1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
# Advanced Glaze API Usage
This guide covers advanced patterns and techniques for using the Glaze API system.
## Table of Contents
- [Creating Custom API Implementations](#creating-custom-api-implementations)
- [JSON Pointer Navigation](#json-pointer-navigation)
- [Working with Complex Types](#working-with-complex-types)
- [Function Signatures and Type Handling](#function-signatures-and-type-handling)
- [Performance Optimization](#performance-optimization)
- [Type Hashing Deep Dive](#type-hashing-deep-dive)
- [Cross-Compilation Safety](#cross-compilation-safety)
## Creating Custom API Implementations
While `glz::impl<T>` provides the standard implementation, you can create custom API implementations by inheriting from `glz::api`:
```c++
#include "glaze/api/api.hpp"
struct custom_api : glz::api {
// Your custom data
std::map<std::string, int> data;
// Override the virtual methods
std::pair<void*, glz::hash_t> get(const sv path) noexcept override {
// Custom implementation
if (path == "/count") {
static constexpr auto hash = glz::hash<int>();
return {&data["count"], hash};
}
return {nullptr, {}};
}
bool contains(const sv path) noexcept override {
return path == "/count";
}
bool read(const uint32_t format, const sv path, const sv data) noexcept override {
// Custom deserialization logic
return true;
}
bool write(const uint32_t format, const sv path, std::string& data) noexcept override {
// Custom serialization logic
return true;
}
protected:
bool caller(const sv path, const glz::hash_t type_hash, void*& ret,
std::span<void*> args) noexcept override {
// Custom function calling logic
return false;
}
std::unique_ptr<void, void (*)(void*)> get_fn(const sv path,
const glz::hash_t type_hash) noexcept override {
// Custom function retrieval logic
return {nullptr, nullptr};
}
};
```
## JSON Pointer Navigation
The API uses [JSON Pointer (RFC 6901)](https://tools.ietf.org/html/rfc6901) syntax for navigating data structures:
### Basic Paths
```c++
struct config {
int port = 8080;
std::string host = "localhost";
std::vector<std::string> endpoints = {"api", "health", "metrics"};
};
auto* port = api->get<int>("/port");
auto* host = api->get<std::string>("/host");
```
### Nested Objects
```c++
struct database {
std::string connection_string;
int max_connections = 10;
};
struct app_config {
database db;
int port = 8080;
};
template <>
struct glz::meta<database> {
using T = database;
static constexpr auto value = glz::object(
&T::connection_string,
&T::max_connections
);
static constexpr std::string_view name = "database";
};
template <>
struct glz::meta<app_config> {
using T = app_config;
static constexpr auto value = glz::object(
&T::db,
&T::port
);
static constexpr std::string_view name = "app_config";
};
// Navigate to nested members
auto* conn_str = api->get<std::string>("/db/connection_string");
auto* max_conn = api->get<int>("/db/max_connections");
```
### Array Access
```c++
struct config {
std::vector<int> ports = {8080, 8081, 8082};
};
// Access array elements by index
auto* first_port = api->get<int>("/ports/0");
auto* second_port = api->get<int>("/ports/1");
```
### Escaping Special Characters
If your keys contain special characters like `/` or `~`, they must be escaped:
- `~0` represents `~`
- `~1` represents `/`
```c++
// A key named "a/b" would be accessed as "/a~1b"
// A key named "m~n" would be accessed as "/m~0n"
```
## Working with Complex Types
### Nested Smart Pointers
```c++
struct data {
std::unique_ptr<std::shared_ptr<int>> value =
std::make_unique<std::shared_ptr<int>>(std::make_shared<int>(42));
};
// Glaze automatically unwraps nested smart pointers
auto* val = api->get<int>("/value"); // Returns int*, not unique_ptr<shared_ptr<int>>*
```
### Optional Values
```c++
struct config {
std::optional<std::string> api_key;
std::optional<int> timeout;
};
template <>
struct glz::meta<config> {
using T = config;
static constexpr auto value = glz::object(
&T::api_key,
&T::timeout
);
static constexpr std::string_view name = "config";
};
// Access optional values
auto* api_key = api->get<std::string>("/api_key");
if (api_key) {
std::cout << "API Key: " << *api_key << "\n";
} else {
std::cout << "API key not set\n";
}
```
### Variant Types
```c++
struct config {
std::variant<int, std::string, double> value = 42;
};
template <>
struct glz::meta<config> {
using T = config;
static constexpr auto value = glz::object(&T::value);
static constexpr std::string_view name = "config";
};
// Access the variant - must know the active type
auto* int_val = api->get<int>("/value");
if (int_val) {
std::cout << "Value is int: " << *int_val << "\n";
}
auto* str_val = api->get<std::string>("/value");
if (str_val) {
std::cout << "Value is string: " << *str_val << "\n";
}
```
### Spans
```c++
struct data {
std::vector<double> values = {1.0, 2.0, 3.0, 4.0, 5.0};
std::span<double> view;
data() : view(values) {}
};
template <>
struct glz::meta<data> {
using T = data;
static constexpr auto value = glz::object(
"values", &T::values,
"view", &T::view
);
static constexpr std::string_view name = "data";
};
// Access span - provides view into the vector
auto* span = api->get<std::span<double>>("/view");
if (span) {
for (auto val : *span) {
std::cout << val << " ";
}
}
```
## Function Signatures and Type Handling
### Reference Parameters
Member functions can accept parameters by value, lvalue reference, const lvalue reference, or rvalue reference:
```c++
struct api_type {
void by_value(int x) { /* ... */ }
void by_lvalue_ref(int& x) { ++x; }
void by_const_lvalue_ref(const int& x) { /* ... */ }
void by_rvalue_ref(int&& x) { /* ... */ }
double sum_const_refs(const double& a, const double& b) { return a + b; }
double sum_rvalue_refs(double&& a, double&& b) { return a + b; }
};
template <>
struct glz::meta<api_type> {
using T = api_type;
static constexpr auto value = glz::object(
&T::by_value,
&T::by_lvalue_ref,
&T::by_const_lvalue_ref,
&T::by_rvalue_ref,
&T::sum_const_refs,
&T::sum_rvalue_refs
);
static constexpr std::string_view name = "api_type";
};
// Call with different parameter styles
int val = 10;
api->call<void>("/by_lvalue_ref", val); // val is now 11
auto result1 = api->call<double>("/sum_const_refs", 3.0, 4.0);
auto result2 = api->call<double>("/sum_rvalue_refs", 3.0, 4.0);
```
### Return Types
Functions can return by value, reference, const reference, or pointer:
```c++
struct api_type {
int x = 42;
int by_value() { return x; }
int& by_reference() { return x; }
const int& by_const_reference() { return x; }
int* by_pointer() { return &x; }
};
template <>
struct glz::meta<api_type> {
using T = api_type;
static constexpr auto value = glz::object(
&T::x,
&T::by_value,
&T::by_reference,
&T::by_const_reference,
&T::by_pointer
);
static constexpr std::string_view name = "api_type";
};
// Call functions with different return types
auto val = api->call<int>("/by_value");
auto ref = api->call<int&>("/by_reference");
auto const_ref = api->call<const int&>("/by_const_reference");
auto ptr = api->call<int*>("/by_pointer");
// Reference returns are wrapped in std::reference_wrapper
if (ref) {
std::cout << "Reference value: " << ref.value().get() << "\n";
}
```
### Custom Types as Parameters
```c++
struct point {
double x, y;
};
template <>
struct glz::meta<point> {
using T = point;
static constexpr auto value = glz::object("x", &T::x, "y", &T::y);
static constexpr std::string_view name = "point";
};
struct geometry_api {
double distance(const point& p1, const point& p2) {
double dx = p2.x - p1.x;
double dy = p2.y - p1.y;
return std::sqrt(dx * dx + dy * dy);
}
};
template <>
struct glz::meta<geometry_api> {
using T = geometry_api;
static constexpr auto value = glz::object("distance", &T::distance);
static constexpr std::string_view name = "geometry_api";
};
// Call with custom types
point p1{0, 0};
point p2{3, 4};
auto dist = api->call<double>("/distance", p1, p2); // Returns 5.0
```
## Performance Optimization
### Cache Function Objects
If you're calling the same function multiple times, use `get_fn` to retrieve a `std::function` once and reuse it:
```c++
// Inefficient: Creates std::function on every call
for (int i = 0; i < 1000; ++i) {
auto result = api->call<int>("/compute", i);
}
// Efficient: Retrieve function once, call many times
auto compute_fn = api->get_fn<std::function<int(int)>>("/compute");
if (compute_fn) {
for (int i = 0; i < 1000; ++i) {
int result = compute_fn.value()(i);
}
}
```
### Cache Pointers
Similarly, cache pointers to frequently accessed data:
```c++
// Inefficient: Looks up path on every access
for (int i = 0; i < 1000; ++i) {
auto* value = api->get<int>("/counter");
(*value)++;
}
// Efficient: Look up once, use many times
auto* counter = api->get<int>("/counter");
if (counter) {
for (int i = 0; i < 1000; ++i) {
(*counter)++;
}
}
```
### Use BEVE for Binary Data
For performance-critical serialization, use BEVE instead of JSON:
```c++
std::string buffer;
// Slower: JSON serialization
api->write(glz::JSON, "", buffer);
api->read(glz::JSON, "", buffer);
// Faster: Binary serialization
api->write(glz::BEVE, "", buffer);
api->read(glz::BEVE, "", buffer);
```
BEVE is significantly faster for serialization/deserialization and produces smaller output.
### Batch Operations
When modifying multiple values, consider reading/writing at the root level:
```c++
// Less efficient: Multiple separate writes
std::string buf1, buf2, buf3;
api->write(glz::JSON, "/x", buf1);
api->write(glz::JSON, "/y", buf2);
api->write(glz::JSON, "/z", buf3);
// More efficient: Single write of entire object
std::string buffer;
api->write(glz::JSON, "", buffer);
```
## Type Hashing Deep Dive
Understanding how Glaze hashes types helps you debug type mismatches and design safer APIs.
### Hash Components
The type hash for a type `T` includes:
```c++
// Pseudo-code showing what gets hashed
hash = hash128(
name, // Type name from glz::meta
sizeof(T), // Size in bytes
version.major, // Version components
version.minor,
version.patch,
is_trivial<T>, // Type traits
is_standard_layout<T>,
is_default_constructible<T>,
// ... all other type traits
compiler_id, // "clang", "gcc", or "msvc"
member_names // Names of all members (for object types)
);
```
### Type Name Examples
Glaze generates type names following these rules:
```c++
// Fundamental types
glz::name_v<int> // "int32_t"
glz::name_v<double> // "double"
glz::name_v<bool> // "bool"
// CV-qualifiers and references
glz::name_v<const int> // "const int32_t"
glz::name_v<int&> // "int32_t&"
glz::name_v<const int&> // "const int32_t&"
glz::name_v<int&&> // "int32_t&&"
// Pointers
glz::name_v<int*> // "int32_t*"
glz::name_v<const int*> // "const int32_t*"
// Containers
glz::name_v<std::vector<int>> // "std::vector<int32_t>"
glz::name_v<std::map<std::string, int>> // "std::map<std::string,int32_t>"
glz::name_v<std::unordered_map<uint64_t, std::string>> // "std::unordered_map<uint64_t,std::string>"
// Functions
glz::name_v<std::function<int(double)>> // "std::function<int32_t(double)>"
glz::name_v<std::function<void()>> // "std::function<void()>"
glz::name_v<std::function<double(const int&, const double&)>>
// "std::function<double(const int32_t&,const double&)>"
```
### Debugging Type Mismatches
When you get a type mismatch error, check:
1. **Type name**: Ensure both sides use the same name in `glz::meta`
2. **Version**: Check if versions match
3. **Member names**: Verify all members have the same names
4. **Compiler**: Are you using the same compiler family?
5. **Type traits**: Did you change the type in a way that affects its traits?
Example debugging:
```c++
// Print type information for debugging
std::cout << "Type name: " << glz::name_v<my_api> << "\n";
std::cout << "Version: " << glz::version_v<my_api>.major << "."
<< glz::version_v<my_api>.minor << "."
<< glz::version_v<my_api>.patch << "\n";
std::cout << "Size: " << sizeof(my_api) << "\n";
// Get the actual hash
auto hash = glz::hash<my_api>();
std::cout << "Hash: " << std::hex << hash[0] << hash[1] << std::dec << "\n";
```
## Cross-Compilation Safety
### Compiler Compatibility
The type hash includes the compiler identifier, so types compiled with different compiler families won't match:
```c++
// Library compiled with GCC
// Client compiled with Clang
// Result: Type hash mismatch error ✓ (Safety feature!)
```
This is a **safety feature** because different compilers may have different ABIs for the same type.
### Same Compiler, Different Versions
Types compiled with different versions of the **same compiler family** will generally work if:
- The ABI hasn't changed
- All type traits remain the same
- The type layout is identical
### Breaking Changes
Certain changes will always break compatibility:
**Always Breaks Compatibility:**
- Changing type name in `glz::meta`
- Incrementing major version
- Changing `sizeof(T)`
- Adding/removing/renaming members
- Changing member types
- Changing from non-polymorphic to polymorphic (or vice versa)
**May Break Compatibility:**
- Changing member order (changes layout)
- Changing alignment requirements
- Adding virtual functions (changes type traits)
**Safe Changes:**
- Changing function implementations (no signature change)
- Changing private member variables (if not in glz::meta)
## Best Practices Summary
1. **Type Names**: Always provide meaningful, unique names for your types
2. **Versioning**: Use semantic versioning and increment appropriately
3. **Error Handling**: Always check return values and handle errors gracefully
4. **Performance**: Cache function objects and pointers for frequently used items
5. **Serialization**: Use BEVE for performance-critical binary serialization
6. **Type Safety**: Let Glaze's type system protect you - don't cast away safety
7. **Documentation**: Document your API types and their versioning policy
8. **Testing**: Test across the actual compilation boundaries you'll use in production
9. **Portability**: Prefer fixed-size types over platform-dependent types
10. **Compatibility**: Plan for API evolution - design for forward/backward compatibility from the start
|