1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
|
---
stage: Fulfillment
group: Utilization
info: This page is maintained by Developer Relations, author @dnsmichi, see https://handbook.gitlab.com/handbook/marketing/developer-relations/developer-advocacy/content/#maintained-documentation
---
# Automate storage management
DETAILS:
**Tier:** Free, Premium, Ultimate
**Offering:** GitLab.com, Self-managed, GitLab Dedicated
This page describes how to automate storage analysis and cleanup to manage your storage usage
with the GitLab REST API.
You can also manage your storage usage by improving [pipeline efficiency](../ci/pipelines/pipeline_efficiency.md).
For more help with API automation, you can also use the [GitLab community forum and Discord](https://about.gitlab.com/community/).
WARNING:
The script examples in this page are for demonstration purposes only and should not
be used in production. You can use the examples to design and test your own scripts for storage automation.
## API requirements
To automate storage management, your GitLab.com SaaS or self-managed instance must have access to the [GitLab REST API](../api/api_resources.md).
### API authentication scope
Use the following scopes to [authenticate](../api/rest/authentication.md) with the API:
- Storage analysis:
- Read API access with the `read_api` scope.
- At least the Developer role on all projects.
- Storage clean up:
- Full API access with the `api` scope.
- At least the Maintainer role on all projects.
You can use command-line tools or a programming language to interact with the REST API.
### Command line tools
To send API requests, install either:
- curl with your preferred package manager.
- [GitLab CLI](../editor_extensions/gitlab_cli/index.md) and use the `glab api` subcommand.
To format JSON responses, install `jq`. For more information, see [Tips for productive DevOps workflows: JSON formatting with jq and CI/CD linting automation](https://about.gitlab.com/blog/2021/04/21/devops-workflows-json-format-jq-ci-cd-lint/).
To use these tools with the REST API:
::Tabs
:::TabTitle curl
```shell
export GITLAB_TOKEN=xxx
curl --silent --header "Authorization: Bearer $GITLAB_TOKEN" "https://gitlab.com/api/v4/user" | jq
```
:::TabTitle GitLab CLI
```shell
glab auth login
glab api groups/YOURGROUPNAME/projects
```
::EndTabs
#### Using the GitLab CLI
Some API endpoints require [pagination](../api/rest/index.md#pagination) and subsequent page fetches to retrieve all results. The GitLab CLI provides the flag `--paginate`.
Requests that require a POST body formatted as JSON data can be written as `key=value` pairs passed to the `--raw-field` parameter.
For more information, see the [GitLab CLI endpoint documentation](../editor_extensions/gitlab_cli/index.md#core-commands).
### API client libraries
The storage management and cleanup automation methods described in this page use:
- The [`python-gitlab`](https://python-gitlab.readthedocs.io/en/stable/) library, which provides
a feature-rich programming interface.
- The `get_all_projects_top_level_namespace_storage_analysis_cleanup_example.py` script in the [GitLab API with Python](https://gitlab.com/gitlab-da/use-cases/gitlab-api/gitlab-api-python/) project.
For more information about use cases for the `python-gitlab` library,
see [Efficient DevSecOps workflows: Hands-on `python-gitlab` API automation](https://about.gitlab.com/blog/2023/02/01/efficient-devsecops-workflows-hands-on-python-gitlab-api-automation/).
For more information about other API client libraries, see [Third-party clients](../api/rest/third_party_clients.md).
NOTE:
Use [GitLab Duo Code Suggestions](project/repository/code_suggestions/index.md) to write code more efficiently.
## Storage analysis
### Identify storage types
The [projects API endpoint](../api/projects.md#list-all-projects) provides statistics for projects
in your GitLab instance. To use the projects API endpoint, set the `statistics` key to boolean `true`.
This data provides insight into storage consumption of the project by the following storage types:
- `storage_size`: Overall storage
- `lfs_objects_size`: LFS objects storage
- `job_artifacts_size`: Job artifacts storage
- `packages_size`: Packages storage
- `repository_size`: Git repository storage
- `snippets_size`: Snippets storage
- `uploads_size`: Uploads storage
- `wiki_size`: Wiki storage
To identify storage types:
::Tabs
:::TabTitle curl
```shell
curl --silent --header "Authorization: Bearer $GITLAB_TOKEN" "https://gitlab.com/api/v4/projects/$GL_PROJECT_ID?statistics=true" | jq --compact-output '.id,.statistics' | jq
48349590
{
"commit_count": 2,
"storage_size": 90241770,
"repository_size": 3521,
"wiki_size": 0,
"lfs_objects_size": 0,
"job_artifacts_size": 90238249,
"pipeline_artifacts_size": 0,
"packages_size": 0,
"snippets_size": 0,
"uploads_size": 0
}
```
:::TabTitle GitLab CLI
```shell
export GL_PROJECT_ID=48349590
glab api --method GET projects/$GL_PROJECT_ID --field 'statistics=true' | jq --compact-output '.id,.statistics' | jq
48349590
{
"commit_count": 2,
"storage_size": 90241770,
"repository_size": 3521,
"wiki_size": 0,
"lfs_objects_size": 0,
"job_artifacts_size": 90238249,
"pipeline_artifacts_size": 0,
"packages_size": 0,
"snippets_size": 0,
"uploads_size": 0
}
```
:::TabTitle Python
```python
project_obj = gl.projects.get(project.id, statistics=True)
print("Project {n} statistics: {s}".format(n=project_obj.name_with_namespace, s=json.dump(project_obj.statistics, indent=4)))
```
::EndTabs
To print statistics for the project to the terminal, export the `GL_GROUP_ID` environment variable and run the script:
```shell
export GL_TOKEN=xxx
export GL_GROUP_ID=56595735
pip3 install python-gitlab
python3 get_all_projects_top_level_namespace_storage_analysis_cleanup_example.py
Project Developer Evangelism and Technical Marketing at GitLab / playground / Artifact generator group / Gen Job Artifacts 4 statistics: {
"commit_count": 2,
"storage_size": 90241770,
"repository_size": 3521,
"wiki_size": 0,
"lfs_objects_size": 0,
"job_artifacts_size": 90238249,
"pipeline_artifacts_size": 0,
"packages_size": 0,
"snippets_size": 0,
"uploads_size": 0
}
```
### Analyze storage in projects and groups
You can automate analysis of multiple projects and groups. For example, you can start at the top namespace level,
and recursively analyze all subgroups and projects. You can also analyze different storage types.
Here's an example of an algorithm to analyze multiple subgroups and projects:
1. Fetch the top-level namespace ID. You can copy the ID value from the [namespace/group overview](../user/namespace/index.md#types-of-namespaces).
1. Fetch all [subgroups](../api/groups.md#list-subgroups) from the top-level group, and save the IDs in a list.
1. Loop over all groups and fetch all [projects from each group](../api/groups.md#list-projects) and save the IDs in a list.
1. Identify the storage type to analyze, and collect the information from project attributes, like project statistics, and job artifacts.
1. Print an overview of all projects, grouped by group, and their storage information.
The shell approach with `glab` might be more suitable for smaller analyses. For larger analyses, you should use a script that
uses the API client libraries. This type of script can improve readability, data storage, flow control, testing, and reusability.
To ensure the script doesn't reach [API rate limits](../security/rate_limits.md), the following
example code is not optimized for parallel API requests.
To implement this algorithm:
::Tabs
:::TabTitle GitLab CLI
```shell
export GROUP_NAME="gitlab-da"
# Return subgroup IDs
glab api groups/$GROUP_NAME/subgroups | jq --compact-output '.[]' | jq --compact-output '.id'
12034712
67218622
67162711
67640130
16058698
12034604
# Loop over all subgroups to get subgroups, until the result set is empty. Example group: 12034712
glab api groups/12034712/subgroups | jq --compact-output '.[]' | jq --compact-output '.id'
56595735
70677315
67218606
70812167
# Lowest group level
glab api groups/56595735/subgroups | jq --compact-output '.[]' | jq --compact-output '.id'
# empty result, return and continue with analysis
# Fetch projects from all collected groups. Example group: 56595735
glab api groups/56595735/projects | jq --compact-output '.[]' | jq --compact-output '.id'
48349590
48349263
38520467
38520405
# Fetch storage types from a project (ID 48349590): Job artifacts in the `artifacts` key
glab api projects/48349590/jobs | jq --compact-output '.[]' | jq --compact-output '.id, .artifacts'
4828297946
[{"file_type":"archive","size":52444993,"filename":"artifacts.zip","file_format":"zip"},{"file_type":"metadata","size":156,"filename":"metadata.gz","file_format":"gzip"},{"file_type":"trace","size":3140,"filename":"job.log","file_format":null}]
4828297945
[{"file_type":"archive","size":20978113,"filename":"artifacts.zip","file_format":"zip"},{"file_type":"metadata","size":157,"filename":"metadata.gz","file_format":"gzip"},{"file_type":"trace","size":3147,"filename":"job.log","file_format":null}]
4828297944
[{"file_type":"archive","size":10489153,"filename":"artifacts.zip","file_format":"zip"},{"file_type":"metadata","size":158,"filename":"metadata.gz","file_format":"gzip"},{"file_type":"trace","size":3146,"filename":"job.log","file_format":null}]
4828297943
[{"file_type":"archive","size":5244673,"filename":"artifacts.zip","file_format":"zip"},{"file_type":"metadata","size":157,"filename":"metadata.gz","file_format":"gzip"},{"file_type":"trace","size":3145,"filename":"job.log","file_format":null}]
4828297940
[{"file_type":"archive","size":1049089,"filename":"artifacts.zip","file_format":"zip"},{"file_type":"metadata","size":157,"filename":"metadata.gz","file_format":"gzip"},{"file_type":"trace","size":3140,"filename":"job.log","file_format":null}]
```
:::TabTitle Python
```python
#!/usr/bin/env python
import datetime
import gitlab
import os
import sys
GITLAB_SERVER = os.environ.get('GL_SERVER', 'https://gitlab.com')
GITLAB_TOKEN = os.environ.get('GL_TOKEN') # token requires developer permissions
PROJECT_ID = os.environ.get('GL_PROJECT_ID') #optional
GROUP_ID = os.environ.get('GL_GROUP_ID') #optional
if __name__ == "__main__":
if not GITLAB_TOKEN:
print("🤔 Please set the GL_TOKEN env variable.")
sys.exit(1)
gl = gitlab.Gitlab(GITLAB_SERVER, private_token=GITLAB_TOKEN, pagination="keyset", order_by="id", per_page=100)
# Collect all projects, or prefer projects from a group id, or a project id
projects = []
# Direct project ID
if PROJECT_ID:
projects.append(gl.projects.get(PROJECT_ID))
# Groups and projects inside
elif GROUP_ID:
group = gl.groups.get(GROUP_ID)
for project in group.projects.list(include_subgroups=True, get_all=True):
manageable_project = gl.projects.get(project.id , lazy=True)
projects.append(manageable_project)
for project in projects:
jobs = project.jobs.list(pagination="keyset", order_by="id", per_page=100, iterator=True)
for job in jobs:
print("DEBUG: ID {i}: {a}".format(i=job.id, a=job.attributes['artifacts']))
```
::EndTabs
The script outputs the project job artifacts in a JSON formatted list:
```json
[
{
"file_type": "archive",
"size": 1049089,
"filename": "artifacts.zip",
"file_format": "zip"
},
{
"file_type": "metadata",
"size": 157,
"filename": "metadata.gz",
"file_format": "gzip"
},
{
"file_type": "trace",
"size": 3146,
"filename": "job.log",
"file_format": null
}
]
```
## Manage CI/CD pipeline storage
Job artifacts consume most of the pipeline storage, and job logs can also generate several hundreds of kilobytes.
You should delete the unnecessary job artifacts first and then clean up job logs after analysis.
WARNING:
Deleting job log and artifacts is a destructive action that cannot be reverted. Use with caution. Deleting certain files, including report artifacts, job logs, and metadata files, affects GitLab features that use these files as data sources.
### List job artifacts
To analyze pipeline storage, you can use the [Job API endpoint](../api/jobs.md#list-project-jobs) to retrieve a list of
job artifacts. The endpoint returns the job artifacts `file_type` key in the `artifacts` attribute.
The `file_type` key indicates the artifact type:
- `archive` is used for the generated job artifacts as a zip file.
- `metadata` is used for additional metadata in a Gzip file.
- `trace` is used for the `job.log` as a raw file.
Job artifacts provide a data structure that can be written as a cache file to
disk, which you can use to test the implementation.
Based on the example code for fetching all projects, you can extend the Python script to do more analysis.
The following example shows a response from a query for job artifacts in a project:
```json
[
{
"file_type": "archive",
"size": 1049089,
"filename": "artifacts.zip",
"file_format": "zip"
},
{
"file_type": "metadata",
"size": 157,
"filename": "metadata.gz",
"file_format": "gzip"
},
{
"file_type": "trace",
"size": 3146,
"filename": "job.log",
"file_format": null
}
]
```
Based on how you implement the script, you could either:
- Collect all job artifacts and print a summary table at the end of the script.
- Print the information immediately.
In the following example, job artifacts are collected in the `ci_job_artifacts` list. The script
loops over all projects, and fetches:
- The `project_obj` object variable that contains all attributes.
- The `artifacts` attribute from the `job` object.
You can use [keyset pagination](https://python-gitlab.readthedocs.io/en/stable/api-usage.html#pagination)
to iterate over large lists of pipelines and jobs.
```python
ci_job_artifacts = []
for project in projects:
project_obj = gl.projects.get(project.id)
jobs = project.jobs.list(pagination="keyset", order_by="id", per_page=100, iterator=True)
for job in jobs:
artifacts = job.attributes['artifacts']
#print("DEBUG: ID {i}: {a}".format(i=job.id, a=json.dumps(artifacts, indent=4)))
if not artifacts:
continue
for a in artifacts:
data = {
"project_id": project_obj.id,
"project_web_url": project_obj.name,
"project_path_with_namespace": project_obj.path_with_namespace,
"job_id": job.id,
"artifact_filename": a['filename'],
"artifact_file_type": a['file_type'],
"artifact_size": a['size']
}
ci_job_artifacts.append(data)
print("\nDone collecting data.")
if len(ci_job_artifacts) > 0:
print("|Project|Job|Artifact name|Artifact type|Artifact size|\n|-|-|-|-|-|") #Start markdown friendly table
for artifact in ci_job_artifacts:
print('| [{project_name}]({project_web_url}) | {job_name} | {artifact_name} | {artifact_type} | {artifact_size} |'.format(project_name=artifact['project_path_with_namespace'], project_web_url=artifact['project_web_url'], job_name=artifact['job_id'], artifact_name=artifact['artifact_filename'], artifact_type=artifact['artifact_file_type'], artifact_size=render_size_mb(artifact['artifact_size'])))
else:
print("No artifacts found.")
```
At the end of the script, job artifacts are printed as a Markdown formatted table. You can copy the table
content to an issue comment or description, or populate a Markdown file in a GitLab repository.
```shell
$ python3 get_all_projects_top_level_namespace_storage_analysis_cleanup_example.py
|Project|Job|Artifact name|Artifact type|Artifact size|
|-|-|-|-|-|
| [gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4](Gen Job Artifacts 4) | 4828297946 | artifacts.zip | archive | 50.0154 |
| [gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4](Gen Job Artifacts 4) | 4828297946 | metadata.gz | metadata | 0.0001 |
| [gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4](Gen Job Artifacts 4) | 4828297946 | job.log | trace | 0.0030 |
| [gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4](Gen Job Artifacts 4) | 4828297945 | artifacts.zip | archive | 20.0063 |
| [gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4](Gen Job Artifacts 4) | 4828297945 | metadata.gz | metadata | 0.0001 |
| [gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4](Gen Job Artifacts 4) | 4828297945 | job.log | trace | 0.0030 |
```
### Delete job artifacts in bulk
You can use a Python script to filter the types of job artifacts to delete in bulk.
Filter the API queries results to compare:
- The `created_at` value to calculate the artifact age.
- The `size` attribute to determine if artifacts meet the size threshold.
A typical request:
- Deletes job artifacts older than the specified number of days.
- Deletes job artifacts that exceed a specified amount of storage. For example, 100 MB.
In the following example, the script loops through job attributes and marks them for deletion.
When the collection loops remove the object locks, the script deletes the job artifacts marked for deletion.
```python
for project in projects:
project_obj = gl.projects.get(project.id)
jobs = project.jobs.list(pagination="keyset", order_by="id", per_page=100, iterator=True)
for job in jobs:
artifacts = job.attributes['artifacts']
if not artifacts:
continue
# Advanced filtering: Age and Size
# Example: 90 days, 10 MB threshold (TODO: Make this configurable)
threshold_age = 90 * 24 * 60 * 60
threshold_size = 10 * 1024 * 1024
# job age, need to parse API format: 2023-08-08T22:41:08.270Z
created_at = datetime.datetime.strptime(job.created_at, '%Y-%m-%dT%H:%M:%S.%fZ')
now = datetime.datetime.now()
age = (now - created_at).total_seconds()
# Shorter: Use a function
# age = calculate_age(job.created_at)
for a in artifacts:
# ... removed analysis collection code for readability
# Advanced filtering: match job artifacts age and size against thresholds
if (float(age) > float(threshold_age)) or (float(a['size']) > float(threshold_size)):
# mark job for deletion (cannot delete inside the loop)
jobs_marked_delete_artifacts.append(job)
print("\nDone collecting data.")
# Advanced filtering: Delete all job artifacts marked to being deleted.
for job in jobs_marked_delete_artifacts:
# delete the artifact
print("DEBUG", job)
job.delete_artifacts()
# Print collection summary (removed for readability)
```
### Delete all job artifacts for a project
If you do not need the project's [job artifacts](../ci/jobs/job_artifacts.md), you can
use the following command to delete all job artifacts. This action cannot be reverted.
Artifact deletion can take several minutes or hours, depending on the number of artifacts to delete. Subsequent
analysis queries against the API might return the artifacts as a false-positive result.
To avoid confusion with results, do not immediately run additional API requests.
The [artifacts for the most recent successful jobs](../ci/jobs/job_artifacts.md#keep-artifacts-from-most-recent-successful-jobs) are kept by default.
To delete all job artifacts for a project:
::Tabs
:::TabTitle curl
```shell
export GL_PROJECT_ID=48349590
curl --silent --header "Authorization: Bearer $GITLAB_TOKEN" --request DELETE "https://gitlab.com/api/v4/projects/$GL_PROJECT_ID/artifacts"
```
:::TabTitle GitLab CLI
```shell
glab api --method GET projects/$GL_PROJECT_ID/jobs | jq --compact-output '.[]' | jq --compact-output '.id, .artifacts'
glab api --method DELETE projects/$GL_PROJECT_ID/artifacts
```
:::TabTitle Python
```python
project.artifacts.delete()
```
::EndTabs
### Delete job logs
When you delete a job log you also [erase the entire job](../api/jobs.md#erase-a-job).
Example with the GitLab CLI:
```shell
glab api --method GET projects/$GL_PROJECT_ID/jobs | jq --compact-output '.[]' | jq --compact-output '.id'
4836226184
4836226183
4836226181
4836226180
glab api --method POST projects/$GL_PROJECT_ID/jobs/4836226180/erase | jq --compact-output '.name,.status'
"generate-package: [1]"
"success"
```
In the `python-gitlab` API library, use [`job.erase()`](https://python-gitlab.readthedocs.io/en/stable/gl_objects/pipelines_and_jobs.html#jobs) instead of `job.delete_artifacts()`.
To avoid this API call from being blocked, set the script to sleep for a short amount of time between calls
that delete the job artifact:
```python
for job in jobs_marked_delete_artifacts:
# delete the artifacts and job log
print("DEBUG", job)
#job.delete_artifacts()
job.erase()
# Sleep for 1 second
time.sleep(1)
```
Support for creating a retention policy for job logs is proposed in [issue 374717](https://gitlab.com/gitlab-org/gitlab/-/issues/374717).
### Delete old pipelines
Pipelines do not add to the overall storage usage, but if required you can automate their deletion.
To delete pipelines based on a specific date, specify the `created_at` key.
You can use the date to calculate the difference between the current date and
when the pipeline was created. If the age is larger than the threshold, the pipeline is deleted.
NOTE:
The `created_at` key must be converted from a timestamp to Unix epoch time,
for example with `date -d '2023-08-08T18:59:47.581Z' +%s`.
Example with GitLab CLI:
```shell
export GL_PROJECT_ID=48349590
glab api --method GET projects/$GL_PROJECT_ID/pipelines | jq --compact-output '.[]' | jq --compact-output '.id,.created_at'
960031926
"2023-08-08T22:09:52.745Z"
959884072
"2023-08-08T18:59:47.581Z"
glab api --method DELETE projects/$GL_PROJECT_ID/pipelines/960031926
glab api --method GET projects/$GL_PROJECT_ID/pipelines | jq --compact-output '.[]' | jq --compact-output '.id,.created_at'
959884072
"2023-08-08T18:59:47.581Z"
```
In the following example that uses a Bash script:
- `jq` and the GitLab CLI are installed and authorized.
- The exported environment variable `GL_PROJECT_ID`. Defaults to the GitLab predefined variable `CI_PROJECT_ID`.
- The exported environment variable `CI_SERVER_HOST` that points to the GitLab instance URL.
::Tabs
:::TabTitle Using the API with glab
The full script `get_cicd_pipelines_compare_age_threshold_example.sh` is located in the [GitLab API with Linux Shell](https://gitlab.com/gitlab-da/use-cases/gitlab-api/gitlab-api-linux-shell) project.
```shell
#!/bin/bash
# Required programs:
# - GitLab CLI (glab): https://docs.gitlab.com/ee/editor_extensions/gitlab_cli/index.html
# - jq: https://jqlang.github.io/jq/
# Required variables:
# - PAT: Project Access Token with API scope and Owner role, or Personal Access Token with API scope
# - GL_PROJECT_ID: ID of the project where pipelines must be cleaned
# - AGE_THRESHOLD (optional): Maximum age in days of pipelines to keep (default: 90)
set -euo pipefail
# Constants
DEFAULT_AGE_THRESHOLD=90
SECONDS_PER_DAY=$((24 * 60 * 60))
# Functions
log_info() {
echo "[INFO] $1"
}
log_error() {
echo "[ERROR] $1" >&2
}
delete_pipeline() {
local project_id=$1
local pipeline_id=$2
if glab api --method DELETE "projects/$project_id/pipelines/$pipeline_id"; then
log_info "Deleted pipeline ID $pipeline_id"
else
log_error "Failed to delete pipeline ID $pipeline_id"
fi
}
# Main script
main() {
# Authenticate
if ! glab auth login --hostname "$CI_SERVER_HOST" --token "$PAT"; then
log_error "Authentication failed"
exit 1
fi
# Set variables
AGE_THRESHOLD=${AGE_THRESHOLD:-$DEFAULT_AGE_THRESHOLD}
AGE_THRESHOLD_IN_SECONDS=$((AGE_THRESHOLD * SECONDS_PER_DAY))
GL_PROJECT_ID=${GL_PROJECT_ID:-$CI_PROJECT_ID}
# Fetch pipelines
PIPELINES=$(glab api --method GET "projects/$GL_PROJECT_ID/pipelines")
if [ -z "$PIPELINES" ]; then
log_error "Failed to fetch pipelines or no pipelines found"
exit 1
fi
# Process pipelines
echo "$PIPELINES" | jq -r '.[] | [.id, .created_at] | @tsv' | while IFS=$'\t' read -r id created_at; do
CREATED_AT_TS=$(date -d "$created_at" +%s)
NOW=$(date +%s)
AGE=$((NOW - CREATED_AT_TS))
if [ "$AGE" -gt "$AGE_THRESHOLD_IN_SECONDS" ]; then
log_info "Pipeline ID $id created at $created_at is older than threshold $AGE_THRESHOLD days, deleting..."
delete_pipeline "$GL_PROJECT_ID" "$id"
else
log_info "Pipeline ID $id created at $created_at is not older than threshold $AGE_THRESHOLD days. Ignoring."
fi
done
}
main
```
:::TabTitle Using the glab CLI
The full script `cleanup-old-pipelines.sh` is located in the [GitLab API with Linux Shell](https://gitlab.com/gitlab-da/use-cases/gitlab-api/gitlab-api-linux-shell) project.
```shell
#!/bin/bash
set -euo pipefail
# Required environment variables:
# PAT: Project Access Token with API scope and Owner role, or Personal Access Token with API scope.
# Optional environment variables:
# AGE_THRESHOLD: Maximum age (in days) of pipelines to keep. Default: 90 days.
# REPO: Repository to clean up. If not set, the current repository will be used.
# CI_SERVER_HOST: GitLab server hostname.
# Function to display error message and exit
error_exit() {
echo "Error: $1" >&2
exit 1
}
# Validate required environment variables
[[ -z "${PAT:-}" ]] && error_exit "PAT (Project Access Token or Personal Access Token) is not set."
[[ -z "${CI_SERVER_HOST:-}" ]] && error_exit "CI_SERVER_HOST is not set."
# Set and validate AGE_THRESHOLD
AGE_THRESHOLD=${AGE_THRESHOLD:-90}
[[ ! "$AGE_THRESHOLD" =~ ^[0-9]+$ ]] && error_exit "AGE_THRESHOLD must be a positive integer."
AGE_THRESHOLD_IN_HOURS=$((AGE_THRESHOLD * 24))
echo "Deleting pipelines older than $AGE_THRESHOLD days"
# Authenticate with GitLab
glab auth login --hostname "$CI_SERVER_HOST" --token "$PAT" || error_exit "Authentication failed"
# Delete old pipelines
delete_cmd="glab ci delete --older-than ${AGE_THRESHOLD_IN_HOURS}h"
if [[ -n "${REPO:-}" ]]; then
delete_cmd+=" --repo $REPO"
fi
$delete_cmd || error_exit "Pipeline deletion failed"
echo "Pipeline cleanup completed."
```
:::TabTitle Using the API with Python
You can also use the [`python-gitlab` API library](https://python-gitlab.readthedocs.io/en/stable/gl_objects/pipelines_and_jobs.html#project-pipelines) and
the `created_at` attribute to implement a similar algorithm that compares the job artifact age:
```python
# ...
for pipeline in project.pipelines.list(iterator=True):
pipeline_obj = project.pipelines.get(pipeline.id)
print("DEBUG: {p}".format(p=json.dumps(pipeline_obj.attributes, indent=4)))
created_at = datetime.datetime.strptime(pipeline.created_at, '%Y-%m-%dT%H:%M:%S.%fZ')
now = datetime.datetime.now()
age = (now - created_at).total_seconds()
threshold_age = 90 * 24 * 60 * 60
if (float(age) > float(threshold_age)):
print("Deleting pipeline", pipeline.id)
pipeline_obj.delete()
```
::EndTabs
Automatic deletion of old pipelines is proposed in [issue 338480](https://gitlab.com/gitlab-org/gitlab/-/issues/338480).
### List expiry settings for job artifacts
To manage artifact storage, you can update or configure when an artifact expires.
The expiry setting for artifacts are configured in each job configuration in the `.gitlab-ci.yml`.
If there are multiple projects, and based on how job definitions are organized in the CI/CD configuration, it might be difficult
to locate the expiry setting. You can use a script to search the entire CI/CD configuration. This includes access to objects that
are resolved after they inherit values, like `extends` or `!reference`.
The script retrieves merged CI/CD configuration files and searches for the artifacts key to:
- Identify jobs that do not have an expiry setting.
- Return expiry settings for jobs that have the artifact expiry configured.
The following process describes how the script searches for the artifact expiry setting:
1. To generate a merged CI/CD configuration, the script loops over all projects and calls
the [`ci_lint()`](https://python-gitlab.readthedocs.io/en/stable/gl_objects/ci_lint.html) method.
1. The `yaml_load` function loads the merged configuration into Python data structures for more analysis.
1. A dictionary that also has the key `script` identifies itself as a job definition, where the `artifacts`
key might exists.
1. If yes, the script parses the sub key `expire_in` and stores the details to print later in a Markdown table summary.
```python
ci_job_artifacts_expiry = {}
# Loop over projects, fetch .gitlab-ci.yml, run the linter to get the full translated config, and extract the `artifacts:` setting
# https://python-gitlab.readthedocs.io/en/stable/gl_objects/ci_lint.html
for project in projects:
project_obj = gl.projects.get(project.id)
project_name = project_obj.name
project_web_url = project_obj.web_url
try:
lint_result = project.ci_lint.get()
if lint_result.merged_yaml is None:
continue
ci_pipeline = yaml.safe_load(lint_result.merged_yaml)
#print("Project {p} Config\n{c}\n\n".format(p=project_name, c=json.dumps(ci_pipeline, indent=4)))
for k in ci_pipeline:
v = ci_pipeline[k]
# This is a job object with `script` attribute
if isinstance(v, dict) and 'script' in v:
print(".", end="", flush=True) # Get some feedback that it is still looping
artifacts = v['artifacts'] if 'artifacts' in v else {}
print("Project {p} job {j} artifacts {a}".format(p=project_name, j=k, a=json.dumps(artifacts, indent=4)))
expire_in = None
if 'expire_in' in artifacts:
expire_in = artifacts['expire_in']
store_key = project_web_url + '_' + k
ci_job_artifacts_expiry[store_key] = { 'project_web_url': project_web_url,
'project_name': project_name,
'job_name': k,
'artifacts_expiry': expire_in}
except Exception as e:
print(f"Exception searching artifacts on ci_pipelines: {e}".format(e=e))
if len(ci_job_artifacts_expiry) > 0:
print("|Project|Job|Artifact expiry|\n|-|-|-|") #Start markdown friendly table
for k, details in ci_job_artifacts_expiry.items():
if details['job_name'][0] == '.':
continue # ignore job templates that start with a '.'
print(f'| [{ details["project_name"] }]({details["project_web_url"]}) | { details["job_name"] } | { details["artifacts_expiry"] if details["artifacts_expiry"] is not None else "❌ N/A" } |')
```
The script generates a Markdown summary table with:
- Project name and URL.
- Job name.
- The `artifacts:expire_in` setting, or `N/A` if there is no setting.
The script does not print job templates that:
- Start with a `.` character.
- Are not instantiated as runtime job objects that generate artifacts.
```shell
export GL_GROUP_ID=56595735
# Install script dependencies
python3 -m pip install 'python-gitlab[yaml]'
python3 get_all_cicd_config_artifacts_expiry.py
|Project|Job|Artifact expiry|
|-|-|-|
| [Gen Job Artifacts 4](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-4) | generator | 30 days |
| [Gen Job Artifacts with expiry and included jobs](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-expiry-included-jobs) | included-job10 | 10 days |
| [Gen Job Artifacts with expiry and included jobs](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-expiry-included-jobs) | included-job1 | 1 days |
| [Gen Job Artifacts with expiry and included jobs](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-expiry-included-jobs) | included-job30 | 30 days |
| [Gen Job Artifacts with expiry and included jobs](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-expiry-included-jobs) | generator | 30 days |
| [Gen Job Artifacts 2](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-2) | generator | ❌ N/A |
| [Gen Job Artifacts 1](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-1) | generator | ❌ N/A |
```
The `get_all_cicd_config_artifacts_expiry.py` script is located in the [GitLab API with Python project](https://gitlab.com/gitlab-da/use-cases/gitlab-api/gitlab-api-python/).
Alternatively, you can use [advanced search](search/advanced_search.md) with API requests. The following example uses the [scope: blobs](../api/search.md#scope-blobs) to searches for the string `artifacts` in all `*.yml` files:
```shell
# https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-expiry-included-jobs
export GL_PROJECT_ID=48349263
glab api --method GET projects/$GL_PROJECT_ID/search --field "scope=blobs" --field "search=expire_in filename:*.yml"
```
For more information about the inventory approach, see [How GitLab can help mitigate deletion of open source container images on Docker Hub](https://about.gitlab.com/blog/2023/03/16/how-gitlab-can-help-mitigate-deletion-open-source-images-docker-hub/).
### Set default expiry for job artifacts
To set the default expiry for job artifacts in a project, specify the `expire_in` value in the `.gitlab-ci.yml` file:
```yaml
default:
artifacts:
expire_in: 1 week
```
## Manage Container Registries storage
Container registries are available [for projects](../api/container_registry.md#within-a-project) or [for groups](../api/container_registry.md#within-a-group). You can analyze both locations to implement a cleanup strategy.
### List container registries
To list Container Registries in a project:
::Tabs
:::TabTitle curl
```shell
export GL_PROJECT_ID=48057080
curl --silent --header "Authorization: Bearer $GITLAB_TOKEN" "https://gitlab.com/api/v4/projects/$GL_PROJECT_ID/registry/repositories" | jq --compact-output '.[]' | jq --compact-output '.id,.location' | jq
4435617
"registry.gitlab.com/gitlab-da/playground/container-package-gen-group/docker-alpine-generator"
curl --silent --header "Authorization: Bearer $GITLAB_TOKEN" "https://gitlab.com/api/v4/registry/repositories/4435617?size=true" | jq --compact-output '.id,.location,.size'
4435617
"registry.gitlab.com/gitlab-da/playground/container-package-gen-group/docker-alpine-generator"
3401613
```
:::TabTitle GitLab CLI
```shell
export GL_PROJECT_ID=48057080
glab api --method GET projects/$GL_PROJECT_ID/registry/repositories | jq --compact-output '.[]' | jq --compact-output '.id,.location'
4435617
"registry.gitlab.com/gitlab-da/playground/container-package-gen-group/docker-alpine-generator"
glab api --method GET registry/repositories/4435617 --field='size=true' | jq --compact-output '.id,.location,.size'
4435617
"registry.gitlab.com/gitlab-da/playground/container-package-gen-group/docker-alpine-generator"
3401613
glab api --method GET projects/$GL_PROJECT_ID/registry/repositories/4435617/tags | jq --compact-output '.[]' | jq --compact-output '.name'
"latest"
glab api --method GET projects/$GL_PROJECT_ID/registry/repositories/4435617/tags/latest | jq --compact-output '.name,.created_at,.total_size'
"latest"
"2023-08-07T19:20:20.894+00:00"
3401613
```
::EndTabs
### Delete container images in bulk
When you [delete container image tags in bulk](../api/container_registry.md#delete-registry-repository-tags-in-bulk),
you can configure:
- The matching regular expressions for tag names and images to keep (`name_regex_keep`) or delete (`name_regex_delete`)
- The number of image tags to keep matching the tag name (`keep_n`)
- The number of days before an image tag can be deleted (`older_than`)
WARNING:
On GitLab.com, due to the scale of the container registry, the number of tags deleted by this API is limited.
If your container registry has a large number of tags to delete, only some of them are deleted. You might need
to call the API multiple times. To schedule tags for automatic deletion, use a [cleanup policy](#create-a-cleanup-policy-for-containers) instead.
The following example uses the [`python-gitlab` API library](https://python-gitlab.readthedocs.io/en/stable/gl_objects/repository_tags.html) to fetch a list of tags, and calls the `delete_in_bulk()` method with filter parameters.
```python
repositories = project.repositories.list(iterator=True, size=True)
if len(repositories) > 0:
repository = repositories.pop()
tags = repository.tags.list()
# Cleanup: Keep only the latest tag
repository.tags.delete_in_bulk(keep_n=1)
# Cleanup: Delete all tags older than 1 month
repository.tags.delete_in_bulk(older_than="1m")
# Cleanup: Delete all tags matching the regex `v.*`, and keep the latest 2 tags
repository.tags.delete_in_bulk(name_regex_delete="v.+", keep_n=2)
```
### Create a cleanup policy for containers
Use the project REST API endpoint to [create cleanup policies](packages/container_registry/reduce_container_registry_storage.md#use-the-cleanup-policy-api) for containers. After you set the cleanup policy, all container images that match your specifications are deleted automatically. You do not need additional API automation scripts.
To send the attributes as a body parameter:
- Use the `--input -` parameter to read from the standard input.
- Set the `Content-Type` header.
The following example uses the GitLab CLI to create a cleanup policy:
```shell
export GL_PROJECT_ID=48057080
echo '{"container_expiration_policy_attributes":{"cadence":"1month","enabled":true,"keep_n":1,"older_than":"14d","name_regex":".*","name_regex_keep":".*-main"}}' | glab api --method PUT --header 'Content-Type: application/json;charset=UTF-8' projects/$GL_PROJECT_ID --input -
...
"container_expiration_policy": {
"cadence": "1month",
"enabled": true,
"keep_n": 1,
"older_than": "14d",
"name_regex": ".*",
"name_regex_keep": ".*-main",
"next_run_at": "2023-09-08T21:16:25.354Z"
},
```
### Optimize container images
You can optimize container images to reduce the image size and overall storage consumption in the container registry. Learn more in the [pipeline efficiency documentation](../ci/pipelines/pipeline_efficiency.md#optimize-docker-images).
## Manage package registry storage
Package registries are available [for projects](../api/packages.md#for-a-project) or [for groups](../api/packages.md#for-a-group).
### List packages and files
The following example shows fetching packages from a defined project ID using the GitLab CLI. The result set is an array of dictionary items that can be filtered with the `jq` command chain.
```shell
# https://gitlab.com/gitlab-da/playground/container-package-gen-group/generic-package-generator
export GL_PROJECT_ID=48377643
glab api --method GET projects/$GL_PROJECT_ID/packages | jq --compact-output '.[]' | jq --compact-output '.id,.name,.package_type'
16669383
"generator"
"generic"
16671352
"generator"
"generic"
16672235
"generator"
"generic"
16672237
"generator"
"generic"
```
Use the package ID to inspect the files and their size in the package.
```shell
glab api --method GET projects/$GL_PROJECT_ID/packages/16669383/package_files | jq --compact-output '.[]' |
jq --compact-output '.package_id,.file_name,.size'
16669383
"nighly.tar.gz"
10487563
```
A similar automation shell script is created in the [delete old pipelines](#delete-old-pipelines) section.
The following script example uses the `python-gitlab` library to fetch all packages in a loop,
and loops over its package files to print the `file_name` and `size` attributes.
```python
packages = project.packages.list(order_by="created_at")
for package in packages:
package_files = package.package_files.list()
for package_file in package_files:
print("Package name: {p} File name: {f} Size {s}".format(
p=package.name, f=package_file.file_name, s=render_size_mb(package_file.size)))
```
### Delete packages
[Deleting a file in a package](../api/packages.md#delete-a-package-file) can corrupt the package. You should delete the package when performing automated cleanup maintenance.
To delete a package, use the GitLab CLI to change the `--method`
parameter to `DELETE`:
```shell
glab api --method DELETE projects/$GL_PROJECT_ID/packages/16669383
```
To calculate the package size and compare it against a size threshold, you can use the `python-gitlab` library
to extend the code described in the [list packages and files](#list-packages-and-files) section.
The following code example also calculates the package age and deletes the package when the conditions match:
```python
packages = project.packages.list(order_by="created_at")
for package in packages:
package_size = 0.0
package_files = package.package_files.list()
for package_file in package_files:
print("Package name: {p} File name: {f} Size {s}".format(
p=package.name, f=package_file.file_name, s=render_size_mb(package_file.size)))
package_size =+ package_file.size
print("Package size: {s}\n\n".format(s=render_size_mb(package_size)))
threshold_size = 10 * 1024 * 1024
if (package_size > float(threshold_size)):
print("Package size {s} > threshold {t}, deleting package.".format(
s=render_size_mb(package_size), t=render_size_mb(threshold_size)))
package.delete()
threshold_age = 90 * 24 * 60 * 60
package_age = created_at = calculate_age(package.created_at)
if (float(package_age > float(threshold_age))):
print("Package age {a} > threshold {t}, deleting package.".format(
a=render_age_time(package_age), t=render_age_time(threshold_age)))
package.delete()
```
The code generates the following output that you can use for further analysis:
```shell
Package name: generator File name: nighly.tar.gz Size 10.0017
Package size: 10.0017
Package size 10.0017 > threshold 10.0000, deleting package.
Package name: generator File name: 1-nightly.tar.gz Size 1.0004
Package size: 1.0004
Package name: generator File name: 10-nightly.tar.gz Size 10.0018
Package name: generator File name: 20-nightly.tar.gz Size 20.0033
Package size: 20.0033
Package size 20.0033 > threshold 10.0000, deleting package.
```
### Dependency Proxy
Review the [cleanup policy](packages/dependency_proxy/reduce_dependency_proxy_storage.md#cleanup-policies) and how to [purge the cache using the API](packages/dependency_proxy/reduce_dependency_proxy_storage.md#use-the-api-to-clear-the-cache)
## Improve output readability
You might need to convert timestamp seconds into a duration format, or print raw bytes in a more
representative format. You can use the following helper functions to transform values for improved
readability:
```shell
# Current Unix timestamp
date +%s
# Convert `created_at` date time with timezone to Unix timestamp
date -d '2023-08-08T18:59:47.581Z' +%s
```
Example with Python that uses the `python-gitlab` API library:
```python
def render_size_mb(v):
return "%.4f" % (v / 1024 / 1024)
def render_age_time(v):
return str(datetime.timedelta(seconds = v))
# Convert `created_at` date time with timezone to Unix timestamp
def calculate_age(created_at_datetime):
created_at_ts = datetime.datetime.strptime(created_at_datetime, '%Y-%m-%dT%H:%M:%S.%fZ')
now = datetime.datetime.now()
return (now - created_at_ts).total_seconds()
```
## Testing for storage management automation
To test storage management automation, you might need to generate test data, or populate
storage to verify that the analysis and deletion works as expected. The following sections
provide tools and tips about testing and generating storage blobs in a short amount of time.
### Generate job artifacts
Create a test project to generate fake artifact blobs using CI/CD job matrix builds. Add a CI/CD pipeline to generate artifacts on a daily basis
1. Create a new project.
1. Add the following snippet to `.gitlab-ci.yml` to include the job artifact generator configuration.
```yaml
include:
- remote: https://gitlab.com/gitlab-da/use-cases/efficiency/job-artifact-generator/-/raw/main/.gitlab-ci.yml
```
1. [Configure pipeline schedules](../ci/pipelines/schedules.md#add-a-pipeline-schedule).
1. [Trigger the pipeline manually](../ci/pipelines/schedules.md#run-manually).
Alternatively, reduce the 86 MB daily generated MB to different values in the `MB_COUNT` variable.
```yaml
include:
- remote: https://gitlab.com/gitlab-da/use-cases/efficiency/job-artifact-generator/-/raw/main/.gitlab-ci.yml
generator:
parallel:
matrix:
- MB_COUNT: [1, 5, 10, 20, 50]
```
For more information, see the [Job Artifact Generator README](https://gitlab.com/gitlab-da/use-cases/efficiency/job-artifact-generator), with an [example group](https://gitlab.com/gitlab-da/playground/artifact-gen-group).
### Generate job artifacts with expiry
The project CI/CD configuration specifies job definitions in:
- The main `.gitlab-ci.yml` configuration file.
- The `artifacts:expire_in` setting.
- Project files and templates.
To test the analysis scripts, the [`gen-job-artifacts-expiry-included-jobs`](https://gitlab.com/gitlab-da/playground/artifact-gen-group/gen-job-artifacts-expiry-included-jobs) project provides an example configuration.
```yaml
# .gitlab-ci.yml
include:
- include_jobs.yml
default:
artifacts:
paths:
- '*.txt'
.gen-tmpl:
script:
- dd if=/dev/urandom of=${$MB_COUNT}.txt bs=1048576 count=${$MB_COUNT}
generator:
extends: [.gen-tmpl]
parallel:
matrix:
- MB_COUNT: [1, 5, 10, 20, 50]
artifacts:
untracked: false
when: on_success
expire_in: 30 days
# include_jobs.yml
.includeme:
script:
- dd if=/dev/urandom of=1.txt bs=1048576 count=1
included-job10:
script:
- echo "Servus"
- !reference [.includeme, script]
artifacts:
untracked: false
when: on_success
expire_in: 10 days
included-job1:
script:
- echo "Gruezi"
- !reference [.includeme, script]
artifacts:
untracked: false
when: on_success
expire_in: 1 days
included-job30:
script:
- echo "Grias di"
- !reference [.includeme, script]
artifacts:
untracked: false
when: on_success
expire_in: 30 days
```
### Generate container images
The example group [`container-package-gen-group`](https://gitlab.com/gitlab-da/playground/container-package-gen-group) provides projects that:
- Use a base image in Dockerfile to build a new image.
- Include the `Docker.gitlab-ci.yml` template to build images on GitLab.com SaaS.
- Configure pipeline schedules to generate new images daily.
Example projects available to fork:
- [`docker-alpine-generator`](https://gitlab.com/gitlab-da/playground/container-package-gen-group/docker-alpine-generator)
- [`docker-python-generator`](https://gitlab.com/gitlab-da/playground/container-package-gen-group/docker-python-generator)
### Generate generic packages
The example project [`generic-package-generator`](https://gitlab.com/gitlab-da/playground/container-package-gen-group/generic-package-generator) provides projects that:
- Generate a random text blob, and create a tarball with the current Unix timestamp as release version.
- Upload the tarball into the generic package registry, using the Unix timestamp as release version.
To generate generic packages, you can use this standalone `.gitlab-ci.yml` configuration:
```yaml
generate-package:
parallel:
matrix:
- MB_COUNT: [1, 5, 10, 20]
before_script:
- apt update && apt -y install curl
script:
- dd if=/dev/urandom of="${MB_COUNT}.txt" bs=1048576 count=${MB_COUNT}
- tar czf "generated-$MB_COUNT-nighly-`date +%s`.tar.gz" "${MB_COUNT}.txt"
- 'curl --header "JOB-TOKEN: $CI_JOB_TOKEN" --upload-file "generated-$MB_COUNT-nighly-`date +%s`.tar.gz" "${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/generic/generator/`date +%s`/${MB_COUNT}-nightly.tar.gz"'
artifacts:
paths:
- '*.tar.gz'
```
### Generate storage usage with forks
Use the following projects to test storage usage with [cost factors for forks](storage_usage_quotas.md#view-project-fork-storage-usage):
- Fork [`gitlab-org/gitlab`](https://gitlab.com/gitlab-org/gitlab) into a new namespace or group (includes LFS, Git repository).
- Fork [`gitlab-com/www-gitlab-com`](https://gitlab.com/gitlab-com/www-gitlab-com) into a new namespace or group.
## Community resources
The following resources are not officially supported. Ensure to test scripts and tutorials before running destructive cleanup commands that may not be reverted.
- Forum topic: [Storage management automation resources](https://forum.gitlab.com/t/storage-management-automation-resources/91184)
- Script: [GitLab Storage Analyzer](https://gitlab.com/gitlab-da/use-cases/gitlab-api/gitlab-storage-analyzer), unofficial project by the [GitLab Developer Evangelism team](https://gitlab.com/gitlab-da/). You find similar code examples in this documentation how-to here.
|