1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://developers.google.com/open-source/licenses/bsd
*/
#ifndef BASICS_H
#define BASICS_H
/*
* miscellaneous utilities that are not provided by Git.
*/
#include "system.h"
#include "reftable-basics.h"
#ifdef __GNUC__
#define REFTABLE_UNUSED __attribute__((__unused__))
#else
#define REFTABLE_UNUSED
#endif
/*
* Initialize the buffer such that it is ready for use. This is equivalent to
* using REFTABLE_BUF_INIT for stack-allocated variables.
*/
void reftable_buf_init(struct reftable_buf *buf);
/*
* Release memory associated with the buffer. The buffer is reinitialized such
* that it can be reused for subsequent operations.
*/
void reftable_buf_release(struct reftable_buf *buf);
/*
* Reset the buffer such that it is effectively empty, without releasing the
* memory that this structure holds on to. This is equivalent to calling
* `reftable_buf_setlen(buf, 0)`.
*/
void reftable_buf_reset(struct reftable_buf *buf);
/*
* Trim the buffer to a shorter length by updating the `len` member and writing
* a NUL byte to `buf[len]`. Returns 0 on success, -1 when `len` points outside
* of the array.
*/
int reftable_buf_setlen(struct reftable_buf *buf, size_t len);
/*
* Lexicographically compare the two buffers. Returns 0 when both buffers have
* the same contents, -1 when `a` is lexicographically smaller than `b`, and 1
* otherwise.
*/
int reftable_buf_cmp(const struct reftable_buf *a, const struct reftable_buf *b);
/*
* Append `len` bytes from `data` to the buffer. This function works with
* arbitrary byte sequences, including ones that contain embedded NUL
* characters. As such, we use `void *` as input type. Returns 0 on success,
* REFTABLE_OUT_OF_MEMORY_ERROR on allocation failure.
*/
int reftable_buf_add(struct reftable_buf *buf, const void *data, size_t len);
/* Equivalent to `reftable_buf_add(buf, s, strlen(s))`. */
int reftable_buf_addstr(struct reftable_buf *buf, const char *s);
/*
* Detach the buffer from the structure such that the underlying memory is now
* owned by the caller. The buffer is reinitialized such that it can be reused
* for subsequent operations.
*/
char *reftable_buf_detach(struct reftable_buf *buf);
/* Bigendian en/decoding of integers */
static inline void reftable_put_be16(void *out, uint16_t i)
{
unsigned char *p = out;
p[0] = (uint8_t)((i >> 8) & 0xff);
p[1] = (uint8_t)((i >> 0) & 0xff);
}
static inline void reftable_put_be24(void *out, uint32_t i)
{
unsigned char *p = out;
p[0] = (uint8_t)((i >> 16) & 0xff);
p[1] = (uint8_t)((i >> 8) & 0xff);
p[2] = (uint8_t)((i >> 0) & 0xff);
}
static inline void reftable_put_be32(void *out, uint32_t i)
{
unsigned char *p = out;
p[0] = (uint8_t)((i >> 24) & 0xff);
p[1] = (uint8_t)((i >> 16) & 0xff);
p[2] = (uint8_t)((i >> 8) & 0xff);
p[3] = (uint8_t)((i >> 0) & 0xff);
}
static inline void reftable_put_be64(void *out, uint64_t i)
{
unsigned char *p = out;
p[0] = (uint8_t)((i >> 56) & 0xff);
p[1] = (uint8_t)((i >> 48) & 0xff);
p[2] = (uint8_t)((i >> 40) & 0xff);
p[3] = (uint8_t)((i >> 32) & 0xff);
p[4] = (uint8_t)((i >> 24) & 0xff);
p[5] = (uint8_t)((i >> 16) & 0xff);
p[6] = (uint8_t)((i >> 8) & 0xff);
p[7] = (uint8_t)((i >> 0) & 0xff);
}
static inline uint16_t reftable_get_be16(const void *in)
{
const unsigned char *p = in;
return (uint16_t)(p[0]) << 8 |
(uint16_t)(p[1]) << 0;
}
static inline uint32_t reftable_get_be24(const void *in)
{
const unsigned char *p = in;
return (uint32_t)(p[0]) << 16 |
(uint32_t)(p[1]) << 8 |
(uint32_t)(p[2]) << 0;
}
static inline uint32_t reftable_get_be32(const void *in)
{
const unsigned char *p = in;
return (uint32_t)(p[0]) << 24 |
(uint32_t)(p[1]) << 16 |
(uint32_t)(p[2]) << 8|
(uint32_t)(p[3]) << 0;
}
static inline uint64_t reftable_get_be64(const void *in)
{
const unsigned char *p = in;
return (uint64_t)(p[0]) << 56 |
(uint64_t)(p[1]) << 48 |
(uint64_t)(p[2]) << 40 |
(uint64_t)(p[3]) << 32 |
(uint64_t)(p[4]) << 24 |
(uint64_t)(p[5]) << 16 |
(uint64_t)(p[6]) << 8 |
(uint64_t)(p[7]) << 0;
}
/*
* find smallest index i in [0, sz) at which `f(i) > 0`, assuming that f is
* ascending. Return sz if `f(i) == 0` for all indices. The search is aborted
* and `sz` is returned in case `f(i) < 0`.
*
* Contrary to bsearch(3), this returns something useful if the argument is not
* found.
*/
size_t binsearch(size_t sz, int (*f)(size_t k, void *args), void *args);
/*
* Frees a NULL terminated array of malloced strings. The array itself is also
* freed.
*/
void free_names(char **a);
/*
* Parse a newline separated list of names. `size` is the length of the buffer,
* without terminating '\0'. Empty names are discarded. Returns a `NULL`
* pointer when allocations fail.
*/
char **parse_names(char *buf, int size);
/* compares two NULL-terminated arrays of strings. */
int names_equal(const char **a, const char **b);
/* returns the array size of a NULL-terminated array of strings. */
size_t names_length(const char **names);
/* Allocation routines; they invoke the functions set through
* reftable_set_alloc() */
void *reftable_malloc(size_t sz);
void *reftable_realloc(void *p, size_t sz);
void reftable_free(void *p);
void *reftable_calloc(size_t nelem, size_t elsize);
char *reftable_strdup(const char *str);
static inline int reftable_alloc_size(size_t nelem, size_t elsize, size_t *out)
{
if (nelem && elsize > SIZE_MAX / nelem)
return -1;
*out = nelem * elsize;
return 0;
}
#define REFTABLE_ALLOC_ARRAY(x, alloc) do { \
size_t alloc_size; \
if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \
errno = ENOMEM; \
(x) = NULL; \
} else { \
(x) = reftable_malloc(alloc_size); \
} \
} while (0)
#define REFTABLE_CALLOC_ARRAY(x, alloc) (x) = reftable_calloc((alloc), sizeof(*(x)))
#define REFTABLE_REALLOC_ARRAY(x, alloc) do { \
size_t alloc_size; \
if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \
errno = ENOMEM; \
(x) = NULL; \
} else { \
(x) = reftable_realloc((x), alloc_size); \
} \
} while (0)
static inline void *reftable_alloc_grow(void *p, size_t nelem, size_t elsize,
size_t *allocp)
{
void *new_p;
size_t alloc = *allocp * 2 + 1, alloc_bytes;
if (alloc < nelem)
alloc = nelem;
if (reftable_alloc_size(elsize, alloc, &alloc_bytes) < 0) {
errno = ENOMEM;
return p;
}
new_p = reftable_realloc(p, alloc_bytes);
if (!new_p)
return p;
*allocp = alloc;
return new_p;
}
#define REFTABLE_ALLOC_GROW(x, nr, alloc) ( \
(nr) > (alloc) && ( \
(x) = reftable_alloc_grow((x), (nr), sizeof(*(x)), &(alloc)), \
(nr) > (alloc) \
) \
)
#define REFTABLE_ALLOC_GROW_OR_NULL(x, nr, alloc) do { \
size_t reftable_alloc_grow_or_null_alloc = alloc; \
if (REFTABLE_ALLOC_GROW((x), (nr), reftable_alloc_grow_or_null_alloc)) { \
REFTABLE_FREE_AND_NULL(x); \
alloc = 0; \
} else { \
alloc = reftable_alloc_grow_or_null_alloc; \
} \
} while (0)
#define REFTABLE_FREE_AND_NULL(p) do { reftable_free(p); (p) = NULL; } while (0)
#ifndef REFTABLE_ALLOW_BANNED_ALLOCATORS
# define REFTABLE_BANNED(func) use_reftable_##func##_instead
# undef malloc
# define malloc(sz) REFTABLE_BANNED(malloc)
# undef realloc
# define realloc(ptr, sz) REFTABLE_BANNED(realloc)
# undef free
# define free(ptr) REFTABLE_BANNED(free)
# undef calloc
# define calloc(nelem, elsize) REFTABLE_BANNED(calloc)
# undef strdup
# define strdup(str) REFTABLE_BANNED(strdup)
#endif
#define REFTABLE_SWAP(a, b) do { \
void *_swap_a_ptr = &(a); \
void *_swap_b_ptr = &(b); \
unsigned char _swap_buffer[sizeof(a) - 2 * sizeof(a) * (sizeof(a) != sizeof(b))]; \
memcpy(_swap_buffer, _swap_a_ptr, sizeof(a)); \
memcpy(_swap_a_ptr, _swap_b_ptr, sizeof(a)); \
memcpy(_swap_b_ptr, _swap_buffer, sizeof(a)); \
} while (0)
/* Find the longest shared prefix size of `a` and `b` */
size_t common_prefix_size(struct reftable_buf *a, struct reftable_buf *b);
uint32_t hash_size(enum reftable_hash id);
/*
* Format IDs that identify the hash function used by a reftable. Note that
* these constants end up on disk and thus mustn't change. The format IDs are
* "sha1" and "s256" in big endian, respectively.
*/
#define REFTABLE_FORMAT_ID_SHA1 ((uint32_t) 0x73686131)
#define REFTABLE_FORMAT_ID_SHA256 ((uint32_t) 0x73323536)
#endif
|