1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
package tools
// OrderedSet is a unique set of strings that maintains insertion order.
type OrderedSet struct {
// s is the set of strings that we're keeping track of.
s []string
// m is a mapping of string value "s" into the index "i" that that
// string is present in in the given "s".
m map[string]int
}
// NewOrderedSet creates an ordered set with no values.
func NewOrderedSet() *OrderedSet {
return NewOrderedSetWithCapacity(0)
}
// NewOrderedSetWithCapacity creates a new ordered set with no values. The
// returned ordered set can be appended to "capacity" number of times before it
// grows internally.
func NewOrderedSetWithCapacity(capacity int) *OrderedSet {
return &OrderedSet{
s: make([]string, 0, capacity),
m: make(map[string]int, capacity),
}
}
// NewOrderedSetFromSlice returns a new ordered set with the elements given in
// the slice "s".
func NewOrderedSetFromSlice(s []string) *OrderedSet {
set := NewOrderedSetWithCapacity(len(s))
for _, e := range s {
set.Add(e)
}
return set
}
// Add adds the given element "i" to the ordered set, unless the element is
// already present. It returns whether or not the element was added.
func (s *OrderedSet) Add(i string) bool {
if _, ok := s.m[i]; ok {
return false
}
s.s = append(s.s, i)
s.m[i] = len(s.s) - 1
return true
}
// Contains returns whether or not the given "i" is contained in this ordered
// set. It is a constant-time operation.
func (s *OrderedSet) Contains(i string) bool {
if _, ok := s.m[i]; ok {
return true
}
return false
}
// ContainsAll returns whether or not all of the given items in "i" are present
// in the ordered set.
func (s *OrderedSet) ContainsAll(i ...string) bool {
for _, item := range i {
if !s.Contains(item) {
return false
}
}
return true
}
// IsSubset returns whether other is a subset of this ordered set. In other
// words, it returns whether or not all of the elements in "other" are also
// present in this set.
func (s *OrderedSet) IsSubset(other *OrderedSet) bool {
for _, i := range other.s {
if !s.Contains(i) {
return false
}
}
return true
}
// IsSuperset returns whether or not this set is a superset of "other". In other
// words, it returns whether or not all of the elements in this set are also in
// the set "other".
func (s *OrderedSet) IsSuperset(other *OrderedSet) bool {
return other.IsSubset(s)
}
// Union returns a union of this set with the given set "other". It returns the
// items that are in either set while maintaining uniqueness constraints. It
// preserves ordered within each set, and orders the elements in this set before
// the elements in "other".
//
// It is an O(n+m) operation.
func (s *OrderedSet) Union(other *OrderedSet) *OrderedSet {
union := NewOrderedSetWithCapacity(other.Cardinality() + s.Cardinality())
for _, e := range s.s {
union.Add(e)
}
for _, e := range other.s {
union.Add(e)
}
return union
}
// Intersect returns the elements that are in both this set and then given
// "ordered" set. It is an O(min(n, m)) (in other words, O(n)) operation.
func (s *OrderedSet) Intersect(other *OrderedSet) *OrderedSet {
intersection := NewOrderedSetWithCapacity(MinInt(
s.Cardinality(), other.Cardinality()))
if s.Cardinality() < other.Cardinality() {
for _, elem := range s.s {
if other.Contains(elem) {
intersection.Add(elem)
}
}
} else {
for _, elem := range other.s {
if s.Contains(elem) {
intersection.Add(elem)
}
}
}
return intersection
}
// Difference returns the elements that are in this set, but not included in
// other.
func (s *OrderedSet) Difference(other *OrderedSet) *OrderedSet {
diff := NewOrderedSetWithCapacity(s.Cardinality())
for _, e := range s.s {
if !other.Contains(e) {
diff.Add(e)
}
}
return diff
}
// SymmetricDifference returns the elements that are not present in both sets.
func (s *OrderedSet) SymmetricDifference(other *OrderedSet) *OrderedSet {
left := s.Difference(other)
right := other.Difference(s)
return left.Union(right)
}
// Clear removes all elements from this set.
func (s *OrderedSet) Clear() {
s.s = make([]string, 0)
s.m = make(map[string]int, 0)
}
// Remove removes the given element "i" from this set.
func (s *OrderedSet) Remove(i string) {
idx, ok := s.m[i]
if !ok {
return
}
rest := MinInt(idx+1, len(s.s)-1)
s.s = append(s.s[:idx], s.s[rest:]...)
for _, e := range s.s[rest:] {
s.m[e] = s.m[e] - 1
}
delete(s.m, i)
}
// Cardinality returns the cardinality of this set.
func (s *OrderedSet) Cardinality() int {
return len(s.s)
}
// Iter returns a channel which yields the elements in this set in insertion
// order.
func (s *OrderedSet) Iter() <-chan string {
c := make(chan string)
go func() {
for _, i := range s.s {
c <- i
}
close(c)
}()
return c
}
// Equal returns whether this element has the same number, identity and ordering
// elements as given in "other".
func (s *OrderedSet) Equal(other *OrderedSet) bool {
if s.Cardinality() != other.Cardinality() {
return false
}
for e, i := range s.m {
if ci, ok := other.m[e]; !ok || ci != i {
return false
}
}
return true
}
// Clone returns a deep copy of this set.
func (s *OrderedSet) Clone() *OrderedSet {
clone := NewOrderedSetWithCapacity(s.Cardinality())
for _, i := range s.s {
clone.Add(i)
}
return clone
}
|