1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
---
stage: Monitor
group: Platform Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://handbook.gitlab.com/handbook/product/ux/technical-writing/#assignments
---
# Tutorial: Use GitLab Observability with a Django application
FLAG:
The availability of this feature is controlled by a feature flag.
For more information, see the history of the [**Distributed tracing** feature](../../operations/tracing.md).
<!-- Update this note when observability_features flag is removed -->
In this tutorial, we'll show you how to create, configure, instrument, and monitor a Django application using GitLab observability features.
<!-- vale gitlab_base.SentenceSpacing = NO -->
## Before you begin
To follow along this tutorial, you should have:
- A GitLab Ultimate subscription for GitLab.com or GitLab self-managed
- A local installation of Python 3 and Django (You can install it with `python -m pip install Django`.)
- Basic knowledge of Git and Python
- Basic knowledge of the core concepts of [OpenTelemetry](https://opentelemetry.io/)
## Create a GitLab project
First, create a GitLab project and a corresponding access token.
This tutorial uses the project name `animals`.
1. On the left sidebar, at the top, select **Create new** (**{plus}**) and **New project/repository**.
1. Select **Create blank project**.
1. Enter the project details.
- In the **Project name** field, enter `animals`.
1. Select **Create project**.
1. In the `animals` project, on the left sidebar, select **Settings > Access tokens**.
1. Create an access token with the `api` scope and Developer role. Store the token value somewhere safe—you'll need it later.
## Create a Django application
To create an application:
1. From the command line, run the command:
```shell
python -m django startproject animals_app
```
1. Check that the Django server is running correctly:
```shell
python manage.py runserver
```
1. Ensure that the server is running correctly by visiting `http://localhost:8000`.
1. A Django projects contains multiple applications within a project. To create an application to manage our list of fake animals, run the command:
```shell
python manage.py startapp animals
```
1. To create the initial view for the new `animals` application, in the `animals/views.py` file add the following code:
```python
from django.http import HttpResponse
def index(request):
return HttpResponse("This is where the list of animals will be shown.")
```
1. In `animals/urls.py`, add the following code:
```python
from django.urls import path
from . import views
urlpatterns = [
path('', views.index, name='index'),
]
```
1. Additionally, update the room `urls.py` to include the `animals` app:
```python
path('animals/', include('animals.urls'))
```
1. In `animals_app/settings.py`, add the application:
```python
INSTALLED_APPS = [
...
'animals.apps.AnimalsConfig',
]
```
1. In `animals/models.py`, create a model to define an animal:
```python
from django.db import models
class Animal(models.Model):
name = models.CharField(max_length=200)
number_of_legs = models.IntegerField(default=2)
dangerous = models.BooleanField(default=False)
```
1. With the model defined, create a database migration. This will create a file that describes the changes to the database.
```shell
python manage.py makemigrations animals
```
1. Run the newly created migration:
```shell
python manage.py migrate
```
## Instrument the application with OpenTelemetry
1. Install the required dependencies:
```shell
pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp-proto-http
```
1. Metrics and traces require different imports. In the `manage.py` file, import the required modules:
```python
from opentelemetry.instrumentation.django import DjangoInstrumentor
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry import metrics
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader, ConsoleMetricExporter
```
1. To instrument the application, in the `manage.py` file, add the following code.
- Replace `{{PROJECT_ACCESS_TOKEN}}` and `{{PROJECT_ID}}` with the values from your project.
- If you're using self-managed GitLab, replace `gitlab.com` with your self-managed instance hostname.
```python
resource = Resource(attributes={
SERVICE_NAME: "animals-django"
})
os.environ.setdefault('OTEL_EXPORTER_OTLP_HEADERS', "PRIVATE-TOKEN={{PROJECT_ACCESS_TOKEN}}")
traceProvider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="https://gitlab.com/api/v4/projects/{{PROJECT_ID}}/observability/v1/traces"))
traceProvider.add_span_processor(processor)
trace.set_tracer_provider(traceProvider)
reader = PeriodicExportingMetricReader(
OTLPMetricExporter(endpoint="https://gitlab.com/api/v4/projects/{{PROJECT_ID}}/observability/v1/metrics")
)
meterProvider = MeterProvider(resource=resource, metric_readers=[reader])
metrics.set_meter_provider(meterProvider)
meter = metrics.get_meter("default.meter")
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'animals_app.settings')
DjangoInstrumentor().instrument()
```
This code defines the service name `animals-django`, authenticates with GitLab, and instruments the application.
1. To start collecting traces, restart the Django server. After refreshing `/animals` a few times, you should see traces in the GitLab UI.

1. Optional. Django will also export certain metrics by default to GitLab, but custom metrics are supported too. For example, to increment a counter metric every time a page is loaded, add the following code:
```python
meter = metrics.get_meter("default.meter")
work_counter = meter.create_counter(
"animals.viewed.counter", unit="1", description="Counts the number of times the list of animals was viewed"
)
work_counter.add(1)
```

<!-- vale gitlab_base.SentenceSpacing = YES -->
|