1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style
* license that can be found in the LICENSE file or at
* https://developers.google.com/open-source/licenses/bsd
*/
#include "merged.h"
#include "constants.h"
#include "iter.h"
#include "pq.h"
#include "record.h"
#include "reftable-merged.h"
#include "reftable-error.h"
#include "system.h"
#include "table.h"
struct merged_subiter {
struct reftable_iterator iter;
struct reftable_record rec;
};
struct merged_iter {
struct merged_subiter *subiters;
struct merged_iter_pqueue pq;
size_t subiters_len;
int suppress_deletions;
ssize_t advance_index;
};
static void merged_iter_close(void *p)
{
struct merged_iter *mi = p;
merged_iter_pqueue_release(&mi->pq);
for (size_t i = 0; i < mi->subiters_len; i++) {
reftable_iterator_destroy(&mi->subiters[i].iter);
reftable_record_release(&mi->subiters[i].rec);
}
reftable_free(mi->subiters);
}
static int merged_iter_advance_subiter(struct merged_iter *mi, size_t idx)
{
struct pq_entry e = {
.index = idx,
.rec = &mi->subiters[idx].rec,
};
int err;
err = iterator_next(&mi->subiters[idx].iter, &mi->subiters[idx].rec);
if (err)
return err;
err = merged_iter_pqueue_add(&mi->pq, &e);
if (err)
return err;
return 0;
}
static int merged_iter_seek(struct merged_iter *mi, struct reftable_record *want)
{
int err;
mi->advance_index = -1;
while (!merged_iter_pqueue_is_empty(mi->pq)) {
err = merged_iter_pqueue_remove(&mi->pq, NULL);
if (err < 0)
return err;
}
for (size_t i = 0; i < mi->subiters_len; i++) {
err = iterator_seek(&mi->subiters[i].iter, want);
if (err < 0)
return err;
if (err > 0)
continue;
err = merged_iter_advance_subiter(mi, i);
if (err < 0)
return err;
}
return 0;
}
static int merged_iter_next_entry(struct merged_iter *mi,
struct reftable_record *rec)
{
struct pq_entry entry = { 0 };
int err = 0, empty;
empty = merged_iter_pqueue_is_empty(mi->pq);
if (mi->advance_index >= 0) {
/*
* When there are no pqueue entries then we only have a single
* subiter left. There is no need to use the pqueue in that
* case anymore as we know that the subiter will return entries
* in the correct order already.
*
* While this may sound like a very specific edge case, it may
* happen more frequently than you think. Most repositories
* will end up having a single large base table that contains
* most of the refs. It's thus likely that we exhaust all
* subiters but the one from that base ref.
*/
if (empty)
return iterator_next(&mi->subiters[mi->advance_index].iter,
rec);
err = merged_iter_advance_subiter(mi, mi->advance_index);
if (err < 0)
return err;
if (!err)
empty = 0;
mi->advance_index = -1;
}
if (empty)
return 1;
err = merged_iter_pqueue_remove(&mi->pq, &entry);
if (err < 0)
return err;
/*
One can also use reftable as datacenter-local storage, where the ref
database is maintained in globally consistent database (eg.
CockroachDB or Spanner). In this scenario, replication delays together
with compaction may cause newer tables to contain older entries. In
such a deployment, the loop below must be changed to collect all
entries for the same key, and return new the newest one.
*/
while (!merged_iter_pqueue_is_empty(mi->pq)) {
struct pq_entry top = merged_iter_pqueue_top(mi->pq);
int cmp;
err = reftable_record_cmp(top.rec, entry.rec, &cmp);
if (err < 0)
return err;
if (cmp > 0)
break;
err = merged_iter_pqueue_remove(&mi->pq, NULL);
if (err < 0)
return err;
err = merged_iter_advance_subiter(mi, top.index);
if (err < 0)
return err;
}
mi->advance_index = entry.index;
REFTABLE_SWAP(*rec, *entry.rec);
return 0;
}
static int merged_iter_seek_void(void *it, struct reftable_record *want)
{
return merged_iter_seek(it, want);
}
static int merged_iter_next_void(void *p, struct reftable_record *rec)
{
struct merged_iter *mi = p;
while (1) {
int err = merged_iter_next_entry(mi, rec);
if (err)
return err;
if (mi->suppress_deletions && reftable_record_is_deletion(rec))
continue;
return 0;
}
}
static struct reftable_iterator_vtable merged_iter_vtable = {
.seek = merged_iter_seek_void,
.next = &merged_iter_next_void,
.close = &merged_iter_close,
};
static void iterator_from_merged_iter(struct reftable_iterator *it,
struct merged_iter *mi)
{
assert(!it->ops);
it->iter_arg = mi;
it->ops = &merged_iter_vtable;
}
int reftable_merged_table_new(struct reftable_merged_table **dest,
struct reftable_table **tables, size_t n,
enum reftable_hash hash_id)
{
struct reftable_merged_table *m = NULL;
uint64_t last_max = 0;
uint64_t first_min = 0;
for (size_t i = 0; i < n; i++) {
uint64_t min = reftable_table_min_update_index(tables[i]);
uint64_t max = reftable_table_max_update_index(tables[i]);
if (reftable_table_hash_id(tables[i]) != hash_id) {
return REFTABLE_FORMAT_ERROR;
}
if (i == 0 || min < first_min) {
first_min = min;
}
if (i == 0 || max > last_max) {
last_max = max;
}
}
REFTABLE_CALLOC_ARRAY(m, 1);
if (!m)
return REFTABLE_OUT_OF_MEMORY_ERROR;
m->tables = tables;
m->tables_len = n;
m->min = first_min;
m->max = last_max;
m->hash_id = hash_id;
*dest = m;
return 0;
}
void reftable_merged_table_free(struct reftable_merged_table *mt)
{
if (!mt)
return;
reftable_free(mt);
}
uint64_t
reftable_merged_table_max_update_index(struct reftable_merged_table *mt)
{
return mt->max;
}
uint64_t
reftable_merged_table_min_update_index(struct reftable_merged_table *mt)
{
return mt->min;
}
int merged_table_init_iter(struct reftable_merged_table *mt,
struct reftable_iterator *it,
uint8_t typ)
{
struct merged_subiter *subiters = NULL;
struct merged_iter *mi = NULL;
int ret;
if (mt->tables_len) {
REFTABLE_CALLOC_ARRAY(subiters, mt->tables_len);
if (!subiters) {
ret = REFTABLE_OUT_OF_MEMORY_ERROR;
goto out;
}
}
for (size_t i = 0; i < mt->tables_len; i++) {
ret = reftable_record_init(&subiters[i].rec, typ);
if (ret < 0)
goto out;
ret = table_init_iter(mt->tables[i], &subiters[i].iter, typ);
if (ret < 0)
goto out;
}
REFTABLE_CALLOC_ARRAY(mi, 1);
if (!mi) {
ret = REFTABLE_OUT_OF_MEMORY_ERROR;
goto out;
}
mi->advance_index = -1;
mi->suppress_deletions = mt->suppress_deletions;
mi->subiters = subiters;
mi->subiters_len = mt->tables_len;
iterator_from_merged_iter(it, mi);
ret = 0;
out:
if (ret < 0) {
for (size_t i = 0; subiters && i < mt->tables_len; i++) {
reftable_iterator_destroy(&subiters[i].iter);
reftable_record_release(&subiters[i].rec);
}
reftable_free(subiters);
reftable_free(mi);
}
return ret;
}
int reftable_merged_table_init_ref_iterator(struct reftable_merged_table *mt,
struct reftable_iterator *it)
{
return merged_table_init_iter(mt, it, REFTABLE_BLOCK_TYPE_REF);
}
int reftable_merged_table_init_log_iterator(struct reftable_merged_table *mt,
struct reftable_iterator *it)
{
return merged_table_init_iter(mt, it, REFTABLE_BLOCK_TYPE_LOG);
}
enum reftable_hash reftable_merged_table_hash_id(struct reftable_merged_table *mt)
{
return mt->hash_id;
}
|