File: ut-guide.md

package info (click to toggle)
glaze 6.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,948 kB
  • sloc: cpp: 121,839; sh: 99; ansic: 26; makefile: 13
file content (235 lines) | stat: -rw-r--r-- 6,120 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# How to use the ut library

The `ut` library is a lightweight, header-only C++ testing framework that uses a declarative style with lambdas to define test suites and test cases. This guide explains how to use the library to write effective unit tests.

## Basic Structure

The general structure for writing tests with the `ut` library looks like this:

```cpp
#include "ut/ut.hpp"
using namespace ut;

suite my_test_suite = [] {
    "test_name"_test = [] {
        // Test code goes here
        // Use expect() to verify conditions
    };
    
    "another_test"_test = [] {
        // Another test case
    };
};

int main() {}
```

## Creating Test Suites

A test suite is a logical grouping of related test cases:

```cpp
suite string_tests = [] {
    // String-related test cases go here
};

suite math_tests = [] {
    // Math-related test cases go here
};
```

## Writing Test Cases

Test cases are defined with a string literal followed by the `_test` suffix, assigned to a lambda function:

```cpp
"addition"_test = [] {
    expect(2 + 2 == 4) << "Addition should work correctly\n";
};
```

The string before `_test` should be descriptive of what you're testing.

## Making Assertions

The primary verification method is the `expect()` function:

```cpp
expect(condition) << "Optional message to display if the condition fails\n";
```

Examples:

```cpp
expect(result == expected) << "Result should equal expected value\n";
expect(vec.empty()) << "Vector should be empty after clear\n";
expect(a < b) << "a should be less than b\n";
expect(not is_empty) << "Container should not be empty\n";
```

## Testing Exceptions

To verify that code throws an exception:

```cpp
expect(throws([&] {
    // Code that should throw an exception
    function_that_throws();
})) << "Function should throw an exception\n";
```

To verify that code doesn't throw:

```cpp
expect(not throws([&] {
    // Code that should not throw
    safe_function();
})) << "Function should not throw an exception\n";
```

## Detailed Examples

### Testing a Simple Class

```cpp
class Counter {
public:
    Counter() = default;
    explicit Counter(int initial) : count(initial) {}
    
    void increment() { ++count; }
    void decrement() { --count; }
    int get() const { return count; }
    
private:
    int count = 0;
};

suite counter_tests = [] {
    "default_constructor"_test = [] {
        Counter c;
        expect(c.get() == 0) << "Default constructor should initialize to 0\n";
    };
    
    "value_constructor"_test = [] {
        Counter c(42);
        expect(c.get() == 42) << "Value constructor should initialize to given value\n";
    };
    
    "increment"_test = [] {
        Counter c(10);
        c.increment();
        expect(c.get() == 11) << "Increment should add 1 to count\n";
    };
    
    "decrement"_test = [] {
        Counter c(10);
        c.decrement();
        expect(c.get() == 9) << "Decrement should subtract 1 from count\n";
    };
};
```

### Testing Complex Class Behavior

```cpp
suite complex_behavior_tests = [] {
    "string_operations"_test = [] {
        std::string s = "Hello";
        s.append(", World!");
        
        expect(s == "Hello, World!") << "String append should work correctly\n";
        expect(s.length() == 13) << "String length should be updated after append\n";
        expect(s.find("World") == 7) << "find() should return correct position\n";
    };
    
    "vector_operations"_test = [] {
        std::vector<int> vec;
        
        expect(vec.empty()) << "New vector should be empty\n";
        
        vec.push_back(42);
        expect(vec.size() == 1) << "Size should be 1 after adding an element\n";
        expect(vec[0] == 42) << "Element should be accessible by index\n";
        
        vec.clear();
        expect(vec.empty()) << "Vector should be empty after clear\n";
    };
};
```

### Testing Thread Safety

```cpp
suite thread_safety_tests = [] {
    "concurrent_increment"_test = []() mutable {
        std::atomic<int> counter{0};
        
        std::deque<std::thread> threads;
        for (int i = 0; i < 10; ++i) {
            threads.emplace_back([&counter]() {
                for (int j = 0; j < 1000; ++j) {
                    counter++;
                }
            });
        }
        
        for (auto& t : threads) {
            t.join();
        }
        
        expect(counter.load() == 10000) << "Concurrent increments should result in correct count\n";
    };
};
```

## Best Practices

1. **Use Descriptive Test Names**: Name your tests clearly to describe what they're testing.
   ```cpp
   "string_comparison_case_sensitive"_test = [] { /* ... */ };
   ```

2. **One Assertion per Test**: Ideally focus each test on verifying a single behavior.
   ```cpp
   "vector_size_after_push"_test = [] { /* ... */ };
   "vector_access_after_push"_test = [] { /* ... */ };
   ```

3. **Provide Detailed Failure Messages**: Include specific messages to help diagnose test failures.
   ```cpp
   expect(result == 42) << "calculate() should return 42 for input 'x'\n";
   ```

4. **Test Edge Cases**: Include tests for boundary conditions, empty collections, etc.
   ```cpp
   "empty_string_behavior"_test = [] { /* ... */ };
   "division_by_zero"_test = [] { /* ... */ };
   ```

5. **Group Related Tests**: Organize tests into logical suites.
   ```cpp
   suite string_tests = [] { /* string-related tests */ };
   suite math_tests = [] { /* math-related tests */ };
   ```

6. **Test Thread Safety**: For concurrent code, verify thread-safe behavior.
   ```cpp
   "concurrent_read_write"_test = [] { /* ... */ };
   ```

## Running Tests

The `ut` library is designed to be simple to use. To run your tests:

1. Compile your test file(s) including the `ut.hpp` header
2. Run the resulting executable
3. The library handles test execution and reports any failures

The `main()` function can be left empty as shown above, because the test library initializes and runs the tests automatically.

```cpp
int main() {}
```

By following these guidelines, you can write effective, maintainable unit tests with the `ut` library.