
( [Operation "foo", Not, Open, Operation "bar", Or, Operation "baz", Close]
, [Operation "foo", And, Not, Open, Operation "bar", Or, Operation "baz", Close]
)
,
( [Open, Operation "bar", Or, Operation "baz", Close, Operation "foo"]
, [Open, Operation "bar", Or, Operation "baz", Close, And, Operation "foo"]
)
,
( [Open, Operation "bar", Or, Operation "baz", Close, Not, Operation "foo"]
, [Open, Operation "bar", Or, Operation "baz", Close, And, Not, Operation "foo"]
)
,
( [Operation "foo", Operation "bar"]
, [Operation "foo", And, Operation "bar"]
)
,
( [Operation "foo", Not, Operation "bar"]
, [Operation "foo", And, Not, Operation "bar"]
)
]
|