File: wrappers.md

package info (click to toggle)
glaze 6.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,948 kB
  • sloc: cpp: 121,839; sh: 99; ansic: 26; makefile: 13
file content (1199 lines) | stat: -rw-r--r-- 32,875 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
# Wrappers

Glaze provides a number of wrappers that indicate at compile time how a value should be read and/or written. These wrappers allow you to modify the read/write behavior of a type without affecting your C++ class.

## Available Wrappers

```c++
glz::append_arrays<&T::x> // When reading into an array that is appendable, the new data will be appended rather than overwrite
glz::bools_as_numbers<&T::x> // Read and write booleans as numbers
glz::cast<&T::x, CastType> // Casts a value to and from the CastType, which is parsed/serialized
glz::quoted_num<&T::x> // Read and write numbers as strings
glz::quoted<&T::x> // Read a value as a string and unescape, to avoid the user having to parse twice
glz::number<&T::x> // Read a string as a number and writes the string as a number
glz::raw<&T::x> // Write out string like types without quotes
glz::raw_string<&T::string> // Do not decode/encode escaped characters for strings (improves read/write performance)
glz::escaped<&T::string> // Opposite of glz::raw_string, it turns off this behavior
glz::escape_bytes_t<T> // A wrapper type for local use to treat char array or vector as byte sequence to be fully escaped (prevents null termination truncation)
glz::escape_bytes<&T::x> // For meta usage: treats char array or vector as byte sequence to be fully escaped (prevents null termination truncation)

glz::read_constraint<&T::x, constraint_function, "Message"> // Applies a constraint function when reading

glz::max_length<&T::x, N> // Limits string length or array size to N when reading (BEVE format)

glz::partial_read<&T::x> // Reads into only existing fields and elements and then exits without parsing the rest of the input

glz::invoke<&T::func> // Invoke a std::function, lambda, or member function with n-arguments as an array input
  
glz::write_float32<&T::x> // Writes out numbers with a maximum precision of float32_t
glz::write_float64<&T::x> // Writes out numbers with a maximum precision of float64_t
glz::write_float_full<&T::x> // Writes out numbers with full precision (turns off higher level float precision wrappers)
glz::float_format<&T::x, "{:.2f}"> // Format floats using std::format syntax (C++23)

glz::custom<&T::read, &T::write> // Calls custom read and write std::functions, lambdas, or member functions
glz::manage<&T::x, &T::read_x, &T::write_x> // Calls read_x() after reading x and calls write_x() before writing x
glz::as_array<&T::member> // Treat a reflected/member-annotated type as a positional array for read and write
```

## Associated glz::opts

`glz::opts` is the compile time options struct passed to most of Glaze functions to configure read/write behavior. Often wrappers are associated with compile time options and can also be set via `glz::opts`. For example, the `glz::quoted_num` wrapper is associated with the `quoted_num` boolean in `glz::opts`.

## append_arrays

When reading into an array that is appendable, the new data will be appended rather than overwrite

Associated option: add `bool append_arrays = true;` to a custom options struct (for example,
`struct append_arrays_opts : glz::opts { bool append_arrays = true; };`).

```c++
struct append_obj
{
   std::vector<std::string> names{};
   std::vector<std::array<int, 2>> arrays{};
};

template <>
struct glz::meta<append_obj>
{
   using T = append_obj;
   static constexpr auto value = object("names", append_arrays<&T::names>, "arrays", append_arrays<&T::arrays>);
};
```

In use:

```c++
append_obj obj{};
expect(not glz::read_json(obj, R"({"names":["Bob"],"arrays":[[0,0]]})"));
expect(obj.names == std::vector<std::string>{"Bob"});
expect(obj.arrays == std::vector<std::array<int, 2>>{{0,0}});

expect(not glz::read_json(obj, R"({"names":["Liz"],"arrays":[[1,1]]})"));
expect(obj.names == std::vector<std::string>{"Bob", "Liz"});
expect(obj.arrays == std::vector<std::array<int, 2>>{{0,0},{1,1}});
```

## bools_as_numbers

Read and write booleans as numbers

Associated option: add `bool bools_as_numbers = true;` to a custom options struct (for example,
`struct bools_as_numbers_opts : glz::opts { bool bools_as_numbers = true; };`).

```c++
struct bools_as_numbers_struct
{
   bool a{};
   bool b{};
   bool c{};
   bool d{};
   
   struct glaze {
      using T = bools_as_numbers_struct;
      static constexpr auto value = glz::object("a", glz::bools_as_numbers<&T::a>, "b", glz::bools_as_numbers<&T::b>, &T::c, &T::d);
   };
};
```

In use:

```c++
std::string s = R"({"a":1,"b":0,"c":true,"d":false})";
bools_as_numbers_struct obj{};
expect(!glz::read_json(obj, s));
expect(obj.a == true);
expect(obj.b == false);
expect(glz::write_json(obj) == s);
```

### bools_as_numbers from glz::opts

You don't have to use wrappers if you want the global behavior to handle booleans as numbers.

```c++
std::string s = R"([1,0,1,0])";
std::array<bool, 4> obj{};
struct bools_as_numbers_opts : glz::opts
{
   bool bools_as_numbers = true;
};
constexpr bools_as_numbers_opts opts{};
expect(!glz::read<opts>(obj, s));
expect(glz::write<opts>(obj) == s);
```

## cast

`glz::cast` is a simple wrapper that will serialize and deserialize the cast type rather than underlying type. This enables the user to parse JSON for a floating point value into an integer, or perform similar `static_cast` behaviors.

```c++
struct cast_obj
{
   int integer{};
};

template <>
struct glz::meta<cast_obj>
{
   using T = cast_obj;
   static constexpr auto value = object("integer", cast<&T::integer, double>);
};
```

In use:

```c++
cast_obj obj{};
std::string buffer = R"({"integer":5.7})";
expect(not glz::read_json(obj, buffer));
expect(obj.integer == 5);
```

When a cast-backed type is used as a key in a map (for example `std::map<MyId, T>`), BEVE now recognises the wrapper and emits the same header as the cast target. This means strong-ID wrappers can be reused across JSON, TOML, and BEVE without specialising custom read/write logic.

## quoted_num

Read and write numbers as strings.

Associated option: `glz::opts{.quoted_num = true};`

```c++
struct foo {
  int x{};
};

template <>
struct glz::meta<foo> {
  using T = foo;
  static constexpr auto value = object("x", quoted_num<&T::x>);
};
```

In use:

```c++
std::string input = R"({ "x": "5" })";
foo obj{};
expect(!glz::read_json(obj, input));
expect(glz::write_json(obj) == R"({ "x": "5" })");
```

> `quoted_num` is more efficient than `quoted` for numbers.

## quoted

When reading, first reads a value as a string, which unescapes, and then reads the value normally. When writing, will first write the value as a string and then write the string to produce escapes.

> `glz::quoted` is useful for storing escaped JSON inside of a higher level JSON object.

```c++
struct client_state
{
   uint64_t id{};
   std::map<std::string, std::vector<std::string>> layouts{};
};

template <>
struct glz::meta<client_state>
{
   using T = client_state;
   static constexpr auto value = object("id", &T::id, "layouts", quoted<&T::layouts>);
};
```

In use:

```c++
client_state obj{};
std::string input = R"({
"id": 4848,
"layouts": "{\"first layout\": [ \"inner1\", \"inner2\" ] }"
})";
expect(!glz::read_json(obj, input));
expect(obj.id == 4848);
expect(obj.layouts.at("first layout") == std::vector<std::string>{"inner1", "inner2"});

std::string out{};
glz::write_json(obj, out);
expect(out == R"({"id":4848,"layouts":"{\"first layout\":[\"inner1\",\"inner2\"]}"})");
```

## as_array

Convert a positional JSON array into an existing struct while writing back out as an array. Use `glz::as_array<&T::member>` when declaring the member in `glz::object`. Handy when a service sends compact arrays but your C++ type is a struct in memory.

```c++
struct Person_details
{
   std::string_view name;
   std::string_view surname;
   std::string_view city;
   std::string_view street;
};

struct Person
{
   int id{};
   Person_details person{};
};

template <>
struct glz::meta<Person>
{
   using T = Person;
   static constexpr auto value = glz::object(
      "id", &T::id,
      "person", glz::as_array<&T::person>
   );
};

std::string payload = R"({
   "id": 1,
   "person": ["Joe", "Doe", "London", "Chamber St"]
})";

Person p{};
expect(!glz::read_json(p, payload));
expect(p.person.city == "London");

auto written = glz::write_json(p).value();
expect(written ==
       R"({"id":1,"person":["Joe","Doe","London","Chamber St"]})"
);
```

## number

Read JSON numbers into strings and write strings as JSON numbers.

Associated option: `glz::opts{.number = true};`

```c++
struct numbers_as_strings
{
   std::string x{};
   std::string y{};
};

template <>
struct glz::meta<numbers_as_strings>
{
   using T = numbers_as_strings;
   static constexpr auto value = object("x", glz::number<&T::x>, "y", glz::number<&T::y>);
};
```

In use:

```c++
std::string input = R"({"x":555,"y":3.14})";
numbers_as_strings obj{};
expect(!glz::read_json(obj, input));
expect(obj.x == "555");
expect(obj.y == "3.14");

std::string output;
glz::write_json(obj, output);
expect(input == output);
```

## raw

Write out string like types without quotes.

> Useful for when a string is already in JSON format and doesn't need to be quoted.

Associated option: `glz::opts{.raw = true};`

```c++
struct raw_struct
{
   std::string str{};
};

template <>
struct glz::meta<raw_struct>
{
   using T = raw_struct;
   static constexpr auto value = object("str", glz::raw<&T::str>);
};
```

In use:

```c++
suite raw_test = [] {
  raw_struct obj{.str = R"("Hello")"};
  // quotes would have been escaped if str were not wrapped with raw
  expect(glz::write_json(obj) == R"({"str":"Hello"})");
};
```

## raw_string

Do not decode/encode escaped characters for strings (improves read/write performance).

> If your code does not care about decoding escaped characters or you know your input will never have escaped characters, this wrapper makes reading/writing that string faster.

Associated option: `glz::opts{.raw_string = true};`

```c++
struct raw_stuff
{
   std::string a{};
   std::string b{};
   std::string c{};

   struct glaze
   {
      using T = raw_stuff;
      static constexpr auto value = glz::object(&T::a, &T::b, &T::c);
   };
};

struct raw_stuff_wrapper
{
   raw_stuff data{};

   struct glaze
   {
      using T = raw_stuff_wrapper;
      static constexpr auto value{glz::raw_string<&T::data>};
   };
};
```

In use:

```c++
raw_stuff_wrapper obj{};
std::string buffer = R"({"a":"Hello\nWorld","b":"Hello World","c":"\tHello\bWorld"})";

expect(!glz::read_json(obj, buffer));
expect(obj.data.a == R"(Hello\nWorld)");
expect(obj.data.b == R"(Hello World)");
expect(obj.data.c == R"(\tHello\bWorld)");

buffer.clear();
glz::write_json(obj, buffer);
expect(buffer == R"({"a":"Hello\nWorld","b":"Hello World","c":"\tHello\bWorld"})");
```

## escaped

The `glz::escaped` wrapper turns off the effects of `glz::raw_string`.

```c++
struct raw_stuff_escaped
{
   raw_stuff data{};

   struct glaze
   {
      using T = raw_stuff_escaped;
      static constexpr auto value{glz::escaped<&T::data>};
   };
};
```

In use:

```c++
raw_stuff_escaped obj{};
std::string buffer = R"({"a":"Hello\nWorld"})";

expect(!glz::read_json(obj, buffer));
expect(obj.data.a ==
       R"(Hello
World)");

buffer.clear();
glz::write_json(obj, buffer);
expect(buffer == R"({"a":"Hello\nWorld","b":"","c":""})");
```

## escape_bytes

The `glz::escape_bytes_t` wrapper (for local usage) and `glz::escape_bytes` (for meta usage) are used to read and write binary data stored in character arrays (`char[]`) or vectors (`std::vector<char>`) as fully escaped JSON strings. This is particularly useful for handling binary data that might contain null characters or other control characters that would otherwise be truncated or cause issues.

**Meta Usage (`glz::escape_bytes<&T::member>`):**

```c++
struct binary_data
{
   char data[4];
};

template <>
struct glz::meta<binary_data>
{
   using T = binary_data;
   static constexpr auto value = object("data", glz::escape_bytes<&T::data>);
};
```

In use:

```c++
binary_data obj;
obj.data[0] = 0;
obj.data[1] = 1;
obj.data[2] = 0;
obj.data[3] = 2;

std::string out;
glz::write_json(obj, out);
expect(out == R"({"data":"\u0000\u0001\u0000\u0002"})");

binary_data obj2;
glz::read_json(obj2, out);
expect(std::memcmp(obj.data, obj2.data, 4) == 0);
```

**Local Usage (`glz::escape_bytes_t{value}`):**

```c++
char local_data[4] = {0, 'A', 0, 'B'};
std::string out;
glz::write_json(glz::escape_bytes_t{local_data}, out);
expect(out == R"("\u0000A\u0000B")");

char read_back_data[4];
glz::read_json(glz::escape_bytes_t{read_back_data}, out);
expect(read_back_data[0] == 0);
expect(read_back_data[1] == 'A');
expect(read_back_data[2] == 0);
expect(read_back_data[3] == 'B');
```

## read_constraint

Enables complex constraints to be defined within a `glz::meta` or using member functions. Parsing is short circuited upon violating a constraint and a nicely formatted error can be produced with a custom error message.

### Field order and optional members

Object members are visited in the order that the JSON input supplies them. This is an intentional design choice so
that input streams do not have to be re-ordered to match the declaration order. Because of this, a
`read_constraint` may only rely on fields that have already appeared in the JSON payload. If you need to validate the
final state of the entire object, use a `self_constraint` as shown below—those run after every field has been read.

Optional members are parsed lazily: if the JSON payload does not contain the key, the member is left untouched and the
corresponding `read_constraint` is not evaluated. This guarantees that absent optional data does not trigger
constraints. Keep in mind that reusing the same C++ object across multiple reads will retain the previous value for any
field that is omitted in later payloads, so reset or re-initialize the instance when you expect fresh state.

```c++
struct constrained_object
{
   int age{};
   std::string name{};
};

template <>
struct glz::meta<constrained_object>
{
   using T = constrained_object;
   static constexpr auto limit_age = [](const T&, int age) { return (age >= 0 && age <= 120); };

   static constexpr auto limit_name = [](const T&, const std::string& name) { return name.size() <= 8; };

   static constexpr auto value = object("age", read_constraint<&T::age, limit_age, "Age out of range">, //
                                        "name", read_constraint<&T::name, limit_name, "Name is too long">);
};
```

### Object level validation

To validate combinations of fields after the object has been fully deserialized, provide a single
`self_constraint` entry. This constraint runs once after all object members have been populated and can therefore
reason about the final state.

```c++
struct cross_constrained
{
   int age{};
   std::string name{};
};

template <>
struct glz::meta<cross_constrained>
{
   using T = cross_constrained;

   static constexpr auto combined = [](const T& v) {
      return ((v.name.starts_with('A') && v.age > 10) || v.age > 5);
   };

   static constexpr auto value = object(&T::age, &T::name);
   static constexpr auto self_constraint = glz::self_constraint<combined, "Age/name combination invalid">;
};
```

You can perform more elaborate business logic as well, such as validating that user credentials are consistent and
secure:

```c++
struct registration_request
{
   std::string username{};
   std::string password{};
   std::string confirm_password{};
   std::optional<std::string> email{};
};

template <>
struct glz::meta<registration_request>
{
   using T = registration_request;

   static constexpr auto strong_credentials = [](const T& value) {
      const bool strong_length = value.password.size() >= 12;
      const bool matches = value.password == value.confirm_password;
      const bool has_username = !value.username.empty();
      return strong_length && matches && has_username;
   };

   static constexpr auto value = object(
      &T::username,
      &T::password,
      &T::confirm_password,
      &T::email);

   static constexpr auto self_constraint = glz::self_constraint<strong_credentials,
      "Password must be at least 12 characters and match confirmation">;
};
```

If a self constraint fails, deserialization stops and `glz::error_code::constraint_violated` is reported with the
associated message.

When it is important that object memory remains valid after every individual assignment—for example, when other code
observes the partially constructed object during parsing—prefer `read_constraint` on the specific members. Those
constraints fire before the member is written, so the in-memory representation never stores an invalid value. In
contrast, `self_constraint` runs after fields are populated, so it can detect issues that span multiple members but the
object may hold the problematic data until the constraint handler reports an error.

### Skipping self_constraint validation

In some cases you may want to skip `self_constraint` validation—for example, when performance is critical and the data
is known to be valid, or when validation should be deferred to a later stage. You can disable `self_constraint` checks
by creating a custom options struct with `skip_self_constraint = true`:

```c++
struct skip_constraint_opts : glz::opts
{
   bool skip_self_constraint = true;
};

// Use it like this:
constexpr skip_constraint_opts opts{};
auto ec = glz::read<opts>(obj, buffer);
```

With this option enabled, the `self_constraint` is still defined in `glz::meta<T>` but will not be evaluated during
deserialization. This allows you to toggle validation on or off at compile time based on your use case.

## max_length

Limits string length or array/vector size when reading from binary formats (currently BEVE). This wrapper provides per-field control over allocation limits to prevent memory exhaustion from malicious or malformed input.

For strings (`std::string`), limits the maximum character count. For arrays/vectors, limits the maximum element count.

```c++
struct user_input
{
   std::string username;
   std::string bio;
   std::vector<int> scores;
   std::vector<std::string> tags;
};

template <>
struct glz::meta<user_input>
{
   using T = user_input;
   static constexpr auto value = object(
      "username", glz::max_length<&T::username, 64>,    // Max 64 characters
      "bio", &T::bio,                                    // No limit
      "scores", glz::max_length<&T::scores, 100>,       // Max 100 elements
      "tags", glz::max_length<&T::tags, 10>             // Max 10 strings
   );
};
```

In use:

```c++
user_input obj{};
std::string buffer;

// Valid data within limits
user_input valid{.username = "alice", .bio = "Hello!", .scores = {95, 87, 92}, .tags = {"cpp", "glaze"}};
glz::write_beve(valid, buffer);

auto ec = glz::read_beve(obj, buffer);
expect(!ec); // Success

// Data exceeding limits
user_input oversized{.username = std::string(100, 'x'), .bio = "", .scores = {}, .tags = {}};
buffer.clear();
glz::write_beve(oversized, buffer);

ec = glz::read_beve(obj, buffer);
expect(ec.ec == glz::error_code::invalid_length); // Rejected - username exceeds 64 chars
```

### Works with complex types

The wrapper also works with arrays of complex structs:

```c++
struct item
{
   std::string name;
   int value;
   std::vector<double> data;
};

struct container
{
   std::vector<item> items;
};

template <>
struct glz::meta<container>
{
   using T = container;
   static constexpr auto value = object(
      "items", glz::max_length<&T::items, 50>  // Max 50 complex items
   );
};
```

### Associated options

For global limits (applying to all strings/arrays), use custom options instead:

```c++
struct secure_opts : glz::opts
{
   uint32_t format = glz::BEVE;
   size_t max_string_length = 1024;    // Max 1KB per string
   size_t max_array_size = 10000;      // Max 10,000 elements per array
};

auto ec = glz::read<secure_opts{}>(obj, buffer);
```

See [Security](./security.md) for more details on allocation limits and DoS prevention.

## partial_read

Reads into existing object and array elements and then exits without parsing the rest of the input. More documentation concerning `partial_read` can be found in the [Partial Read documentation](./partial-read.md).

> `partial_read` is useful when parsing header information before deciding how to decode the rest of a document. Or, when you only care about the first few elements of an array.

## invoke

Invoke a std::function or member function with n-arguments as an array input.

```c++
struct invoke_struct
{
   int y{};
   std::function<void(int x)> square{};
   void add_one() { ++y; }

   // MSVC requires this constructor for 'this' to be captured
   invoke_struct()
   {
      square = [&](int x) { y = x * x; };
   }
};

template <>
struct glz::meta<invoke_struct>
{
   using T = invoke_struct;
   static constexpr auto value = object("square", invoke<&T::square>, "add_one", invoke<&T::add_one>);
};
```

In use:

```c++
std::string s = R"(
{
	"square":[5],
	"add_one":[]
})";
invoke_struct obj{};
expect(!glz::read_json(obj, s));
expect(obj.y == 26); // 5 * 5 + 1
};
```

## write_float32

Writes out numbers with a maximum precision of `float32_t`.

```c++
struct write_precision_t
{
   double pi = std::numbers::pi_v<double>;

   struct glaze
   {
      using T = write_precision_t;
      static constexpr auto value = glz::object("pi", glz::write_float32<&T::pi>);
   };
};
```

> [!IMPORTANT]
>
> The `glz::float_precision float_max_write_precision` is not a core option in `glz::opts`. You must create an options structure that adds this field to enable float precision control. The example below shows this user defined options struct that inherits from `glz::opts`.

In use:

```c++
struct float_opts : glz::opts {
   glz::float_precision float_max_write_precision{};
};

write_precision_t obj{};
std::string json_float = glz::write<float_opts{}>(obj);
expect(json_float == R"({"pi":3.1415927})") << json_float;
```

## write_float64

Writes out numbers with a maximum precision of `float64_t`.

## write_float_full

Writes out numbers with full precision  (turns off higher level float precision wrappers).

## float_format

Format floating-point numbers using `std::format` syntax (C++23). This wrapper provides per-member control over float formatting with the full flexibility of C++ format specifications.

```c++
struct coordinates
{
   double latitude{37.7749295};
   double longitude{-122.4194155};
   float altitude{10.5f};
};

template <>
struct glz::meta<coordinates>
{
   using T = coordinates;
   static constexpr auto value = glz::object(
      "lat", glz::float_format<&T::latitude, "{:.4f}">,
      "lon", glz::float_format<&T::longitude, "{:.4f}">,
      "alt", glz::float_format<&T::altitude, "{:.1f}">
   );
};
```

In use:

```c++
coordinates point{};
std::string json = glz::write_json(point).value_or("error");
// Output: {"lat":37.7749,"lon":-122.4194,"alt":10.5}

// Reading works normally - format only affects writing
coordinates point2{};
glz::read_json(point2, R"({"lat":40.7128,"lon":-74.0060,"alt":5.0})");
```

### Format String Syntax

The format string follows `std::format` syntax. Common specifiers for floats:

| Format | Description | Example Input | Example Output |
|--------|-------------|---------------|----------------|
| `{:.2f}` | Fixed, 2 decimal places | `3.14159` | `3.14` |
| `{:.0f}` | Fixed, no decimals (rounds) | `3.7` | `4` |
| `{:.6f}` | Fixed, 6 decimal places | `3.14159` | `3.141590` |
| `{:.2e}` | Scientific (lowercase) | `1234567.89` | `1.23e+06` |
| `{:.3E}` | Scientific (uppercase) | `0.000123` | `1.230E-04` |
| `{:.4g}` | General (auto-selects f/e) | `0.0001234` | `0.0001234` |

### Mixing Formatted and Unformatted Members

You can combine `float_format` with regular member pointers:

```c++
struct sensor_data
{
   double temperature{23.456789};  // High precision needed
   double display_value{23.456789}; // Formatted for display
   int sensor_id{42};
};

template <>
struct glz::meta<sensor_data>
{
   using T = sensor_data;
   static constexpr auto value = glz::object(
      "temperature", &T::temperature,  // Full precision (default behavior)
      "display", glz::float_format<&T::display_value, "{:.1f}">,  // Formatted
      "id", &T::sensor_id
   );
};
```

Output: `{"temperature":23.456789,"display":23.5,"id":42}`

### Special Values

The wrapper handles special floating-point values using `std::format` behavior:

```c++
coordinates point{std::numeric_limits<double>::infinity(), -0.0, 0.0f};
// Output includes "inf" for infinity values
```

### Comparison with Global float_format Option

| Feature | Per-member `glz::float_format` | Global `float_format` option |
|---------|-------------------------------|------------------------------|
| Scope | Individual members | All floats in serialization |
| Flexibility | Different format per member | Same format for all |
| Usage | `glz::meta` wrappers | Custom `glz::opts` struct |

Use the per-member wrapper when different fields need different formatting. Use the global option when all floats should be formatted the same way.

### Global float_format Option

For formatting all floats globally, add `float_format` to a custom options struct:

```c++
struct format_opts : glz::opts
{
   static constexpr std::string_view float_format = "{:.2f}";
};

double pi = 3.14159265358979;
std::string json = glz::write<format_opts{}>(pi).value_or("error");
// Output: 3.14
```

> [!NOTE]
> The `float_format` option uses `std::format` internally and requires C++23. The format string is validated at compile time via `std::format_string`.

## Associated glz::opts for float precision

```c++
enum struct float_precision : uint8_t { full, float32 = 4, float64 = 8, float128 = 16 };
```

glz::opts

```c++
// The maximum precision type used for writing floats, higher precision floats will be cast down to this precision
float_precision float_max_write_precision{};
```

## custom

Calls custom read and write std::functions, lambdas, or member functions.

```c++
struct custom_encoding
{
   uint64_t x{};
   std::string y{};
   std::array<uint32_t, 3> z{};

   void read_x(const std::string& s) { x = std::stoi(s); }

   uint64_t write_x() { return x; }

   void read_y(const std::string& s) { y = "hello" + s; }

   auto& write_z()
   {
      z[0] = 5;
      return z;
   }
};

template <>
struct glz::meta<custom_encoding>
{
   using T = custom_encoding;
   static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, //
                                        "y", custom<&T::read_y, &T::y>, //
                                        "z", custom<&T::z, &T::write_z>);
};
```

In use:

```c++
"custom_reading"_test = [] {
  custom_encoding obj{};
  std::string s = R"({"x":"3","y":"world","z":[1,2,3]})";
  expect(!glz::read_json(obj, s));
  expect(obj.x == 3);
  expect(obj.y == "helloworld");
  expect(obj.z == std::array<uint32_t, 3>{1, 2, 3});
};

"custom_writing"_test = [] {
  custom_encoding obj{};
  std::string s = R"({"x":"3","y":"world","z":[1,2,3]})";
  expect(!glz::read_json(obj, s));
  std::string out{};
  glz::write_json(obj, out);
  expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})");
};
```

### Another custom example

Showing use of constexpr lambdas for customization.

```c++
struct custom_buffer_input
{
   std::string str{};
};

template <>
struct glz::meta<custom_buffer_input>
{
   static constexpr auto read_x = [](custom_buffer_input& s, const std::string& input) { s.str = input; };
   static constexpr auto write_x = [](auto& s) -> auto& { return s.str; };
   static constexpr auto value = glz::object("str", glz::custom<read_x, write_x>);
};
```

In use:

```c++
std::string s = R"({"str":"Hello!"})";
custom_buffer_input obj{};
expect(!glz::read_json(obj, s));
expect(obj.str == "Hello!");
s.clear();
glz::write_json(obj, s);
expect(s == R"({"str":"Hello!"})");
expect(obj.str == "Hello!");
```

> [!NOTE]
>
> With read lambdas like `[](custom_buffer_input& s, const std::string& input)`, both types must be concrete (cannot use `auto`), otherwise you'll get a compilation error noting this. The reason is that Glaze must be able to determine what type to decode into before passing the decoded value to `input`.

## manage

Calls a read function after reading and calls a write function before writing.

> `glz::manage` is useful for transforming state from a user facing format into a more complex or esoteric internal format.

```c++
struct manage_x
{
   std::vector<int> x{};
   std::vector<int> y{};

   bool read_x()
   {
      y = x;
      return true;
   }

   bool write_x()
   {
      x = y;
      return true;
   }
};

template <>
struct glz::meta<manage_x>
{
   using T = manage_x;
   static constexpr auto value = object("x", manage<&T::x, &T::read_x, &T::write_x>);
};
```

In use:

```c++
manage_x obj{};
std::string s = R"({"x":[1,2,3]})";
expect(!glz::read_json(obj, s));
expect(obj.y[0] == 1);
expect(obj.y[1] == 2);
obj.x.clear();
s.clear();
glz::write_json(obj, s);
expect(s == R"({"x":[1,2,3]})");
expect(obj.x[0] == 1);
expect(obj.x[1] == 2);
```

### Another manage example

```c++
struct manage_x_lambda
{
   std::vector<int> x{};
   std::vector<int> y{};
};

template <>
struct glz::meta<manage_x_lambda>
{
   using T = manage_x_lambda;
   static constexpr auto read_x = [](auto& s) {
      s.y = s.x;
      return true;
   };
   static constexpr auto write_x = [](auto& s) {
      s.x = s.y;
      return true;
   };
   [[maybe_unused]] static constexpr auto value = object("x", manage<&T::x, read_x, write_x>);
};
```

In use:

```c++
manage_x_lambda obj{};
std::string s = R"({"x":[1,2,3]})";
expect(!glz::read_json(obj, s));
expect(obj.y[0] == 1);
expect(obj.y[1] == 2);
obj.x.clear();
s.clear();
glz::write_json(obj, s);
expect(s == R"({"x":[1,2,3]})");
expect(obj.x[0] == 1);
expect(obj.x[1] == 2);
```

## skip_null_members_on_read

The `skip_null_members_on_read` option allows reading JSON or BEVE data with null values without requiring `std::optional` wrappers on your C++ types. When enabled, null values in the input are simply skipped, leaving the existing field values unchanged.

This option is particularly useful when:
- You receive JSON from external sources that may include null values but you want to maintain default or existing values
- You want to avoid wrapping all your types in `std::optional` just to handle occasional null values
- You're implementing partial updates where null means "don't change this field"

### Usage

Add `bool skip_null_members_on_read = true;` to a custom options struct:

```c++
struct Person {
   std::string name = "Unknown";
   int age = 0;
   double salary = 0.0;
};

template <>
struct glz::meta<Person> {
   using T = Person;
   static constexpr auto value = glz::object(&T::name, &T::age, &T::salary);
};

struct opts_skip_null : glz::opts {
   bool skip_null_members_on_read = true;
};
```

### Example: Preserving Existing Values

```c++
Person person;
person.name = "Alice";
person.age = 30;
person.salary = 75000.0;

// JSON with null values
std::string json = R"({"name":null,"age":35,"salary":null})";

glz::read<opts_skip_null{}>(person, json);

// null fields were skipped, preserving existing values
expect(person.name == "Alice");    // Unchanged (was null in JSON)
expect(person.age == 35);          // Updated
expect(person.salary == 75000.0);  // Unchanged (was null in JSON)
```

### Format Support

This option works with both JSON and BEVE formats:

**JSON:**
```c++
struct opts_skip_null_json : glz::opts {
   bool skip_null_members_on_read = true;
   // format = JSON (default)
};
```

**BEVE:**
```c++
struct opts_skip_null_beve : glz::opts {
   uint32_t format = glz::BEVE;
   bool skip_null_members_on_read = true;
};
```

### Behavior

- **With option enabled:** Null values in input are skipped; C++ field retains its existing value
- **With option disabled (default):** Null values cause errors for non-nullable types, or reset `std::optional` types to empty

### Comparison with std::optional

**Without skip_null_members_on_read:**
```c++
struct PersonWithOptional {
   std::optional<std::string> name;
   std::optional<int> age;
};

PersonWithOptional p;
p.name = "Alice";
p.age = 30;

glz::read_json(p, R"({"name":null,"age":35})");

// name is reset to empty by null
expect(!p.name.has_value());
expect(p.age == 35);
```

**With skip_null_members_on_read:**
```c++
struct Person {
   std::string name;  // No std::optional needed
   int age;
};

Person p;
p.name = "Alice";
p.age = 30;

glz::read<opts_skip_null{}>(p, R"({"name":null,"age":35})");

// name preserves existing value
expect(p.name == "Alice");
expect(p.age == 35);
```

> [!NOTE]
> This option is not a core field in `glz::opts`. You must create a custom options struct that adds this field, as shown in the examples above.