1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
# Binary Format (BEVE)
Glaze provides a binary format to send and receive messages like JSON, but with significantly improved performance and message size savings.
The binary specification is known as [BEVE](https://github.com/beve-org/beve).
**Write BEVE**
```c++
my_struct s{};
std::vector<std::byte> buffer{};
glz::write_beve(s, buffer);
```
**Read BEVE**
```c++
my_struct s{};
glz::read_beve(s, buffer);
```
> [!NOTE]
>
> Reading binary is safe for invalid input and does not require null terminated buffers.
## Untagged Binary
By default Glaze will handle structs as tagged objects, meaning that keys will be written/read. However, structs can be written/read without tags by using the option `structs_as_arrays` or the functions `glz::write_beve_untagged` and `glz::read_beve_untagged`.
## BEVE to JSON Conversion
`glaze/binary/beve_to_json.hpp` provides `glz::beve_to_json`, which directly converts a buffer of BEVE data to a buffer of JSON data.
### Member Function Pointers
Objects that expose member function pointers through `glz::meta` are skipped by the BEVE writer by default. This mirrors JSON/TOML behaviour and avoids emitting unusable callable placeholders in binary payloads.
If you want the key present, use `write_member_functions = true`.
## Custom Map Keys
BEVE can serialize map-like containers whose key types expose a value through Glaze metadata. This allows “strong ID” wrappers to keep a user-defined type while the binary payload stores the underlying numeric representation.
```c++
struct ModuleID {
uint64_t value{};
auto operator<=>(const ModuleID&) const = default;
};
template <>
struct glz::meta<ModuleID> {
static constexpr auto value = &ModuleID::value;
};
std::map<ModuleID, std::string> modules{{ModuleID{42}, "life"}, {ModuleID{9001}, "power"}};
std::string beve{};
glz::write_beve(modules, beve);
```
Glaze inspects the metadata, reuses the underlying `uint64_t`, and emits the numeric BEVE map header so the payload decodes as a regular number key. The same behaviour works for `std::unordered_map` and concatenated ranges such as `std::vector<std::pair<ModuleID, T>>`.
If you prefer to keep a custom conversion in your metadata, `glz::cast` works as well:
```c++
template <>
struct glz::meta<ModuleID> {
static constexpr auto value = glz::cast<&ModuleID::value, uint64_t>;
};
```
## Partial Objects
It is sometimes desirable to write out only a portion of an object. This is permitted via an array of JSON pointers, which indicate which parts of the object should be written out.
```c++
static constexpr auto partial = glz::json_ptrs("/i",
"/d",
"/sub/x",
"/sub/y");
std::vector<std::byte> out;
glz::write_beve<partial>(s, out);
```
## Delimited BEVE (Multiple Objects in One Buffer)
Similar to [NDJSON](https://github.com/ndjson/ndjson-spec) for JSON, BEVE supports storing multiple objects in a single buffer using a delimiter. The BEVE specification defines a **Data Delimiter** extension (type 6, subtype 0) specifically for this purpose.
This is useful for:
- Streaming multiple messages over a connection
- Appending records to a buffer without re-encoding existing data
- Log files with multiple serialized entries
- Message queues with batched records
### Quick Reference
**Writing Functions**
| Function | Description |
|----------|-------------|
| `write_beve_delimiter(buffer)` | Writes a single delimiter byte (0x06) |
| `write_beve_append(value, buffer)` | Appends a BEVE value to existing buffer. Returns `expected<size_t, error_ctx>` with bytes written. |
| `write_beve_append_with_delimiter(value, buffer)` | Writes delimiter + value. Returns bytes written including delimiter. |
| `write_beve_delimited(container, buffer)` | Writes all container elements with delimiters between them |
**Reading Functions**
| Function | Description |
|----------|-------------|
| `read_beve_delimited(container, buffer)` | Reads all delimiter-separated values into a container |
| `read_beve_at(value, buffer, offset)` | Reads a single value at offset. Returns bytes consumed. Skips leading delimiter if present. |
### Writing Delimited BEVE
#### Append a Single Value
Use `write_beve_append` to add a value to an existing buffer without clearing it:
```c++
std::string buffer{};
// Write first object
auto bytes1 = glz::write_beve_append(my_struct{1, "first"}, buffer);
// Append delimiter and second object
auto bytes2 = glz::write_beve_append_with_delimiter(my_struct{2, "second"}, buffer);
// Append delimiter and third object
auto bytes3 = glz::write_beve_append_with_delimiter(my_struct{3, "third"}, buffer);
```
The `write_beve_append` function returns `glz::expected<size_t, error_ctx>` containing the number of bytes written.
#### Write a Delimiter
You can manually write just the delimiter byte:
```c++
std::string buffer{};
glz::write_beve_append(obj1, buffer);
glz::write_beve_delimiter(buffer); // Writes single 0x06 byte
glz::write_beve_append(obj2, buffer);
```
#### Write a Container with Delimiters
To write all elements of a container with delimiters between them:
```c++
std::vector<my_struct> objects = {
{1, "first"},
{2, "second"},
{3, "third"}
};
std::string buffer{};
auto ec = glz::write_beve_delimited(objects, buffer);
// Or get the buffer directly:
auto result = glz::write_beve_delimited(objects);
if (result) {
std::string buffer = std::move(*result);
}
```
### Reading Delimited BEVE
#### Read All Values into a Container
Use `read_beve_delimited` to read all delimiter-separated values:
```c++
std::string buffer = /* delimited BEVE data */;
std::vector<my_struct> objects{};
auto ec = glz::read_beve_delimited(objects, buffer);
// Or get the container directly:
auto result = glz::read_beve_delimited<std::vector<my_struct>>(buffer);
if (result) {
for (const auto& obj : *result) {
// process each object
}
}
```
#### Read at a Specific Offset
For manual control over reading, use `read_beve_at` which returns the number of bytes consumed:
```c++
std::string buffer = /* delimited BEVE data */;
size_t offset = 0;
while (offset < buffer.size()) {
my_struct obj{};
auto result = glz::read_beve_at(obj, buffer, offset);
if (!result) {
break; // Error or end of data
}
offset += *result; // Advance by bytes consumed
// Process obj...
}
```
> [!NOTE]
> `read_beve_at` automatically skips a delimiter byte if one is present at the given offset. The returned byte count **includes** the skipped delimiter, so `offset += *result` correctly advances to the next value.
#### Bytes Consumed Tracking
The standard `read_beve` function also tracks bytes consumed via `error_ctx.location`:
```c++
my_struct obj{};
auto ec = glz::read_beve(obj, buffer);
size_t bytes_consumed = ec.location; // Number of bytes read
```
### Example: Streaming Workflow
```c++
struct Message {
int id{};
std::string content{};
};
// Producer: append messages to a buffer
std::string buffer{};
for (int i = 0; i < 100; ++i) {
Message msg{i, "message " + std::to_string(i)};
if (i == 0) {
glz::write_beve_append(msg, buffer);
} else {
glz::write_beve_append_with_delimiter(msg, buffer);
}
}
// Consumer: read all messages
std::vector<Message> messages{};
auto ec = glz::read_beve_delimited(messages, buffer);
// messages now contains all 100 Message objects
```
### Delimiter Format
The BEVE delimiter is a single byte: `0x06` (extensions type 6 with subtype 0). When converting delimited BEVE to JSON via `glz::beve_to_json`, each delimiter is converted to a newline character (`\n`), producing NDJSON-compatible output.
|